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Species richness and
asynchrony maintain
the stability of primary
productivity against seasonal
climatic variability
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The stability of grassland communities informs us about the ability of grasslands

to provide reliable services despite environmental fluctuations. There is large

evidence that higher plant diversity and asynchrony among species stabilizes

grassland primary productivity against interannual climate variability. Whether

biodiversity and asynchrony among species and functional groups stabilize

grassland productivity against seasonal climate variability remains unknown.

Here, using 29-year monitoring of a temperate grassland, we found lower

community temporal stability with higher seasonal climate variability

(temperature and precipitation). This was due to a combination of processes

including related species richness, species asynchrony, functional group

asynchrony and dominant species stability. Among those processes,

functional group asynchrony had the strongest contribution to community

compensatory dynamics and community stability. Based on a long-term study

spanning 29 years, our results indicate that biodiversity and compensatory

dynamics a key for the stable provision of grassland function against increasing

seasonal climate variability.
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climate variability, species richness, asynchrony, temperate grassland, community
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Introduction

In recent decades, we have witnessed severe climate changes

including warmer temperature as well as more variable

precipitation patterns such as frequent floods and droughts

(Kardol et al., 2010; Min et al., 2011; Orlowsky and

Seneviratne, 2012; IPCC, 2013; Thornton et al., 2014; Putnam

and Broecker, 2017). There is growing concern that increased

climate variability may affect the structure, function and

temporal stability of grassland ecosystems (Huxman et al.,

2004; Vargas et al., 2012; Grant et al., 2014; Peralta et al.,

2019; Liu et al., 2021). The temporal stability of grassland

communities, usually measured as the invariability of

community biomass among years, is key to provide reliable

services including nutrient and carbon cycling as well as fodder

for livestock. Understanding the influence of climatic changes,

particularly seasonal variability, on grassland community

temporal stability is essential since dairy and meat farmers

around the world rely on stable fodder production for stable

income (Lurette et al., 2013; Bengtsson et al., 2019).

Previous studies have shown that increased precipitation

variability generally reduces primary productivity (Knapp et al.,

2002; Gherardi and Sala, 2015; Wagg et al., 2017) and its

temporal stability (Zhang et al., 2018). However, these effects

may depend on the difference in environmental conditions such

as climate and soil caused by differences in geographical location

(Liu et al., 2019). Additionally, climate variability can alter

functional trait composition, such as plant height, leaf area

and leaf dry matter content (Cheng et al., 2021; Shaw et al.,

2022), and reduce the species richness of grassland ecosystems

(Thomas et al., 2004; Wu et al., 2012; Cleland et al., 2013). These

changes in plant diversity, community composition and primary

productivity in response to increased climate variability may in

turn affect the temporal stability of grassland community.

Theoretical and empirical evidence suggests that grassland

community temporal stability is influenced by multiple

underlying mechanisms (Loreau and De Mazancourt, 2013;

Ma et al., 2017).

First, dominant species often plays an important role in the

community (Grime, 1998, mass-ratio hypothesis) and the

temporal stability of dominant species may disproportionately

contribute to the temporal stability of the whole community (Xu

et al., 2015; Ma et al., 2017). Similarly, the temporal stability of

functional groups with higher relative abundance may

disproportionately contribute to community temporal stability

(Wilsey et al., 2014; Huang et al., 2020).

Second, species asynchrony (different responses of species to

environmental change) can maintain community temporal

stability by altering the complementarity of the relative

biomass of species in different niches (Gross et al., 2014;

Hallett et al., 2014; Wilcox et al., 2017). However, biomass

complementarity may be stronger among functional groups

due to their higher relative biomass (Bai et al., 2004). In this
Frontiers in Plant Science 02
case, species asynchrony may be a weaker predictor of temporal

stability compared to functional group asynchrony (Dıáz and

Cabido, 2001; Bai et al., 2004). Therefore, considering both

species and functional group asynchrony may help to improve

our understanding of community temporal stability (Zhou

et al., 2019).

Third, species diversity and community composition can

affect community temporal stability directly by altering the

temporal mean of productivity or indirectly by affecting

species/functional group temporal stability and asynchrony.

For example, higher plant diversity usually increases the

productivity of grassland communities, leading to higher

stability via overyielding (Hautier et al., 2015). Communities

dominated by fast-growing species may show lower resistance

but higher resilience, while communities dominated by slow-

growing species may show the reverse (Craven et al., 2018).

