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Exploring the diversity and formationmechanism of under-ground bud banks is

essential for understanding the renewal of plant populations and community

succession. However, there are few studies on the response of bud bank size

and composition to different degradation gradients in alpine meadows. In view

of this, we investigated the size and composition of bud bank under four

degradation gradients (non-degraded:ND, lightly degraded:LD, moderately

degraded:MD, and heavily degraded:HD) caused by overgrazing in a typical

alpine meadow in Tibet, China, using a unit area excavation sampling method,

and analyzed the correlation between above-ground plant community

composition and bud bank density. Our results showed that: (i) in the ND

alpine meadow, rhizome buds were dominant, in the LD, tiller buds were

dominant, and in the MD, root-sprouting buds were dominant; (ii) total bud

bank and cyperaceae bud density decreased with increasing degradation

gradient, the density of leguminosae was insignificant in each degradation

gradient, and the density of gramineae and forb were dominant in LD and MD

meadows, respectively; (iii) total bud bank density was significantly and

positively correlated with total above-ground biomass in the LD gradient,

tiller bud density was significantly positively correlated with the species

diversity index of above-ground vegetation under the ND gradient, rhizome

bud density was significantly and positively correlated with total above-ground

biomass in the LD gradient, and root-sprouting density was significantly

negatively correlated with total above-ground biomass in ND meadows, but

was significantly positively correlated with the species diversity index of the LD

gradient. Therefore, our research shows that rhizome buds are more important

in ND meadow habitats, tiller buds are more important in LD meadow habitats,

and root-sprouting buds are more important in MDmeadows. The response of
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bud banks to degradation gradient varies with different types of bud banks and

different functional groups of plants, and the survival strategy of bud banks is of

great value for community restoration and regeneration, which should be paid

more attention to in subsequent alpine meadow research.
KEYWORDS

bud bank, vegetation restoration, degradation, vegetative reproduction,
alpine meadow
Introduction

Grassland ecosystems account for about one-third of the

earth’s coverage area, provide habitats for various fauna and

flora, and play an important role in the maintenance of

ecosystem services such as climate regulation, water

conservation, and support for humans (Curtin and Western,

2008; Ott et al., 2019). However, as global climate change and

human activities intensify, abiotic limiting factors (moisture,

temperature, pH, etc.) affecting vegetation growth change,

especially in arid or semi-arid grassland ecosystems, and

irrational land use practices and overgrazing are considered to

be the main threats to grassland degradation (Bai et al., 2007;

Min et al., 2011; Zwicke et al., 2013; Yin et al., 2013). In the

grassland ecosystems, the vegetation reproduction bank is

composed of an asexually cloned bud bank and a sexually

reproduced seed bank (Abernethy and Willby, 1999;

Klimesǒvá et al., 2017). In grassland ecosystems dominated by

annuals, the maintenance of grassland plant communities and

the protection of genetic variants depend on seed banks, and the

under-ground seed bank is highly similar to above-ground

communities, but in perennial grassland ecosystems

dominated by clonal propagation, the composition of

grassland vegetation, seasonal changes and the spatial and

temporal patterns of vegetation productivity depend on the

bud bank (Gough, 2006; Klimes,̌ 2008; Silvertown et al., 1993;

Vıt́ová et al., 2017).

The type of bud represents the way in which the plant is

derived, and the bud bank is divided into different types based on

the different taxonomic categories and the location of the rooted

buds. In grassland ecosystems, most new bud recruitment in

perennial herbaceous plants occurs from under-ground axillary

buds (rhizome buds or tiller buds) (Ott and Hartnett, 2012), with

a small proportion coming from adventitious root buds. The

response of herbaceous communities to environmental

disturbances depends not only on the number of buds, but

also on the type of bud bank and vegetative functional groups

(Aarssen, 2008; Qian et al., 2017). For example, Leymus chinensis

produces more rhizome buds under high water content

conditions and more tiller buds under low water content
02
(Wang et al., 2008). The reduction in rhizome buds and the

increase in tiller buds of vegetation under high temperature

stress greatly contribute to the growth of net primary

productivity above-ground (Camilla and Kevin, 2014). In

resource-rich ecosystems, plants can have multiple types of

buds at the same time, including tiller buds, scale buds and

rhizome buds, while under soil-poor conditions plants grow

mainly rhizome buds (Klimesǒvá and Klimes,̌ 2008; Rusch et al.,

2011). In addition, grazing increased the branch number and the

density of bud banks of cyperaceae, compared to the density of

bud banks and branch number of gramineae, which were not

affected (Damhoureyeh and Hartnett, 1997).

