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XTH genes in Liriodendron
chinense and functional
characterization of LcXTH21

Junpeng Wu, Yaxian Zong, Zhonghua Tu, Lichun Yang,
Wei li , Zhengkun Cui, Ziyuan Hao and Huogen Li*

Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center
for Sus-tainable Forestry in Southern China, College of Forestry, Nanjing Forestry University,
Nanjing, China
Liriodendron chinense is a relic tree species of the family Magnoliaceae with

multiple uses in timber production, landscape decoration, and afforestation. L.

chinense often experiences drought stress in arid areas. However, the molecular

basis underlying the drought response of L. chinense remains unclear. Many

studies have reported that the xyloglucan endotransglucosylase/hydrolase (XTH)

family plays an important role in drought stress resistance. Hereby, to explore the

drought resistance mechanism of L. chinense, we identify XTH genes on a

genome-wide scale in L. chinense. A total of 27 XTH genes were identified in L.

chinense, and these genes were classified into three subfamilies. Drought

treatment and RT-qPCR analysis revealed that six LcXTH genes significantly

responded to drought stress, especially LcXTH21. Hence, we cloned the

LcXTH21 gene and overexpressed it in tobacco via gene transfer to analyze its

function. The roots of transgenic plants were more developed than those of

wild-type plants under different polyethylene glycol (PEG) concentration, and

further RT-qPCR analysis showed that LcXTH21 highly expressed in root

compared to aboveground organs, indicating that LcXTH21 may play a role in

drought resistance through promoting root development. The results of this

study provide new insights into the roles of LcXTH genes in the drought stress

response. Our findings will also aid future studies of the molecular mechanisms

by which LcXTH genes contribute to the drought response.

KEYWORDS

Liriodendron chinense, XTH family, drought stress response, genome identification,
root development
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Introduction

Plants are continuously exposed to various types of abiotic

stress because they are sessile, and drought stress has a negative

effect on the growth, yield, and cultivation of plants. Given that

water scarcity reduces plant performance, improving the

drought resistance of plants is a major goal of breeding efforts

(Boyer, 1982; Bray et al., 2000; Cushman and Bohnert, 2000;

Mittler, 2006). Plant improvement of drought resistance via

molecular breeding approaches is a clear trend that further

promotes the development of modern agriculture. With the

various genome resources available, mining and utilizing genes

that provide high resistance to drought stress will promote the

development of plant molecular breeding (Parmar et al., 2017;

Wai et al., 2020).

In recent years, identification and functional analysis of

various abiotic stress-responsive genes and transcription

factors and their applications in breeding stress-tolerant plants

were favored (Roy et al., 2011; Sharma et al., 2017). For example,

overexpression of HhGRAS14 in Arabidopsis thaliana

significantly improved the drought tolerance of transgenic

plants (Ni et al., 2022). And orphan gene PpARDT was found

to be involved in drought tolerance potentially by enhancing

ABA response in Physcomitrium patens (Dong et al., 2022).

MdFLP enhanced drought tolerance by regulating the expression

of MdNAC019 in self-rooted apple stocks (Wang et al., 2022).

The bZIP transcription factor ABP9 in maize is involved in the

regulation of drought resistance, and overexpression of

OsNAC10 in rice increased grain yield under drought stress

(Jeong et al., 2010; Wang et al., 2017). The overexpression of a

rice OsSalT in tobacco showed increased root growth and

resulted in improved drought tolerance (Kaur et al., 2022). In

Manihot esculenta, MeRSZ21b was found to be involved in

drought tolerance, and plants overexpressed MeRSZ21b gene

had longer roots than WT (Chen et al., 2022).

Generally, there are gene families related to abiotic stress in

plant genomes. The xyloglucan endotransglucosylase/hydrolase

(XTH) family is a typical example (Eklöf and Brumer, 2010).

XTH family belongs to the glycoside hydrolase 16 family

(GH16), and XTH genes can be divided into four groups: I/II

III-A, III-B, and the early diverging group (Campbell and

Braam, 1999b). Increasing evidence has revealed that genes in

the XTH family play an important role in drought stress. For

example, plants overexpressing GmXTH23 had stronger drought

tolerance and greater root lengths than wild-type (WT) plants

(Long, 2020). Following overexpression of the hot pepper gene

CaXTH3 in tomato, half of the stomata of transgenic plants were

open under drought stress, and most of the stomata of WT

plants were closed, a condition that was suggestive of transgenic

plants having a higher drought tolerance than WT plants (Choi

et al., 2011). XTH genes have also been shown to be involved in

plant growth. For example, GUS staining of A. thaliana has

shown that AtXTH genes might be expressed throughout all
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growth stages (Becnel et al., 2006). The expression levels of

DcXTH2 and DcXTH3 increased dramatically during flowering,

confirming that XTH genes play a role in petal growth (Harada

et al., 2011). In addition, some plants use xyloglucan as a storage

polysaccharide for embryonic development (Reid, 1985;

Buckeridge et al., 2000). Due to their important roles in

drought stress and growth, XTH family members have been

identified in various plants, including A. thaliana (33 genes),

Oryza sativa (29 genes), Hordeum vulgare (24 genes), Populus

spp. (41 genes), Ananas comosus (24 genes), and Schima superba

(34 genes) (Yokoyama and Nishitani, 2001; Yokoyama et al.,

2004; Geisler-Lee et al., 2006; Fu et al., 2019; Li et al., 2019; Yang

et al., 2022).