Thus, communities with a high diversity of fast-slow traits

should buffer community response to environmental changes

and be more stable (Grime et al., 2008; Hector et al., 2010; Fry

et al., 2018). For resource-limited grassland ecosystems, species

diversity can facilitate competition for and use of resources by

dominant species, and the temporal stability of dominant

species or functional group can play a stabilizing role (Bartha

et al., 2014; Doležal et al., 2019). Species diversity may further

improve community temporal stability by promoting species

asynchrony (Loreau and De Mazancourt, 2008; Sasaki et al.,

2019) and functional group asynchrony (Lehman and

Tilman, 2000).

Long-term monitoring can reveal the long-term dynamic of

plant communities in response to climate variability, and the

relationship between community temporal stability and long-

term climate variability (Bai et al., 2004; Li et al., 2015; Zhou

et al., 2019). So far, previous studies have focused on the

relationship between climate variability and interannual

stability of community. However, climate variability is likely to

be stronger on seasonal scales than on annual scales (Donat

et al., 2016; Zhang et al., 2018; Zhang et al., 2022). Additionally,

the response and underlying mechanisms shaping community

temporal stability in response to seasonal climate variability

remain unresolved (Ives and Carpenter, 2007; Smith et al., 2017).

Here, we quantify the link between seasonal climate variability

and grassland community temporal stability. We collected long-

term monthly data on community biomass, community

composition, species richness and climate of a temperate

grassland between 1981 and 2011 in northern China, and

analyzed the relationships of seasonal temperature and

precipitation variability on seasonal community temporal

stability. We hypothesize that plant community would be less

stable with higher seasonal climate variability because 1) higher

seasonal climate variability reduces the positive effect of species

richness and species/functional group asynchrony, and 2) higher

seasonal climate variability reduces the temporal stability of

dominant species/functional group.
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Materials and methods

Study site

The observation was carried out at the Inner Mongolia

Grassland Ecosystem Research Station (IMGERS, 116.8°E,

43.5°N, 1179 m a.s.l.), located in a temperate grassland in the

Inner Mongolia, China (Supplementary Figure 1). The study

area has a temperate continental climate, with hot-rainy summer

and cold-dry winter. During the observation period of this study

(1981-2011), the mean annual temperature was 0.77°C and the

mean monthly minimum temperature was -21.3°C in January,

with the mean monthly maximum temperature of 19.3°C in July

(Supplementary Figure 2). The annual precipitation was 330.7

mm and approximately 83.8% of precipitation fell in the growing

season (from May to September). According to Chinese

classification, the soil type is chestnut soil, and Calcis-orthic

Aridisol in the US Soil Taxonomy classification, with an average

bulk density of 1.29 g cm−3 in 0-20 cm soil layer and a pH of 7.68

(Yuan et al., 2005; Song et al., 2016).
Experimental design

The study area is an 18-ha (600 m × 300 m) rectangular

homogeneous area fenced since 1979 to prevent grazing by large

animals (Li et al., 2015). It was equally separated into ten

replicate blocks (60 m ×300 m) for aboveground biomass

monitoring in 1981. Community aboveground biomass was

surveyed in the middle of every month throughout the

growing season (from May to September) of each year by

clipping green parts of all vascular plants above the soil

surface within a 1 m × 1 m quadrat that was randomly located

within each block, over 1981–2011. Hence, community

aboveground biomass was estimated for 1450 quadrats (i.e., 1

quadrat × 10 blocks per month × 5 months per year × 29 years =

1450 quadrats) excluding missing data from the years 1995 and

1996 (Ma et al., 2010). For each survey, the location of the

quadrat was marked to avoid setting up quadrat at the same site.

Other areas in each block that were not harvested remained

undisturbed. After harvesting, all plants were sorted into species,

and oven-dried at 65 °C to a constant weight, and then weighed.