In recent decades, re-vegetation and sand control in alpine

meadow ecosystems have gradually become a hot topic of

research (Jackson et al., 1985; Hoover et al., 2014; Lin et al.,

2016; Song et al., 2020; Wang F et al., 2020). In alpine meadows,

stresses and disturbances coexist, with climate change and

overgrazing being the main factors in meadow degradation

(Wessels et al., 2007; Rutherford et al., 2011), both of which

alter soil environmental conditions (e.g. soil temperature,

moisture, nutrients, etc.) for plant growth (Xiao et al., 2015).

For example, degraded meadows become more susceptible to

rainfall erosion and weathering, which reduces the soil’s ability

to store water and fertiliser, leading to increased spatial

heterogeneity between vegetation and soil, which in turn

affects vegetation growth, community succession and

ecosystem function (Krzic and Bomke et al., 2000; Zhou et al.,

2012). In addition, palatability is an important factor for

livestock to selectively feed on forage (Zheng et al., 2006). In

this process, livestock tend to choose high protein, good

palatability forage and not to feed on low protein, poor

palatability forage or to feed less on it. This means that the

selective foraging of grassland plants by livestock results in a

significant substitution change in the dominance of the major

species in the community, with herbivores in tall-grass prairie

releasing weeds that are in competitive suppression by C4 plants,

leading to an increase in community diversity and species

richness of forb (Towne et al., 2005). In addition to this, the

mechanical activity of large hoofed herbivores under overgrazing

conditions will increase soil compaction and limit seed dispersal
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and germination capacity (Klimesǒvá et al., 2009; Herben et al.,

2016). Unlike sexual reproduction, which relies on seed

propagation, under-ground bud banks have direct access to

the resources of the parent plant and rely on its high survival

rate and strong reproductive capacity for rapid growth to restore

populations (Dong, 2011).

The alpine meadow is the largest and most widely

distributed typical alpine grassland ecosystem in China,

covering an area of about 1.2 × 106 km2, accounting for about

47.05% of the total area of the Qinghai-Tibet Plateau (Tian et al.,

2014). In the past time, due to overgrazing and irrational use of

land, the alpine meadows in this area have been degraded to

varying degrees, which severely restricted the ecosystem service

functions of alpine meadows. As the type and density of under-

ground bud banks are important mechanisms for resisting

disturbances in grassland degradation and maintaining stable

plant populations, it is essential to explore the role of different

bud bank types and densities in population regeneration and re-

vegetation under degradation gradients.

This study investigated the dynamics of three bud bank types

in alpine meadows under four meadow degradation types (the

non-degraded, lightly degraded, moderately degraded and heavily

degraded meadow), with the aim of determining the response of

bud banks to degradation gradients and the relationship with

above-ground vegetation composition in Tibetan alpine meadows

in China. We addressed three questions: (1) How do subsurface

bud bank densities and types respond to disturbances in

degradation gradients? (2) How does the response of bud banks

to degradation gradients differ between meadow functional

groups? (3) What is the relationship between bud bank density

and above-ground plant communities under different degradation
Frontiers in Plant Science 03
gradients? Comparing the basic ecological strategies of bud banks

under degradation gradients will help to predict vegetation

succession and maintain the rational use of grasslands.
Materials and methods

Study site

This study was conducted near the Damxung Grassland

Station (30°51′N, 91°05′E, 4333 m a.s.l), on the southern slope of

the Nyenchen Tanglha in Qinghai-Tibet Plateau (Figure 1A).