L. chinense is a relict species in the Magnoliaceae family that

has been widely used in timber production, landscape

decoration, and afforestation. Drought stress has become a

major barrier restricting the cultivation of L. chinense (He and

Hao, 1999). As mentioned above, XTH family has been widely

reported to be involved in drought response. However, the

precise role and molecular mechanisms of the XTH family

under drought stress remains unclear in L. chinense. Hereby,

in order to have a better insight into the roles of XTH genes in L.

chinense, we identified LcXTH genes on a genome-wide scale,

uncovered LcXTH genes in relation to drought resistance and

characterized their function. Overall, our study provides new

insights into the possible roles of XTH genes in L. chinense and

will aid future studies of drought resistance mechanisms in

woody plants.
Materials and methods

Plant materials and growth conditions

L. chinense material used in this study was obtained from

Xiashu Forest Station at Nanjing Forestry University, Jurong,

Jiangsu, China. In April 2021, leaves, roots and leaf buds were

collected from a 30-year-old L. chinense tree originating form

Songyang, Zhejiang Province, and immediately frozen in liquid

nitrogen, and then stored at –80°C until further use. L. chinense

seeds were soaked in water for 2 days, transplanted to soil, and

cultivated in 40 cm × 30 cm × 4 cm trays for 2 months with a 16-

h/8-h light/dark photoperiod. All L. chinense seedlings were

watered twice a week. To investigate the response of L. chinense

to drought stress, seedlings were watered with 10% PEG (100 g/

L) solution. Samples of L. chinense were taken at 0, 3, 6, 12, 24,

and 48 h and immediately frozen in liquid nitrogen for RT-

qPCR analysis. All seedlings were grown under the same

conditions, with the exception of plants in the drought

stress treatment.

Tobacco (Nicotiana benthamiana) was used for transgenic

assays. Before sowing, seeds were sterilized with 75% (v/v)

alcohol for 30 s, NaClO (v/v) for 15 min, and double-distilled
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water four times. Seeds were then sown on 1/2 MS medium

(Murashige and Skoog, 2006) and vernalized at 4°C in the dark

for 2 days. These seeds were placed in an incubator (SANYO,

Japan) under a photoperiod 16-h/8-h light/dark photoperiod at

23°C for 10 days; they were then transplanted into MS medium

and cultivated for 20 days. WT tobacco was used as a control,

and all seedlings were grown in the same environment. The

medium of the 30-day-old transgenic and WT tobacco seedlings

was removed, and seedlings were planted in trays. Transgenic

and WT tobacco plants were treated with 10% PEG (100 g/L)

solution for 5 days, and root length was measured.
Identification and characterization of
XTH family members in L. chinense

The two XTH domains (PF00722 and PF06955) were used as

queries to search the L. chinense genome with HMMER (v. 3.0).

The default settings and cutoff values were set to 0.001 (Potter

et al., 2018; El-Gebali et al., 2019). Potential sequences were

filtered using the Conserved Domain Search Service website

(https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi)

(Marchler-Bauer and Bryant, 2004), and the candidate genes

were identified using the SMART database (https://smart.embl.

de/) (Letunic et al., 2021). Redundant genes were removed

manually. The molecular weight (MW), isoelectric point (pI),

and protein length were analyzed using the ExPASy website

(https://web.expasy.org/protparam/) (Wilkins et al., 1999).

Single peptides and the subcellular localization of LcXTH

genes were predicted by SignalP (https://dtu.biolib.com/

SignalP-6) and Plant-mPLoc (v. 2.0) (http://www.csbio.sjtu.

edu.cn/bioinf/plant-multi/), respectively (Chou and Shen,

2010; Teufel et al., 2022). The Blast program was used to

identify homologous genes (Chen et al., 2020).
Chromosomal localization, synteny
analysis, and tandem repeat analysis

Information on the chromosomal location of LcXTH genes

was obtained from the genome GFF file. Ka and Ks values,

protein similarity matrices, and collinear gene pairs were

analyzed using TBtools (Chen et al., 2020).
Phylogenetic analysis of LcXTH genes

A. thaliana proteins were downloaded from the TAIR

website (https://www.A.thaliana.org/). H. vulgare proteins, O.

sativa proteins were download fromNCBI website (https://www.

ncbi.nlm.nih.gov/). The sequences were aligned with ClustalW

software (v. 2.1). A phylogenetic tree was constructed by MEGA

7.0 software using the neighbor-joining method with the
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following parameters: Poisson model, pairwise deletion, and