The relative abundance of the aboveground dry biomass of each

species in the total aboveground dry biomass of the community

was calculated, and the species with relative abundance > 5% was

determined as the dominant species (Xu et al., 2015; Ma et al.,

2017), including two perennial rhizome grasses, Leymus

chinensis (25.5 ± 4.2%) and Agropyron cristatum (7.1 ± 1.6%),

and two perennial bunchgrasses, Stipa grandis (19.1 ± 3.6%) and
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Achnatherum sibiricum (11.2 ± 2.7%). These dominant species

accounted for 62.9 ± 10.1% of the total aboveground dry biomass

of the community at the study site. According to different life

forms, all species were further divided into three functional

groups, including perennial grass (PG), perennial forbs (PF), and

other plants (OP) (including shrubs, semi-shrubs, annuals and

biennials). Species richness was recorded in the same plot in

which aboveground biomass was measured. A total of 61 species

were found during 1981 and 2011.
Climate data

The monthly mean temperature (daily mean then averaged

to the month), and monthly cumulative precipitation data were

collected from the IMGERS weather station situated about 9 km

from the study site. Climate variability was expressed as the

inter-annual coefficients of variation (CV) of climate factors, and

the calculation formula was s/m×100, where s and m were the

inter-annual temporal standard deviation and mean of monthly

temperature or cumulative precipitation for May, June, July,

August, September and the whole growing season over the

period 1981–2011.
Statistical analysis

Data collected over a period of 29 years, from 1981 to 2011,

were used in this analysis excluding missing data from the years

1995 and 1996 (Ma et al., 2010). Similar to climatic variability,

the community temporal stability was calculated as m/s (Ma

et al., 2017), where m was the inter-annual mean monthly

biomass of the community from 1981 to 2011, and s was the

standard deviation. The functional group and dominant species

(L. chinensis, A. cristatum, A. sibiricum and S. grandis) temporal

stability was calculated using the same method. A higher value of

community stability means a lower inter-annual variability of

community biomass (Lehman and Tilman, 2000).

Species asynchrony, which refers to the asynchronous

response of species to environmental fluctuations (Loreau and

De Mazancourt, 2008), was calculated as

1 − jx = 1 − r2=(oT
l=1rl)

2

where jx was species synchrony, r2 and rl were the variance
of community biomass, and the standard deviation of biomass of

species l in a plot with T species for each month (May to

September) across the 29 years. Species asynchrony, fluctuates

between 0 and 1, and higher values indicate stronger

asynchronous changes among species in the community.
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The annual change rates of monthly mean temperature and

precipitation were calculated by using the slope of linear

regression equation of temperature or precipitation with year.

Repeated measures analysis of variance (ANOVA) was used to

test the variation of species richness and community biomass in

different growing seasons. Using SPSS 19.0 software package,

one-way ANOVAs were employed to probe the means

differences in species asynchrony, functional group asynchrony,

dominant species temporal stability and community temporal

stability among months within growing season, and the alpha

significance level was 0.05. Simple linear regression was used to

analyze the relationships between community temporal stability

and species richness, species asynchrony, functional group

asynchrony, dominant species temporal stability, temporal

stability of PG, PF and OP, and precipitation or temperature

variability. All the variables used in the analysis conformed to the

normal distribution.

Using AMOS 22.0 software package, structural equation

modeling (SEM) was used to assess the effects of climate

variability on community temporal stability through species

richness, species asynchrony, functional group asynchrony,

functional group temporal stability, and dominant species

temporal stability at different months of the growing season

from 1981 to 2011. Based on regression weight estimation,

the initial model was simplified and non-significant path

and state variables were eliminated, so the final model

contained only statistically significant paths that cannot be

rejected (Supplementary Table 1-6). According to the non-

significant path coefficient and the level of significance for

the region weight, the analysis result of structural equation

model was drawn for different months of the growing

season. The stronger the level of significance for the region

weight, the higher the correlation. Accuracy of the model

was confirmed using a Chi-squared test, the Akaike

Information Criterion (AIC) and the root-mean-square

errors of approximation (RMSEA). The model has a good

fit when Chi-squared test c2 ≥ 0,P > 0.05, lower AIC and 0 ≤

RMSEA ≤ 0.08.
Results

Trends in climate change

Between 1981 and 2011, mean precipitation during the

growing season decreased through time at a rate of 3.19 mm

year-1 (Figure 1A). In contrast, mean temperature increased at a

rate of 0.08 °C year-1 (Figure 1A). Mean temperature also

increased through time during each of the month of June (0.08°

C year-1), July (0.09°C year-1) and September (0.05°C year-1)