The region belongs to the plateau continental climate. The mean

annual precipitation is 459.6 mm, of which about 80% occurs

during the growing season (May to September). The mean

annual temperature is 1.6°C, ranging from -10°C in January to

12.5°C in June (Zhang et al., 2009). There were no significant

differences in temperature and precipitation in the sampling year

compared to the history mean. The grassland is a typical alpine

meadow vegetation type, the main plants are Kobresia pygmaea,

Kobresia humilis and Stipa capillacea.
Evaluation of soil degradation

An evaluation system based on vegetation survey was

established near the experimental station to evaluate the

degradation status of the meadow (Wen et al., 2010; Yang

et al., 2020; Wang et al., 2021), which was composed of

vegetation composition, ground fragmentation degree (the

degree of surface fragmentation is the degree of fragmentation
FIGURE 1

The study area-locates near the Damxung Grassland Station (30°51′N, 91°05′E, 4333 m a.s.l) on the Qinghai-Tibet Plateau (A). non-degraded
alpine meadow (ND); lightly-degraded alpine meadow (LD); moderately degraded alpine meadow (MD); heavily degraded alpine meadow
Figure 1(HD) (B).
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of the alpine meadow surface felt layer, expressed as the

percentage of intact felt layer per unit area), coverage degree

and plant biomass, and the study site was divided into four

degraded gradient meadows (Table 1; Figure 1B). Specifically,

the ground surface of the non-degraded meadow (ND) was

almost unbroken, and the dominant species was Kobresia

pygmaea with vegetation coverage greater than 80%; The

degree of ground surface fragmentation was obvious in the

lightly degraded meadow (LD), and the dominant species were

Stipa capillacea and Carex montis-everestii, the number of forb

such as Potentilla saundersiana increased significantly, and the

vegetation coverage was 60%-80%; In the moderately degraded

meadow (MD), the surface fragmentation was more serious, the

felts were scattered on the surface, and the dominant position of

forb such as Pleurospermum hedinii and Leontopodium nanum

was more obvious, and the vegetation coverage was 40%-60%;

The heavily degraded meadow (HD) surface basically bare, the

felt disappeared, and the vegetation coverage was less than 40%,

forb such as Leontopodium nanum and Artemisia wellbyi occupy

the dominant position. Fences were set in the four sample plots

to allow seasonal grazing (the plants were not affected by

livestock and human activities in the growing season, and

livestock were allowed to eat in the non-growing season).

Different lowercase letters in the same column indicate

significant differences under different degradation gradients

(P < 0.05), Data are means ± standard error. non-degraded

alpine meadow (ND); lightly-degraded alpine meadow (LD);

moderately degraded alpine meadow (MD); heavily degraded

alpine meadow (HD). The error bars represent the standard

error of the mean (n = 3).
Community and bud bank sampling

In August 2018, plant community and bud bank surveys were

conducted by digging out the entire soil core in four selected

degraded meadows (ND, LD, MD, HD). The entire experimental
Frontiers in Plant Science 04
area covered about 100 hm2, with each degraded meadow

measuring approximately 15-20 hm2, five plots of 100 × 100 m

were randomly assigned to each degraded meadow, each plot is

more than 500 m apart, five small quadrats (0.5 × 0.5 m) were

randomly set for each plot to investigate plant species, height and

coverage (relevant results can be found in previous studies at this

sample site) (Yang et al., 2020). After the plant community survey,

the quadrats were excavated to a depth of 0.5 m, the soil cores were

shaken off and the above-ground and below-ground parts of the

plants were kept intact (to facilitate species identification and bud

counts) and placed in a ziplock bag to be taken back to the

laboratory. All species occurred in the sampling sites and the study

sites had species that could reproduce both by seed and bud bank,

such as the Stipa purpurea.
Sample processing

We took the plants back to the laboratory, washed them with

clean water, and then identified the species, bud bank type and

number. In this case, the Latin names of the plant species were took

from the online website: Flora of China (http://www.iplant.cn/).