1000 bootstrap replicates (Kumar et al., 2016). The evolview

website (https://www.evolgenius.info/evolview-v2/) was used to

modify the phylogenetic tree (Subramanian et al., 2019).
Expression pattern
analysis and GO annotation

The expression levels of LcXTH genes were evaluated using

fragments per kilobase of transcript per million mapped reads

(FPKM) values based on transcriptome data (https://www.ncbi.

nlm.nih.gov/, PRJNA559687) from different tissues of L.

chinense, and heat maps were constructed using TBtools

(Chen et al., 2020). Gene Ontology (GO) analysis was

performed using the clusterProfiler 4.0 (Wu et al., 2021).
Analysis of motifs and gene structure

The online software MEME (https://meme-suite.org/meme/

doc/meme.html) was used to analyze the conserved motifs of

XTH proteins with a maximum of 10 motifs (Bailey et al., 2015).

The Gene Structure Display Server (http://gsds.gao-lab.org/) was

used to analyze gene structure (Hu et al., 2014). The promoter

sequence (2000 bp upstream of the start codon) of each LcXTH

gene was extracted and then analyzed using PlantCARE online

software (http://bioinformatics.psb.ugent.be/webtools/

plantcare/html/); the results were visualized using TBtools.

The protein sequences were submitted to ESPript Web server

(http://espript.ibcp.fr/ESPript/ESPript/) for secondary

structure prediction.
Extraction of RNA and RT-qPCR analysis

A SteadyPure Plant RNA Extraction Kit (AG21019,

Accurate Biotechnology, Hunan, Co., Ltd.) was used for RNA

extraction following the user manual. The quality of RNA was

assessed using a NanoDrop 2000 spectrophotometer. A260/

A280 values ranged from 1.8 to 2.0, and values of A260/A230

ranged from 1.9 to 2.1; a total of 500 ng of RNA was used to

synthesize complementary DNA (cDNA).

RT-qPCR was used to analyze the expression profiles of

LcXTH genes, and Actin97 was used as the reference

housekeeping gene (Tu et al., 2019). The thermal cycling

conditions for RT-qPCR were based on instructions provided

in the SYBR Green Premix Pro Taq HS qPCR Kit (AG11701,

Accurate Biotechnology, Hunan, Co., Ltd.). We used the 2−DDCT

method to calculate relative levels of expression (Livak and

Schmittgen, 2001). Three biological replicates and technical

replicates were conducted to ensure the accuracy of the results.

And primers used in this study are listed in Table S1.
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Full-length cDNA cloning of LcXTH21
and plant transformation

The coding sequence of LcXTH21 was obtained from the

genome of L. chinense, and primers were designed using Oligo

software (v. 7). The full-length cDNA of LcXTH21 was amplified,

and an 876-bp open reading frame sequence was obtained (File S1).

The cDNA of LcXTH21 was then cloned into the modified pBI-121

vector, which was digested with XbaI and BamHI QuickCut

enzymes (Takara Biomedical Technology, Dalian, China). The

transgene construct was introduced into Agrobacterium

tumefaciens strain GV105, which was then transformed into

tobacco using a leaf-disc infection method. We cut off the edge of

wild-type tobacco leaves that had been cultured for about 30 days,

put them in solid MS medium at 25°C for 2 days in the dark. Then

we activated the transformed A. tumefaciens with liquid MS

medium for 30 min to prepare an infection solution, then

immersed the leaves in the infection solution for 10 min. After

soaking, the leaves were cultivated continuously in the dark at 25°C

for two days, then placed them at 25°C for 16 h in the light and 8 h

in the dark. When callus grown on the edge of the leaves, we

isolated callus and cultured on MS medium containing kanamycin.

After 20 days of culture, PCR was used to determine whether the

plants were positive, and positive plants were cultured until they

reached maturity. The details can be seen in Figure S1.

Results

Identification and characteristics of
LcXTH genes

HMM searches were used to identify XTH genes. We originally

obtained 29 putative XTH genes. These 29 candidate genes were

then submitted to the SMART database, and incomplete sequences

were removed manually. Finally, 27 XTH genes were obtained,

which were named LcXTH1–LcXTH27.

The characteristics and subcellular localization of LcXTH

proteins were also predicted. The length of LcXTH proteins

ranged from 243 to 337 amino acids, LcXTH26 and LcXTH27

were the largest proteins with 337 amino acids, and LcXTH17

was the smallest (243 aa). The theoretical pI values for LcXTH

proteins ranged from 4.85 to 9.65, and the MW of these proteins

ranged from 27.61 to 38.47 kDa. All LcXTH members were

predicted to be localized to the cell wall, and 15 LcXTHmembers

were predicted to be localized to the cytoplasm. Details are

provided in Table S2.
Chromosome location
and homology analysis

The chromosomal location of genes is determined by prior

evolutionary events. We thus investigated the chromosomal
Frontiers in Plant Science 04
locations of LcXTH genes. LcXTH genes were randomly

distributed on nine chromosomes (Figure S2). However,

because the genome assembly was incomplete, the specific

chromosomal locations could not be determined for two

genes: LcXTH26 and LcXTH27. Most LcXTH genes were

clustered on chromosomes 13, 14, and 17; chromosome 17

had 13 genes; and chromosomes 1, 3, 5, 9, and 16 had only

one gene.