(Figures 1C-F), but mean precipitation did not show any trend

through time for any of the month during the growing season.
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Both precipitation variability and temperature variability

between 1981 and 2011 were highest in May, with the lowest

variability in precipitation in August and the lowest variability in

temperature in July. The variability of precipitation and

temperature throughout the growing season was lower than

the variability of each month (Figure 2).
Community biomass, species richness,
asynchrony and temporal stability

Community biomass (Figure 3A), species richness

(Figure 3B), species asynchrony (Figure 3C), functional group

asynchrony (Figure 3D) and community temporal stability

(Figure 3F) were highest in August, while dominant species

stability was highest in September (Figure 3E). During the survey

period, community biomass increased in May and June, and

decreased from July to September, with a significant trend in

August (loss rate 2.61g year-1; Supplementary Figure 3 (a); F1,28 =

28.3, P=0.022; R2 = 0.18) and September (loss rate 3.97g year-1;

Supplementary Figure 3 (a); F1,24 = 24.9, P=0.003; R2 = 0.34).

Species richness decreased significantly during the growing

season from May to September, with loss rates of 2.9, 3.0, 2.4,

2.7, and 2.6 species per decade, respectively (Supplementary

Figure 3 (b); all P<0.05).
The relationship between community
temporal stability and its
influencing factors

The effects of climatic and biotic factors on community

temporal stability showed a seasonal variation. Species

richness (Figure 4A), species asynchrony (Figure 4B),

functional group asynchrony (Figure 4C), dominant species

temporal stability (Figure 4D), temporal stability of PG

(Figure 4E), and temporal stability of OP (Figure 4G)

throughout the growing season were significantly positively

related to community temporal stability, with the exception of

temporal stability of PF (Figure 4F). Community temporal

stability and species asynchrony were significantly positively

correlated in May (R2 = 0.42, P=0.042), June (R2 = 0.72,

P=0.002), July (R2 = 0.47, P=0.029), August (R2 = 0.76,

P=0.042) and September (R2 = 0.64, P=0.005) of the growing

season (Figure 4B). The significant positive correlation

between community temporal stability and functional group

asynchrony was observed in June (R2 = 0.68, P=0.003), August

(R2 = 0.80, P<0.001) and September (R2 = 0.44, P=0.036) of the

growing season (Figure 4C). In addition, community temporal

stability was positively correlated with dominant species

temporal stability (Figure 4D, R2 = 0.77, P=0.001) and

temporal stability of functional group PG (Figure 4E, R2 =
frontiersin.org
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0.42, P=0.039) in September, respectively. Moreover, the

variability of total precipitation (Figure 4H) and mean

temperature (Figure 4I) was negatively correlated with

community temporal stability.
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SEM showed that climatic factors indirectly influenced

community temporal stability throughout the growing season

by acting on biotic factors. Species richness, species asynchrony,

temporal stability of OP and dominant species temporal stability
A B

FIGURE 2

Coefficients of variation of monthly mean (A) precipitation and (B) temperature over 1981–2011. GS = growing season.
A B

D

E F

C

FIGURE 1

Changes of mean precipitation and mean temperature from 1981 to 2011 during (A) the growing season (GS), and the month of (B) May, (C)
June, (D) July, (E) August and (F) September.
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had direct positive effects on community temporal stability in

May. Species richness was positively related to temporal stability

of PF, but negatively related to the dominant species temporal

stability. Temporal stability of PG indirectly altered community

temporal stability by reducing species asynchrony and

increasing dominant species temporal stability. Climate

variability indirectly affected community temporal stability by

increasing temporal stability of PF, dominant species temporal

stability and decreasing temporal stability of OP (Figure 5A). In

June, community temporal stability was positively related to

species richness, species asynchrony, and functional group

asynchrony. In addition, species richness was positively related

to temporal stability of PG, dominant species temporal stability,

and negatively related to species asynchrony and functional

group asynchrony. Climate variability had a direct positive
Frontiers in Plant Science 06
relationship with temporal stability of PG and dominant

species, respectively (Figure 5B). In July, species asynchrony

and temporal stability of OP had a direct positive relationship

with community temporal stability. Species richness had

negative and positive relationships with species asynchrony

and temporal stability of PG, respectively. Functional group

asynchrony was positively related with species asynchrony and

precipitation variability and negatively related with temperature

variability. Temperature variability also indirectly affected

community temporal stability through species asynchrony,

temporal stability of PG and dominant species (Figure 5C).