During the identification process, only intact bud tissue was

recorded, and any necrotic bud tissue was discarded. According

to the criteria (survival strategy and response phenotype of the bud

bank) proposed byMa (Ott andHartnett, 2012; Ma et al., 2019), the

under-ground bud bank (buds growing in soil) was divided into

three types: rhizome buds (buds are buds that grow on the rhizomes

of plants and can be counted directly), tiller buds (buds formed

mainly at the tiller bases of gramineae and need to be counted after

dissecting the base of the tillering node), root-sprouting bud (buds

are adventitious buds that grow on the roots of plants and can be

counted directly), and different plant functional groups (cyperaceae,

gramineae, leguminosae, forb) for classification and identification

(Table 2). Each species was classified and identified by naked eye or

under anatomic microscope in combination with morphological

characteristics of buds and attached organ parts.
TABLE 1 Geographical information and species composition of the study sites.

Degradationlevel Latitude(N) Longitude(E) Altitude(m) Richnessindex Shannonindex Biomass(g/m2) Dominant Species

ND 30°C45′ 19′′ 91°C03′ 23′′ 4456 8 ± 1b 1.23 ± 0.05c 1502.6 ± 8.7a Stipa capillacea,
Stipa purpurea,
Kobresia pygmaea

LD 30°C43′ 48′′ 91°C07′ 41′′ 4389 7 ± 1b 1.50 ± 0.11b 1070.9 ± 7.5b Stipa capillacea,
Carex montis-everestii

MD 30°C49′ 31′′ 91°C09′ 17′′ 4350 12 ± 1a 1.78 ± 0.06a 1203.0 ± 16.7b Pleurospermum hedinii,
Leontopodium nanum,
Artemisia wellbyi

HD 30°C52′ 15′′ 91°C12′ 32′′ 4348 8 ± 1b 1.77 ± 0.10a 431.7 ± 13.2c Leontopodium nanum,
Artemisia wellbyi
Different lowercase letters in the same column indicate significant differences under different degradation gradients (P < 0.05), Data are means ± standard error. non-degraded alpine meadow
(ND); lightly-degraded alpine meadow (LD); moderately degraded alpine meadow (MD); heavily degraded alpine meadow (HD). The error bars represent the standard error of the mean (n = 3).
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Data analysis

The original data of bud density was converted to the standard

number of buds per m2. We first used a Kolmogorov-Smirnov (K-

S) test to examined whether the data were normally distributed.

One-way analysis of variance (ANOVA) was applied to analyze

(1) the response of bud bank density to four degraded alpine

meadows, (2) the difference in bud bank density of three types of

bud bank, and (3) the difference of the bud bank types of the four

functional groups. Pearson correlation with a two-tailed test was
Frontiers in Plant Science 05
applied to analyze the correlation between bud banks density and

above-ground plant community composition at different

degradation gradients. SPSS 22.0 was used for the analysis of

variance and post-hoc testing, and Origin pro 9.1 was used for

mapping. All tests were based on a two-tailed test of type III sum

of squares, and were considered significant at the level of a = 0.05.
Result

Response of bud density of different
plant functional groups to
degradation gradient

Overall, The density of functional group buds showed

different responses with the degradation gradient. The density

of cyperaceae buds decreases as the degradation gradient

increases, and the bud density of cyperaceae on the ND

gradient was significantly higher than that of the other three

degraded gradient plots (P < 0.05), However, there was no

significant difference in the density of cyperaceae buds under

LD and MD gradients, but both were significantly higher than

the cyperaceae bud density of HD gradients (P < 0.05). The

density of gramineae buds dominates the gradient of LD (60%),

while the bud density of forb dominates the gradient of MD

(49%). The density of leguminosae buds was not significant

under each degradation gradient (P > 0.05) (Figure 2).
FIGURE 2

Bud bank density of different plant functional groups under degradation gradient. ND, non-degraded; LD, lightly degraded; MD, moderately
degraded; HD, heavily degraded. Different lowercase letters indicate that bud bank density is significantly different among different functional
groups P < 0.05 (mean ± standard error; lowercase letters: P < 0.05).
TABLE 2 Species list and their bud bank types in the study region.