Synteny within the LcXTH family was analyzed to clarify the

evolutionary relationships among LcXTH genes, and three

homologous pairs (LcXTH08-LcXTH12, LcXTH09-LcXTH14,

and LcXTH02-LcXTH05) were identified (Figure S2). The

identity of LcXTH08-LcXTH12, LcXTH09-LcXTH14, and

LcXTH02-LcXTH05 was 81.30%, 67.25%, and 82.8%,

respectively. The substitution rates (Ka/Ks) of these three gene

pairs were calculated to assess whether LcXTH genes have been

subjected to selection (Table S3). The substitution rates ranged

from 0.099 to 0.114, which indicated that they have experienced

purifying selection. These homologous pairs (LcXTH08-

LcXTH12, LcXTH09-LcXTH14, and LcXTH02-LcXTH05)

diverged approximately 66.42, 188.19, and 67.38 million years

ago, respectively. We also evaluated the density of these genes

across the entire genome. The density of these genes was high in

regions with related homologous genes.

Tandem duplication is an important mechanism underlying

the expansion of gene families, and tandemly duplicated genes

often occur in clusters (Kozak et al., 2009). Hence, we calculated

the protein similarity matrix to investigate the identity of LcXTH

genes in three gene clusters (Figure S3 and Table S4). The

identity of the LcXTH genes on chromosome 13 was 60.54%,

and the identity of the three LcXTH genes on chromosome 14

ranged between 58.46% and 73.29%. Chromosome 17 contained

13 LcXTH genes, and the identity ranged from 47.16% to

96.59%. We speculate that the high identity of these closely

arranged genes indicates that they are products of tandem

duplication; generally, tandem duplication might be the major

force driving the expansion of LcXTH genes.
Phylogenetic analysis of XTH proteins

To further investigate the evolutionary relationships among

LcXTH family members, we constructed a phylogenetic tree

using 113 XTH proteins. (Figure 1). Phylogenetic analysis

revealed that all XTH proteins were classified into four groups

(group I/II, group III-A, group III-B, and the early diverging

group). In L. chinense, most LcXTH genes (24) were categorized

into group I/II. Only one gene (LcXTH03) was classified in group

III-A. The remaining genes (LcXTH26 and LcXTH27) were

grouped into III-B. No genes were classified into the early

diverging group in L. chinense, which might stem from the

incomplete genome annotation or gene loss.
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Structure and motif patterns
of LcXTH genes

To investigate the structure of LcXTH proteins, we submitted

the protein sequences to the SMART database to identify conserved

domains. We analyis the pylogenetic analysis of LcXTH proteins

and two domains (Glyco_hydro_16 and XET_C) were identified in

all LcXTH proteins (Figure 2A and Figure 2B). XET_C is a unique

domain among GH16 family members, and the proteins in this

family had a common structure known as the b-jellyroll fold
(Atkinson et al., 2009; Eklöf and Brumer, 2010; Behar et al.,

2018). We also performed conserved motif analysis on LcXTH

proteins (Figure 2C) and found that the motif composition of

LcXTH family members was similar. As shown in the schematic,

the Glyco_hydro_16 domain included motifs 10, 6, 8, 3, 4, 2, and 1,

and the XET_C domain included motifs 9, 5, and 7. Motifs 1, 3, 4

(ExDxE), and 5 were conserved in all LcXTH proteins.

Previous studies have shown that the exon distribution of

AtXTH genes is conserved within each subfamily in A. thaliana

(Yokoyama and Nishitani, 2001; Yokoyama and Nishitani,

2008). We used the online tool GSDS 2.0 to analyze the exon–

intron organization of the 27 LcXTH genes (Figure 2D). There

were three or four exons in LcXTH genes, and the ExDxE

domain was randomly distributed in these genes, with

exception of the fourth exon. The signal peptides of LcXTH

proteins were predicted. A total of 23 LcXTH proteins had signal
Frontiers in Plant Science 05
peptides, and they were all located on the first exon. These short

amino acid sequences might be responsible for transmembrane

transport and have secretory functions.
Structure-based sequence alignment

To further characterize LcXTH proteins, two fully resolved

structures of PttXET16-34 (PDB ID: 1UN1) and TmNXG1

(PDB ID: 2UWA) were used to characterize the secondary

structures of XTH proteins with ESPript software. The

schematic of the secondary structures shows that all LcXTH

proteins contained the conserved ExDxE domain (Figure 3). The

first glutamic acid residue (E) acts as a catalyzed nucleophile,

which typically initiates enzymatic reactions, and the second E

residue acts as a base that activates the entering substrate (Fu

et al., 2019). The N-glycosylation domain (NXT/S/Y) is thought

to be critical for protein stability and is indicated in the figure.