Specifically, species richness, species and functional group

asynchrony, temporal stability of PG, PF and OP were

positively related to community temporal stability during peak

productivity in August. Functional group asynchrony was
A B

D

E F

C

FIGURE 3

Community biomass (A), species richness (B), species asynchrony (C), functional group asynchrony (D), dominant species temporal stability (E)
and community temporal stability (F) during growing season between 1981 and 2011. Different colors represent the months from May to
September (n = 10 each month). The significance of each factor in different months was tested by one-way ANOVA. In Tukey’s HSD’s multi-
range test, the different letters at the top of each box represent significant differences between different months (P< 0.05). The boxes indicate
the 25-75% confidence interval of each target variable. Solid lines and black squares inside the box represent the median and mean,
respectively.
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positively related to species asynchrony and negatively related to

temporal stability of PG and PF. Climate variability indirectly

increased community temporal stability by increasing species

asynchrony, temporal stability of PG and OP (Figure 5D). In

September, at the end of the growing season, community

temporal stability was positively related to species richness,

species and functional group asynchrony, temporal stability of

PG, and dominant species temporal stability. The dominant

species temporal stability was negatively related to species

richness and positively related to temporal stability of PG,

respectively. Precipitation variability indirectly increased

community temporal stability by increasing functional group

asynchrony and dominant species temporal stability.

Temperature variability indirectly reduced community

temporal stability by decreasing functional group asynchrony

and temporal stability of PG (Figure 5E). For the whole growing

season (May to September), species richness, species

asynchrony, functional group asynchrony, dominant species

temporal stability and temporal stability of PG were positively

related to community temporal stability. In addition, species

richness was positively related to species asynchrony and

temporal stability of PG. Functional group asynchrony was
Frontiers in Plant Science 07
positively related to species asynchrony and temporal stability

of PG, and negatively related to temporal stability of OP. The

temporal stability of PG positively related to dominant species

temporal stability. Temperature variability and precipitation

variability indirectly reduced community temporal stability by

reducing species richness and temporal stability of OP. In

addition, precipitation variability had a direct negative

relationship with community temporal stability (Figure 5F).
Discussion

Our study based on 29 years of field observation revealed

lower community temporal stability with higher seasonal climate

variability (temperature and precipitation) linked with lower

species richness. In addition, we found that species asynchrony,

functional group asynchrony and dominant species temporal

stability consistently affected the seasonal community temporal

stability throughout the growing season.

Climate changes including increased variability in

precipitation or temperature, and changed distribution patterns

of temperature or precipitation have had an important impact on
A B

D E F

G IH

C

FIGURE 4

Community temporal stability in relation to (A) species richness, (B) species asynchrony, (C) functional group asynchrony, (D) dominant species
temporal stability, (E) temporal stability of PG (perennial grass), (F) temporal stability of PF (perennial forbs), (G) temporal stability of OP (other
plants), (H) precipitation variability and (I) temperature variability. Different colors represent the months from May to September (n = 10 each
month).
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A B

D

E F

C

FIGURE 5

Structural equation models of precipitation (temperature) variability, species richness, species asynchrony, functional group asynchrony,
temporal stability of PG (perennial grass), temporal stability of PF (perennial forbs), temporal stability of OP (other plants) and dominant species
temporal stability on community temporal stability in different months of the growing season: (A) May, (B) June, (C) July, (D) August, (E)
September and (F) the whole growing season. Black and red arrows represent significant positive and negative pathways, respectively, and grey
dashed arrows indicate nonsignificant pathways. Arrow width is proportional to the strength of the relationship. Numbers adjacent to arrows are
standardized path coefficients and indicate the effect size of the relationship. The proportion of variance explained (R2) appears alongside
response variables in the model, and asterisks indicate statistical significance (*P< 0.05, **P< 0.01, ***P< 0.001).
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plant productivity, community composition and species dynamics

of the Inner Mongolia temperate grassland over the past several

decades (Ma et al., 2010; Zhang et al., 2020). There is growing

concern that these changes may in turn affect the temporal

stability of community productivity. Previous studies have

demonstrated the impact of interannual changes in climate on

plant diversity and stability (Zhang et al., 2018; Gilbert et al.,

2020). However, the impacts of climate change are likely to be

stronger on seasonal scales than on annual scales. Consistent with

previous studies, our data showed the continued increase in

temperature and decrease in precipitation over the last three

decades in the temperate grassland of Inner Mongolia (Figure 1;