Plant
functional
group

Species Bud
bank
type

cyperaceae Kobresia pygmaea, Kobresia humilis, Carex
montiseverestii

rhizome

gramineae Stipa capillacea, Stipa purpurea, Poa litwinowiana,
Festuca coelestis

tiller

leguminosae Astragalus strictus, Astragalus confertus, Astragalus
tribulifolius

root-
sprouting

forb Youngia simulatrix, Artemisia wellbyi, Heteropappus
bowerii, Pleurospermum hedinii, Potentilla cuneata,
Stellera chamaejasme, Potentilla saundersiana,
Leontopodium nanum, Potentilla bifurca,
Anaphalis xylorhiza

root-
sprouting
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Response of total bud bank density and
bud bank type to degradation gradient

Under different degradation gradients, the total bud bank

density was different. Specifically, as the degradation gradient

intensified, the total bud bank density gradually decreased, the

total bud density of the ND gradient (mean ± 1SE: 3699 ± 184 bud/

m2) was significantly greater than the MD gradient (3014 ± 230

bud/m2), and the HD gradient (1126 ± 77 bud/m2) (P < 0.05)

(Figure 3), but not significantly different (P > 0.05) from that in the

LD gradient (3328 ± 294 bud/m2). There was no significant

difference in bud density between the LD gradient and the MD

gradient (P > 0.05), but it was significantly higher than the bud

density of the HD gradient (172 ± 21%) and (149 ± 21%) (P < 0.05).

The density of rhizome buds decreases with the

intensification of the degradation gradient, the rhizome buds

density of the ND gradient was significantly higher than the LD

gradient, the MD gradient, and the HD gradient (P < 0.05),

However, the difference in rhizome buds density among the last

three degradation gradients was not significant (P > 0.05). The

density of tillering buds dominates under the LD gradient (60%),

and under the three degradation gradients, the density of

tillering buds decreases with the aggravation of the

degradation gradient. Root-sprouting bud density dominates

under a MD gradient (53%), which was significantly higher

than that under ND, LD, and MD gradients (P < 0.05) (Figure 3).
Frontiers in Plant Science 06
Correlation analysis of bud bank and
above-ground plant community
composition under different
degradation gradients

Bud bank density was associated with above-ground plant

community composition under different degradation gradients

(Figure 4). Overall, tiller bud density was significantly positively

correlated with the Shannon index of above-ground vegetation

under the ND gradient (P < 0.05), root-sprouting bud density

was significantly negatively correlated with both total above-

ground biomass in the ND meadow and the Shannon index in

the LD gradient (P < 0.05), and total above-ground biomass was

significantly positively correlated with total bud bank and

rhizome bud density in the LD gradient (P < 0.05).
Discussion

Analysis of bud bank density renewal
mode of plant functional groups under
degraded alpine meadow

The ecological role of specific plant functional groups is one

of the foundations for understanding vegetation succession

(Klimesǒvá and Klimes,̌ 2007). The types of bud banks among
FIGURE 3

Bud bank density and composition under the degradation gradient of four alpine meadows. ND, non-degraded; LD, lightly degraded; MD,
moderately degraded; HD, heavily degraded. Different red lowercase letters indicate significant differences among degradation gradients (P <
0.05); Different black lowercase letters indicate significant differences within the degradation gradient (P < 0.05), Data are means ± standard
error.
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plant functional groups show different survival strategies and