This N-glycosylation site was conserved in all group I/II

proteins, but it was missing in nearly all group III-A XTH

proteins (Eklöf and Brumer, 2010). However, the N-

glycosylation site was observed in all LcXTH members,

including LcXTH03 (a member of group III-A). The N-

glycosylation sites of LcXTH proteins in group III were shifted

by approximately 20 amino acids from the ExDxE domain to the

C-terminus.
FIGURE 1

Classification of XTH proteins. The phylogenetic tree was constructed using 27 Liriodendron chinense XTH proteins, 24 Hordeum vulgare XTH
proteins, 29 Oryza sativa XTH proteins and 33 Arabidopsis thaliana XTH proteins. Branches ending with Black square, blue triangle, red circle,
green star indicate L. chinense, H. vulgare, O. sativa and A. thaliana, respectively. Proteins with a green, purple, orange and pink background
indicate the early diverging group, group III-A, group III-B, and group I/II, respectively.
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Thearchitectureofproteinswasconservedwithin specificgroups;

for example, other conserveddomains adjacent to theExDxEdomain

were identified in LcXTH proteins, which were referred to as loop 1,

loop 2, and loop 3. Previous studies have demonstrated that the

extensionof loop 2plays a key role indetermining the activity ofXTH

proteins (Baumannet al., 2007). In this study, Loop2was significantly
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shorter ingroups I/II and III-B than ingroup III-A, suggesting that the

difference in the length of loop 2 among subfamilies of L. chinense

might partly account for the differences in the classification of these

proteins and their functions. The sequenceDWATRGGof loop3was

present in most group I/II proteins; however, this sequence was

replaced by SWATEN in group III-A members.
FIGURE 3

Structure-based sequence alignment of LcXTH proteins. Proteins with a purple background, proteins with a yellow background, and proteins
with an orange background indicate Group I/II Group III-B, and Group III-A members, respectively. Blue frames, white letters in red boxes, and
red letters in white boxes indicate conserved residues, strict identity, and similarity, respectively. The secondary structures of b sheets (arrows),
a-helices (spiral), N-glycosylation site (*), and loops 1, 2, and 3 (lines) are indicated.
A B DC

FIGURE 2

Gene structure and conserved domains of LcXTH proteins. (A) The cluster of LcXTH proteins. The green, pink blue background indicate group I/
II group III-A and group III-B, respectively. (B) Conserved domains were predicted using the SMART database. The blue blocks indicate
Glyco_hydro_16 domains, and the yellow blocks indicate XET_C domains (C) Conserved motifs in 27 LcXTH proteins were predicted using the
MEME tool, and different color blocks correspond to different motifs. (D) The exon–intron distribution was visualized using the GSDS 2.0 server,
and white boxes, black lines, red blocks, and blue blocks indicate exons, introns, the conserved domain ExDxE, and signal peptides, respectively.
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Tissue expression patterns and GO
analysis of LcXTH genes

We analyzed the expression patterns of LcXTH genes across

several tissues (including bracts, sepals, petals, stamens, pistils,

leaves, and shoots) (Figure 4A). LcXTH genes showed tissue-

specific expression patterns. LcXTH04, LcXTH12, LcXTH08,

LcXTH25, and LcXTH26 were highly expressed in bracts, and

the expression levels of these genes in other tissues were low.

LcXTH07, LcXTH16, and LcXTH27 were significantly expressed

in leaves. The expression levels of LcXTH03, LcXTH18, and

LcXTH10 were high in pistils, suggesting that they are involved

in pistil development. The expression levels of almost all LcXTH

genes were low in sepals, petals, and stamens, suggesting that

LcXTH genes were not expressed during flowering. The

expression patterns of the three tandem arrays on

chromosomes 13, 14, and 17 were not consistent. LcXTH13,

LcXTH19, LcXTH20, LcXTH21, LcXTH22, and LcXTH24 were

significantly expressed in shoots and had similar expression

patterns, indicating that their functions might be redundant.

However, the expression patterns of the other genes on

chromosome 17 differed, suggesting that they might have

acquired new functions. In addition, LcXTH01, LcXTH02,

LcXTH11, and LcXTH17 were not expressed in any of the

tissues examined in this study; this indicates that they are not

expressed or have specific expression patterns that could not be

detected in this study.