Ma et al., 2010; Li et al., 2015). In addition, we found that for the

whole growing season, temperature variability indirectly related to

community temporal stability by decreasing species richness

(Figure 5F). Mechanisms supporting this finding have suggested

that significant temperature variability may lead to severe

limitations on the physical environment for plant reproduction

and high mortality rates of physiological failures such as seedling

establishment failure, reduced species richness, and thus

weakened community temporal stability (Zhang et al., 2018;

Wang et al., 2020; Zhang et al., 2022). In addition, we found

that increased temperature variability had a negative effect on

functional group asynchrony, but not on species asynchrony,

during a period of vigorous plant growth (Figures 5C–E).

Increased temperature variability reduced the strength of

compensation dynamics between functional groups rather than

species, possibly because of higher biomass of functional groups

relative to species and the increased synchrony of biomass changes

between functional groups (Huang et al., 2020). Previous studies

have shown that species asynchrony is negatively affected by

temperature variability (Ma et al., 2017; Gilbert et al., 2020).

However, after considering the effects of species asynchrony and

functional group asynchrony on community temporal stability,

we found that functional group asynchrony had a greater response

to climate variability, possibly because species asynchrony could

not fully capture the compensatory dynamics between functional

group in our study area (Bai et al., 2004; Zhou et al., 2019).

Temperature variability did not directly affect community

temporal stability, which might be due to the asymmetry of the

effects of daytime and nighttime warming on community

temporal stability. Studies have shown that nocturnal warming

enhanced community temporal stability, while daytime warming

negatively affected community temporal stability, and the two

counteracted the significant effects of warming on community

temporal stability (Yang et al., 2017).

In contrast to temperature variability, precipitation

variability directly reduced community temporal stability

during the whole growing season, which is consistent with

previous study (Figure 5F; Zhang et al., 2018). Precipitation

variability had a positive effect on the dominant species temporal

stability in May and June at the beginning of the growing season

and in September at the end of the growing season. This is due to
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the fact that the dominant species in the study area are perennial

grasses such as A. cristatum, S. grandis and L. chinensis, which

are major contributors to community productivity at the

beginning and end of the growing season (Loreau and De

Mazancourt, 2013; Zhang et al., 2018). Finally, precipitation

variability had a positive effect on asynchrony (mainly in

functional groups), especially during periods of vigorous plant

growth (Figures 5C–E), which is consistent with previous studies

in the same region (Xu et al., 2015; Chi et al., 2019). Forbs,

annual and biennial plants mainly reproduce and grow during

this period, and the extreme precipitation events caused by

precipitation variability promote the asynchronous response

between species (Zhang et al., 2020).

Several field observations and theoretical models have

suggested that the stability of biomass may increase with

increasing plant diversity (Jiang et al., 2009; Mougi and

Kondoh, 2012; Gross et al., 2014; Yan et al., 2021). Here, we

found that species richness had a significantly positive

relationship with community temporal stability consistently

throughout the growing season. Species richness decreased

with warming, but increased with increasing precipitation,

consistent with previous studies of climate manipulation

(Wang and Loreau, 2016; Ma et al., 2017). It is noteworthy

that SEM results showed that there was no significant

relationship between species richness and community

temporal stability in July (Figure 5C). This phenomenon

might be attributed to rare species (Axyria amaranthoides, Iris

tenuifolia and Allium tenuissimum), generally the most diverse

components of a community, limiting community temporal

stability through their low abundance (Wang et al., 2020). The

seasonal variation of species richness in natural communities

showed that diversity-dependent community temporal stability

was positively correlated with compensatory effects and

asynchronous dynamics among species during the growing

season (Bai et al., 2004; Zhang et al., 2018).