adaptive mechanisms to degradation gradients. Specifically,

plants with rhizome buds functional groups tend to encroach

on resources, which is a competitive expansion strategy, while

plants with root-sprouting buds functional groups exhibit

evasive behavior in resource utilization, which is a stress-

tolerant strategy, the survival strategy of the tiller bud is

between rhizome buds and root-sprouting buds, and its

survival strategy is the common utilization of resources. In our

research, the process of meadow degradation is essentially the

suppression of fine herbaceous plants such as cyperaceae and

gramineae. With the intensification of degradation, the bud bank

density of cyperaceae showed a gradual decrease trend; The

density of gramineae bud banks increased from ND to LD

meadow, but decreased from LD to HD meadow, indicating

that the inhibition effect of grassland degradation on gramineous

bud banks depended on the degree of degradation. Grassland

degradation is also conducive to the generation of forb bud

banks, and the density of bud banks in MD meadow is the

highest, this result may be due to the inhibition of fine forage

grasses by degradation, which makes forb alleviate the pressure

of inter-specific competition and improve the efficiency of

resource utilization (Wilkinson, 1999). In all stages of

degraded grassland, the response of leguminosae bud density

is not sensitive, which is related to the low proportion of

leguminosae in the community.
Frontiers in Plant Science 07
Influence of degradation gradient on bud
bank type and bud bank density

Differences in bud bank implantation position and clonal

organ morphology and function lead to differences in the

response of different bud bank types to environmental

disturbances and degradation gradients (Hendrickson and

Briske, 1997; Ott and Hartnett, 2012). Compared with rhizome

buds and root-sprouting buds, tiller buds have limited space

expansion ability, and they cannot make timely use of distant

resources. Generally, tiller buds are located at the base of

gramineous plants, the buds are small and wrapped in the leaf

axils, protected by leaf sheaths. In contrast, root-sprouting buds

are adventitious buds produced by plant roots, which are often

used for plant callus inhibition or secondary germination after

resource pulses (Biondini et al., 1998; Horvath et al., 2002), so

they can partially avoid the negative effects of environmental

stress (Klimesǒvá et al., 2017). It is generally believed that

rhizome buds have strong branching ability, so that they can

maximize resources by increasing the number of branches and

shortening the length of spacers under stress conditions (Luo

et al., 2014). We found that rhizome buds are dominant in the

ND gradient, which may be related to the sensitivity of rhizome

buds to water, when the water content in the soil is high, the

water will stimulate the expansion of rhizomes and buds and

place the ramets in benign patches to maximize resources
FIGURE 4

Correlation analysis of bud bank density and above-ground plant community composition under different degradation gradients. The colour of
the box indicates the correlation coefficient, red indicates positive correlation, blue indicates negative correlation, the darker the colour, the
larger the absolute value of the correlation coefficient. *P < 0.05.
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(Combroux and Bornette, 2004). Tiller buds dominate the LD

gradient, due to the combined effects of climate and human

activities, the dense and compact grass mat layer in the alpine

meadow is destroyed (fragmented) or even completely lost, and

the soil nutrient and water retention function gradually

weakened, the dominant species of the plant community

gradually changed, and Kobresia pygmaea in the ND meadow

was gradually replaced by Stipa purpurea, which prefers dry

habitats, so that the density of tiller buds was LD to the highest.

Compared with rhizome buds and tiller buds, root-sprouting

buds are more adapted to heavily disturbed habitats. Our results

show that the density of root-sprouting buds in the MD gradient

occupies a dominant position, this stage is an obvious

transitional stage, many plants in the above-ground vegetation

still have strong asexual reproduction ability and produce more

clonal buds, and most of the forb can produce a considerable

amount of germinated seeds, which will facilitate the

propagation of more forb, so the density of root-sprouting

buds is the highest in MD gradient.