GO analysis was performed to clarify the functions of

LcXTH genes. All LcXTH genes encoded proteins with

xyloglucan xyloglucosyl transferase and hydrolase activity, and

they were all localized to the cell wall and the apoplast, which
Frontiers in Plant Science 07
was consistent with the subcellular localization prediction

(Figure 4B). All LcXTH genes were predicted to be involved in

cellular glucan metabolic process and carbohydrate

metabolic process.
Cis-element prediction
and RT-qPCR analysis

To determine the expression patterns and regulatory

characteristics of LcXTH genes, the 2000-bp upstream

sequence of the translation initiation site (ATG) was extracted,

and cis-elements were predicted (Figure 5A). A large number of

cis-elements were involved in plant growth and development,

stress responses, and phytohormone responses (Figures 5B, C).

In the first category, the main cis-elements were motif CAT-box

(33.64%), motif CCAAT-box (27.1%), motif O2-site (23.36%),

and GCN4-motif (11.21%). Cis-elements involved in stress

responses mainly included the ARE motif (40.78%), MBS

motif (30.1%), LTR motif (14.56%), TC-rich repeats (7.77%),

and GC-motif (5.83%). In the third category, the main cis-

elements were abscisic acid-responsive element (ABRE,

58.48%), methyl jasmonate-responsiveness element (CGTCA,

14.8%), and auxin-responsive element (TGA-element, 7.97%).

The most abundant phytohormone response element is

associated with abscisic acid (ABA)-responsiveness, indicating

that LcXTH genes might be regulated by ABA.

To clarify the roles of LcXTH family members in drought

resistance, we used BLASTp to identify stress-related LcXTH

genes based on previous studies, and genes containing plant

defense and stress elements (TC-rich motifs) were screened out
A B

FIGURE 4

Expression patterns and GO annotations of LcXTH genes. (A) Heat map of the expression levels of LcXTH genes across different tissues in L. chinense
based on FPKM values from public transcriptomic data. (B) GO classification of LcXTHs. Details of the GO annotations are provided in Table S5.
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(Xu et al., 2020). A total of eight LcXTH genes (LcXTH07, 15, 18,

19, 20, 21, 25, and 27) were identified, and their expression

patterns under drought stress were clarified. The RT-qPCR

results revealed that there were significant differences in the

expression of these genes at different times under drought stress

(Figure 6). LcXTH07 expression was up-regulated at 0 and 6 h,

down-regulated at 6 and 24 h, and highest at 48 h. Some genes

exhibited similar expression patterns. For example, the

expression patterns of LcXTH18, 19, 20, and 25 did not change

significantly during 0 and 6 h, but significantly increased at 12 h.

LcXTH21 exhibited the most rapid and strongest response to

drought stress, and it was the most highly expressed gene. Some

genes exhibited opposite expression patterns; the expression

levels of LcXTH15 and LcXTH27 changed slightly, indicating

that they might not play important roles in the response to

drought stress.
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Overexpression of LcXTH21 in tobacco
promoted root development under
drought stress

In light of the strong response of LcXTH21 under drought

stress, we cloned LcXTH21 and overexpressed it in tobacco to

analyze its function; the characteristics of transgenic and WT

tobacco plants were noted. Then, we cultivated transgenic plants

and WT on 1/2 MS medium containing different PEG

concentration. With the increase in PEG concentration, the

root length decreased to varying degrees. Ten-day-old

transgenic plants on 1/2 MS medium had an average root

length of 1.26 cm, which was 68% longer than that of WT

plants (Figures 7A, B). Under 5% PEG, the average root length in

transgenic plants decreased by 52%, however, the WT root

length decreased by 79% (Figures 7C, D). When the PEG
A B

C

FIGURE 5

Analysis of cis-elements in LcXTH promoters. (A) Number of distinct cis-elements in each LcXTH. (B) Sum of cis-elements for each class of
LcXTH proteins. (C) Proportion of each item in different categories.
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concentration was increased to 10%, the average root length of

transgenic tobacco and WT decreased by 95% and 154%,

respectively (Figures 7E, F). Next, we treated thirty-day-old

seedlings with 10% PEG for 5 days, and the root length were

compared. The average root length was 2.11-fold that of WT

plants (Figures 7G, H). To investigate the expression level

between root and aboveground, we took samples of root and

aboveground for RT-qPCR analysis. The results shown that the

expression level of root was 42.06-fold than that of aboveground

tissues/organs (Figure 7I). The plant hormone ABA plays a key

role in regulating the resistance of plants to drought stress,

whereas the NCED enzyme is a key rate-limiting ABA

biosynthetic enzyme (Leung and Giraudat, 1998; Zhang et al.,

2009; Zhu et al., 2017). Hence, to further study the relationship

of the LcXTH21 genes and ABA signaling, we performed RT-

qPCR analysis to detect the expression of NCED gene in thirty-

day-old WT and transgenic tobacco (Figure 7J). The results

showed that the relative expression level of NCED in transgenic

plants was about 45-fold higher than that in WT controls,

thereby suggesting that LcXTH21 might contribute to drought

resistance by promoting ABA biosynthesis.
Discussion

The evolution and structure of LcXTH
family members

The evolution of the XTH family has received wide research

interest. XTH genes were first detected in Zygnematophyceae and

non-charophycean taxa; bacterial licheninases have long been

considered non-plant ancestors of the XTH family because of

their sequence similarities (Barbeyron et al., 1998; Michel et al.,

2001; Del Bem and Vincentz, 2010; Behar et al., 2018). The

expansion of XTH genes has also received much research interest.
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The relaxation of substrate specificity, including the broader

specificity of group I/IImembers, might have contributed to the

expansion of group I/II members (Shinohara and Nishitani, 2021).