Species asynchrony is considered to be a major driver of

community temporal stability in the face of climate change (Gross

et al., 2014; Craven et al., 2018; Valencia et al., 2020). The asynchrony

of population dynamics between species is a common feature of

ecological communities (Gonzalez and Loreau, 2009; Blüthgen et al.,

2016), and could depend on asynchronous species responses to

environmental fluctuations (Ives and Carpenter, 2007; Loreau and

DeMazancourt, 2008). Similarly, our study showed positive effects of

species asynchrony on community temporal stability throughout the

growing season (Figure 5). Compensation dynamics among different

functional groups is also considered to be an importantmechanism of

community temporal stability (Bai et al., 2004). We also found that

the relationship between functional group asynchrony and

community temporal stability remained positive throughout the

growing season under climate change. There was also a positive

correlation between species asynchrony and functional group. Species

asynchrony enhanced community compensation dynamics by

promoting functional group asynchrony. Water is the main
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limiting factor of productivity in arid and semi-arid grassland

(Bai et al., 2004; Sala et al., 2012), it creates intense competition

among species for water sources (Yang et al., 2011). In the study area

observed here, the perennial grasses L. chinensis and A. cristatum and

the perennial forbs Potentilla bifurca and P. tanacetifolia contributes

to community biomass in the early growing season, while the

perennial forbs Axyria amaranthoides, Iris tenuifolia and Allium

tenuissimum as well as rare annuals and biennials Orostachys

fimbriatus and Dysphania aristata with high growth rate mainly

take advantage of precipitation in the late growing season, and are

very sensitive to climate variability (Supplementary Table 7; Bai et al.,

2004; Li et al., 2015; Zhang et al., 2020).

There is growing evidence showing that community temporal

stability is positively correlated with dominant species temporal

stability (Sasaki and Lauenroth, 2011; Wilsey et al., 2014; Xu et al.,

2015). Ecosystems are largely controlled by the characteristics of

dominant species, i.e., the mass ratio hypothesis (Grime, 1998),

which may even constrain the effect of species diversity on biomass

stability (Wayne et al., 2007). The present study also found that the

community temporal stability was influenced by the dominant

species, reinforcing these ideas. In our study area, the dominant

species, two perennial rhizome grasses, L. chinensis and A.

cristatum, and two perennial bunchgrasses, S. grandis and A.

sibiricum, accounted for 62.9% of community above-ground

biomass. During the long-term adaptation to climatic conditions

and soil nutrients, they have acquired a series of physiological and

ecological adaptation characteristics in terms of water use and

nutrient acquisition, such as a well-developed root system, high

light acquisition capability through a higher canopy, more branches

and a larger specific leaf area (Yang et al., 2011; Zhang et al., 2020).

These characteristics could make them occupy a dominant position

in the community for a long time, so that their stability significantly

affected the temporal stability of the community. As the dominant

functional group, perennial grasses were not affected by climate

variability, and were an important factor maintaining community

temporal stability. Because perennial grasses generally have deeper

roots, giving them access to deep soil water resources, perennial

grasses may have a competitive advantage over forbs and annual

herbs in dry conditions (Zhang et al., 2015). It is noteworthy that

the effect of climate variability on the temporal stability of dominant

species has obvious seasonal dynamics. As described above, the

temporal stability of the dominant species is susceptible to climate

variability at the beginning or end of the growing season, however

during the whole growing season, climate variability had no

significant effect on the temporal stability of dominant species.
Conclusions

Our study provides a new practical basis for climate

variability to significantly affect seasonal community
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temporal stability by affecting species richness, suggesting

that increased climate variability has a negative impact on

ecosystem functioning. In addition, community temporal

stability was mainly affected by species asynchrony,

functional group asynchrony and dominant species temporal

stability. Under climate change, increased functional group

asynchrony could contr ibute more to community

compensatory dynamics and maintain community temporal

stability. Based on a long-term study spanning 29 years, our

findings elucidate the potential mechanism underlying

seasonal climate change on seasonal community temporal

stability of temperate grassland in Inner Mongolia, China.

Although our study is single-site, our seasonal results are

likely to be generalized to other grasslands. This is because

many studies assessing multi-sies inter-annual stability found

similar contribution of grassland diversity, species stability and

asynchrony, as well as functional group stability and

asynchrony to temporal stability (Valencia et al., 2020;

Muraina et al., 2021; Schnabel et al., 2021). Similarly, given

the increasing evidence that these mechanisms act at multiple

spatial scales (Hautier et al., 2020) and in other ecosystems (Xu

et al., 2021), our results should hold at larger spatial scales and

among ecosystems. However, future coordinated multi-sites,

larger-scale studies in other ecosystems than grasslands are

needed to test whether our seasonal results are universal.
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