In this study, total bud bank density decreased with

increasing degradation. From the perspective of degraded

succession, the ND and LD gradient belong to the early stage

of plant succession, at this time, the dominant plants of the two

degraded gradients are cyperaceae (ND) and gramineae (LD),

the community mainly relies on clonal organ reproduction and

under-ground bud bank renewal, with the highest total bud bank

density. By the middle of the succession (MD), most of the forb

that can produce seeds appeared in the community, the

proportion of sexual reproduction was greatly increased, and

the proportion of clonal reproduction decreased (Maliková et al.,

2012). On the other hand, from the perspective of forage edibility

and grazing value, due to the more poisonous weed seeds and

buds in the soil at this stage (forb bud bank density accounts for

about 60%, while good forage buds sink density accounts for

about 40%), which makes the replacement of species deviate

from the normal trajectory, and the recovery ability of fine

grasses such as cyperaceae and gramineae is greatly reduced,

so the total bud bank density is reduced. At the later stage of

succession (HD), the land is nutrient-poor, the turf layer is

fragmented, and the degree of degradation exceeds the ecological

restoration threshold, at this stage, the species is relatively poor,

the community structure is relatively simple, and the total bud

bank density is the lowest.
Dynamic analysis of bud bank density
and above-ground vegetation
community composition

In grassland ecosystems, below-ground bud banks represent

the adaptive capacity and reproductive potential of plants and

are indicative in predicting the process and direction of
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grassland succession. Many studies have shown that bud bank

density is closely related to species diversity, grassland

productivity and community stability, a high number of bud

banks can improve the structure and function of grassland

ecosystems (Chen et al., 2015; Chen et al., 2018). In our study,

tiller bud density was significantly and positively correlated with

the Shannon index under the ND gradient, root-sprouting bud

density was significantly correlated with the Shannon index

under the LD gradient, and changes in rhizome bud density

were not significantly different from above-ground species

diversity. This implies that in ND meadows, due to the large

proportion of cyperaceae plants such as Kobresia pygmaea, their

dominance suppresses the growth of other species in the

community and reduces the diversity of the plant community,

while with the small number of gramineae in the community, the

increase in tiller bud density will increase the species diversity of

the above-ground community under the ND gradient. Similarly,

in LD meadows, where the degradation gradient is further

intensified, leguminosae and forb plants gradually appear in

the community, and both have an increased proportion of root-

sprouting buds contributing to the bud bank, expanding

ecological niches and gaining more space and resources

through rapid growth, and as the density of newly expanded

root-sprouting buds increases, their corresponding above-

ground plant species diversity also increases significantly.

Species diversity and above-ground biomass in MD and HD

was not significantly correlated with bud bank density, which

was related to the mode of reproduction under the two

degradation gradients.

In previous studies it was found that in alpine meadow

ecosystems, population reproduction is dominated by asexually

reproducing perennials, which contribute more than 90%

(Wang X. et al., 2020), but the soil seed bank is still a non-

negligible part of the population, except that compared to

asexual reproduction, sexual reproduction produces seedlings

that are less resistant and less likely to survive under alpine

environmental conditions (Amiaud and Touzard, 2004). In the

MD and HD stages, the growth of cyperaceae and gramineae is

affected and their dominance is lost, the bare leaking plots

provide favourable conditions for the growth of other plants

(especially forb) and the increased proportion of the seed bank

enriches species diversity to some extent (Table 1). We further

infer that during the succession of alpine meadow plant

communities, there is no consistency between the soil bud

bank and the composition of the corresponding above-ground

vegetation, specifically, the density of the bud bank at the

beginning of the succession (ND, LD) is positively correlated

with species diversity, while the density of the bud bank at the

middle and late succession (MD, HD) is not correlated with

species diversity, and the value of the contribution of the bud

bank to above-ground vegetation gradually decreases as the

gradient of degradation increases.
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Conclusions

The different bud bank types have different adaptation

strategies to the degradation gradient: at the beginning of

succession (ND, LD), the bud bank types are dominated by

rhizome and tiller buds respectively, at the middle of succession

(MD), the bud bank types are dominated by root-sprouting

buds, while at the end of succession (HD), the habitat is poor and

the structurally simple community cannot recover to its original

stage by its own regulation. The density of soil bud banks at the

beginning of succession (ND, LD) was positively correlated with

species diversity, while the density of bud banks at the middle

and late succession (MD, HD) was not correlated with species

diversity, and the value of the contribution of bud banks to

above-ground vegetation gradually decreased as the degradation

gradient increased. In addition, the degradation of the MD

gradient was more conducive to species diversity in terms of

above-ground plant community composition.
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