Tandem duplication is one of the important mechanisms

underlying the expansion of XTH family members, and tandem

duplications comprise 4.56% of the genome of L. chinense (Chen

et al., 2019). We detected a large number of tandemly duplicated

LcXTH genes, accounting for 66.7% of all LcXTH genes, indicating

that tandem duplication is the main mechanism underlying the

expansion of LcXTH family genes. All the tandem repeats identified

in this study were group I/II members, indicating that tandem

duplication has been a particularly important mechanism

underlying the expansion of group I/II members. Previous studies

have shown that some gene family members have gained new

functions or undergone defunctionalization (Lynch and Conery,

2000). In this study, tandemly duplicated genes on chromosome 17

were of particular interest. The expression patterns of LcXTH13, 19,

20, 21, 22, and 24 were similar, and their functions might have been

retained after genome duplication. The expression patterns of

LcXTH16, 18, and 25 were inconsistent. The differential

expression of these genes indicates that they might have gained

new functions. LcXTH01, 02, 11, and 17 were not expressed in any

tissues in this study, suggesting that they might have

undergone defunctionalization.

Understanding the classification of subfamilies is important

for studying the evolution of the XTH gene family. Previous

studies of monocotyledonous rice and dicotyledonous A.

thaliana have shown that group I and group II members are

difficult to distinguish; they have thus been usually classified into

one group (group I/II) (Yokoyama et al., 2004). However, both

sequence analysis and catalytic measurements have confirmed

the divergence of group III (Fanutti et al., 1993; Yokoyama et al.,

2004). In this study, a total of 27 LcXTH genes were identified,

and they were grouped into three subfamilies. None of these

genes were classified in the early diverging group, which might
FIGURE 6

Expression profiles of LcXTH genes in different drought stress periods. Three independent experiments were performed using Actin97 as an
internal reference gene. Error bars on the graph indicate the mean standard deviation for each triplicate treatment.
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stem from an incomplete genome assembly or gene loss. Domain

loop 2 in XTH family members plays an important role in

subfamily classification, and previous studies have shown that

the length of loop 2 contributes to the difference in the activity

between XET and XEH members (Baumann et al., 2007). For

example, the extension of loop 2 is thought to be the major

structural change responsible for its endohydrolase activity in

Fragaria vesca (Opazo et al., 2017). In this study, the extension of

loop 2 was only observed in group III-A, and this might be an

important factor contributing to the divergence of group III

members. Glycosylation as one of key post-translational

modifications can affect stability and the molecular weight of

the target proteins (Ahmadizadeh et al., 2020; Heidari et al.,

2020). In addition, proteins associated with the secretory
Frontiers in Plant Science 10
pathway are firstly glycosylated in the endoplasmic reticulum.

The above suggests that XET proteins may be involved in the

secretory pathway. In this study, the N-glycosylation domain

was observed in all LcXTH members, and previous research has

demonstrated that the removal of this region significantly

reduces the stability of some XET proteins (Campbell and

Braam, 1999a; Kallas et al., 2005).
The roles of LcXTH family members in
abiotic stress and root development

Stomatal closure is one of the first events that takes place in

plants in response to drought stress to prevent water evaporation,
A B
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FIGURE 7

Phenotypic changes caused by LcXTH21 overexpression in tobacco, and histograms of root length in 10-day-old and 30-day-old transgenic
tobacco and WT seedlings under different PEG concentration. (A) Comparison of the root length between 10-day-old transgenic tobacco and
WT seedlings on 1/2 MS medium. (B) Statistical histograms of root length in 10-day-old transgenic tobacco and WT seedlings on 1/2 MS
medium. (C) Comparison of the root length between 10-day-old transgenic tobacco and WT seedlings under 5% PEG. (D) Statistical histogram
of root length in 10-day-old transgenic tobacco and WT seedlings under 5% PEG. (E) Comparison of the root length between 10-day-old
transgenic tobacco and WT seedlings under 10% PEG. (F) Statistical histogram of seedling height in 10-day-old transgenic tobacco and WT
seedlings under 10% PEG. (G) Comparison of the root length between 30-day-old transgenic tobacco and WT seedlings under 10% PEG. (H)
Statistical histogram of seedling height in 30-day-old transgenic tobacco and WT seedlings under 10% PEG. (I) Relative expression of LcXTH21
between root and aboveground. Bars = 1 cm. (J) Relative expression of NCED gene between WT and transgenic tobacco. Statistical analyses
were performed using t-tests (* P < 0.05, ** P < 0.01).
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and XTH genes play a crucial role in modifying the cell wall and

altering its elongation under drought stress, which improves

drought resistance (Kim et al., 2010). For example, overexpression

of HvXTH1 in barley resulted in the enlargement of the stomata of

transgenic plants relative to those of WT plants under drought

treatment, indicating that transgenic plants were more drought

tolerant (Fu, 2019). Overexpression of XTH genes from rose (Rosa

rugosa) increased the drought tolerance of transgenic China rose

plants (Chen et al., 2016). In addition, the presence of xyloglucan in

early land plants suggests that XTH gene family members have

played a key role in the transition from wetter to drier habitats

(Popper, 2008). In our research, the drought treatment and RT-

qPCR analysis showed that six LcXTH genes significantly

responded to drought stress. The expression patterns of

LcXTH18, 19, 20, and 25 were similar, suggesting that they

exhibit similar responses to drought stress. ABA is an important

signal in plants that mediates the response to drought stress. The

most abundant phytohormone response element of LcXTH genes

was associated with the ABA response (ABRE motif, 58.48%).

Moreover, the augmented NCED expression levels detected in

transgenic tobacco indicated that the increased drought stress

resistance provided by the LcXTH21 transgene probably involved

the promotion of ABA biosynthesis.

The “balanced growth” hypothesis proposes that some plants

can stimulate or maintain root growth while reducing shoot

growth in response to drought stress (Bloom and Mooney,

1985). In Eucalyptus globulus, a drought-tolerant clone was

found to have higher root growth rate than a drought-sensitive

one (Costa et al., 2004). Moreover, the development of the root

system largely determines the performance of plants under

drought conditions. Thus, increased root biomass is one of the

primary mechanisms used by plants to avoid, or reduce, drought

stress (Kashiwagi et al., 2005). For example, the overexpression of

OsNAC5 was found to enhance drought tolerance by increasing

root diameter (Jeong et al., 2013). XTH gene family members have

been widely studied considering the different roles they are known

to play in root development. For example, seven XTH genes from

rice were specifically expressed in the roots of seedlings

(Yokoyama et al., 2004). AtXTH19 and AtXTH23 were involved

in lateral root development via the BES1-dependent pathway,

indicating that XTH genes play a role in root development (Xu

et al., 2020). Later, the expression levels of AtXTH11, AtXTH29,

and AtXTH33 in the roots and aboveground organs were found to

differ in A. thaliana plants subjected to high temperature and

drought stress, thereby suggesting that these genes might mediate

rapid responses to drought stress (De Caroli et al., 2021). In a

study performed in grapevine, the transcription levels of VvXTH

genes presented the largest changes in roots and leaves under

drought and salt stress, indicating that VvXTH genes vigorously

respond to abiotic stress in leaves and roots (Qiao et al., 2022).
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Molecular breeding is a promising approach and great

progress has been made in its use for improving the efficiency

of plant breeding programs (Varshney et al., 2009). Combined

with molecular marker-assisted selection, greater and faster

genetic progress can be achieved. For example, in a study of

Triticum aestivum, Iquebal et al. (2019) found that the

maximum number of drought responsive quantitative trait loci

were detected at the seedling stage and further analyzed the

regulatory networks of key candidate genes and their roles in

responding to drought stress in order to identify putative

markers for breeding applications. Besides, in a recent study,

Chauhan et al. (2022) used morphological, biochemical, and

molecular markers from Withania somnifera to assess the 25

accessions of Indian ginseng, and concluded that these markers

could be used to select superior ginseng genotypes. In addition,

XTH genes were also reported to be involved in other abiotic

stress, such as salt, heat and cold stress (Han et al., 2017; Hidvégi

et al., 2020; De Caroli et al., 2021). Hence, we suggest that LcXTH

genes play roles in drought resistance and other abiotic stresses.

In this study, we performed functional characterization of

LcXTH21, and transgenic tobacco showed higher drought

resistance and more developed roots during seedling stage.

Therefore, LcXTH genes could be potential functional markers

when conducting marker-assisted-selection (MAS) for breeding

varieties with high resistance to abiotic stress. As an example, we

could select genotypes with high LcXTH21expression levels and

these MAS genotypes could be expected to have higher

resistance to drought stress at the adult stage. This procedure

could represent an alternative way to breed L. chinense varieties

with increased stress resistance associated with a highly

developed root system in the coming decade.
Conclusion

In this study, 27 LcXTH genes were identified, and they were

divided into three subfamilies. Tandem duplication was

probably the major contributor to the expansion of the LcXTH

family, and six LcXTH genes significantly responded to drought

stress. Overexpression of LcXTH21 in tobacco resulted in a more

developed root system. In summary, these findings enhance our

understanding of the LcXTH gene family and lay the foundation

for further exploration on drought resistance mechanisms in

L. chinense.
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