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Soil in most areas of the world is selenium (Se) deficient, which results a low Se

content in agricultural products. To improve the fruit tree Se accumulation, the

effects of different Artemisia argyi water extract concentrations (0, 100, 200,

300, and 400-fold dilutions) on the growth and Se accumulation of peach

seedlings were studied by a pot experiment. A 300- and 400-fold dilution of A.

argyi water extract increased the root and shoot biomass (dry weight), leaf

chlorophyll a content, superoxide dismutase (SOD) activity, and peroxidase

(POD) activity of peach seedlings, but decreased the leaf chlorophyll a/b.

Different A. argyi water extract concentrations had no significant effects on

peach leaf chlorophyll a content of peach seedlings, but increased the leaf

carotenoid content, catalase (CAT) activity, and soluble protein content.

Different A. argyi water extract concentrations increased the total Se,

inorganic Se, and organic contents in roots and shoots of peach seedlings to

some extent. Furthermore, A. argyi water extract concentration exhibited a

linear relationship with the root and shoot total Se contents. Compared with

the control, the 100-, 200-, 300-, and 400-fold dilutions of A. argyi water

extract increased the shoot total Se content by 18.95%, 31.31%, 39.32%, and

51.59%, respectively. Different A. argyi water extract concentrations also

increased the leaf Se metabolism-related enzyme activities of peach

seedlings, including the activities of adenosine triphosphate sulfurase (ATPS),

adenosine 5’-phosphosulfate reductase (APR), and serine acetyltransferase

(SAT), as well as selenocysteine methyltransferase (SMT) to some extent.

Moreover, correlation and grey relational analyses revealed the root total Se

content, CAT activity, and ATPS activity to be closely associated with the total

shoot Se content. Therefore, applying A. argyi water extract can thus promote

the growth and Se uptake of peach seedlings, and the future study should focus

on the application effects of Se uptake in peach fruits.
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Introduction

Selenium (Se) is an essential trace element in the human

body and is extremely important for human health, having anti-

cancer, anti-oxidation, and immunity enhancing functions. Se

deficiency in the human body causes diseases such as Keshan

disease and Kashin-Beck disease (Zhang et al., 2007; Qu et al.,

2010; Mé plan and Hesketh, 2012). Most areas in the world are

Se-deficient, resulting in an extremely low Se content in

agricultural products (Sun et al., 2017). The Se in humans and

animals mainly derive from crops, while crop Se mainly derives

from the soil; crops can convert inorganic Se into organic Se

after being absorbed from the soil (Chen et al., 2017; Natasha

et al., 2018). So, crop Se sources are the best option for human Se

supplementation, and screening out methods to improve crop

(especially fruit) Se uptake are urgently needed.

External Se fertilizer application is mostly used to increase

crop Se content, but the continuous use or excessive application

of Se fertilizer can easily become toxic for crops (Mostofa et al.,

2017). Crop straw returning is an agronomic measure

commonly used in agricultural production, which can increase

crop yield and improve crop quality, because crop straw contains

nitrogen (N), phosphorus (P), and potassium (K), as well as

other elements and organic matter, to improve soil fertility (Lu

and Xie, 2011; Li et al., 2018; Qin, 2021). Moreover, crop straw

can release the allelochemicals during decay, which may produce

the allelopathy to affect the growth and nutrient absorption of

other crop (Ghnaya et al., 2016). The allelopathy of crop straw

also affects the heavy metal accumulation in crops (Gu et al.,

2017; Liu et al., 2018a). Under cadmium (Cd) contaminated soil,

crop straw decreases the Cd accumulation in other crops by

effectively reducing soil available Cd concentration (Wang et al.,

2019; Lian et al., 2020). When peanut, rice, and maize straws are

returned to the field, different wheat growth effects and Cd

accumulation occur. Peanut straw decreases wheat Cd content,

while increasing arsenic (As) uptake; rice straw does not

significantly affect wheat Cd content, but decreases As uptake;

maize straw decreases both Cd and As uptake in wheat (Cao

et al., 2019). Other studies on heavy metal hyperaccumulators

and accumulators, and fruit trees (Lin et al., 2014; Lin et al.,

2015; He et al., 2017) have shown similar effects to wheat. These

results may be related to the different allelochemicals released

from the various straws, which may activate or complex the

heavy metal in soil (Lin et al., 2015; Cao et al., 2019; Wang et al.,

2019). For Se uptake, Pterocypsela laciniata straw application

promotes grape seedling Se uptake, but inhibits grape seedling

growth to a certain extent (Liu et al., 2021), which may be related

to the crop straw increasing soil selenite bioavailability by

activating soil Se (Wang, 2019a). However, no other reports

exist regarding crop straw returning effects on other crop Se

uptake. Thus, crop straw returning may affect plant Se uptake,
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but this requires screening of more crop straw and living

crop combinations.

Peach (Prunus persica) is a global distribution fruit tree with

delicious fruits. Its main rootstock materials are wild peach (P.

persica) or mountain peach (P. davidiana) (Yang et al., 2011).

Artemisia argyi is a perennial herb used for medicine, food, and

dyes, as well as many other uses. There main components of A.

argyi extract are terpenes, flavonoids, volatile oils, and trace

elements, which can produce the allelopathy on the other crops

(Li et al., 2016). If A. argyi extract is applied to wild peach

(rootstock material), its growth and Se uptake may be promoted,

and the improvement of Se contents in peach fruits also can

improve its commercial value (Zhang, 2011). Therefore, in this

experiment, different A. argyi water extract concentration effects

on the growth and Se accumulation characteristics of peach

seedlings were studied. The aim of this study was to investigate

whether A. argyi water extract could promote the growth and Se

uptake of peach seedlings, and to determine the best A. argyi

water extract concentration for Se-enriched peach production.
Materials and methods

Materials

Fluvo-aquic soil was collected from a farmland near the

Chengdu Campus of the Sichuan Agricultural University (30°42′
N, 103°51′E). Its basic physicochemical properties have

previously been described (Liu et al., 2022).

The shoots of A. argyi were also collected from a farmland

near the Chengdu Campus of the Sichuan Agricultural

University in May 2021. These shoots were dried in a drying

oven at 75°C until constant weight, and cut into pieces about

1 cm in length. The preparation method of A. argyi water extract

was according to the boiling method of traditional Chinese

medicine. A total of 10 g dried A. argyi pieces were added to

1500 mL distilled water, boiled, and then simmered on a low

heat for 30 min. After cooling, the A. argyi water extract was

added to a final volume of 1000 mL (the water was evaporated

about 600 mL during heating), resulting in an A. argyi:water

ratio of 1:100 (w/v); this solution was stored in a -18°C

refrigerator until required.

Wild peach seeds were collected from a 5-year-old peach tree

on a farm near the Chengdu Campus of the Sichuan Agricultural

University in September 2021. The seeds were stored in moist

sand until germination. In March 2022, the germinated seeds

were sown into plug trays (50 holes) filled with perlite for

seedling culturing. The plug trays were irrigated with

Hoagland’s nutrient solution every three days. One month

later, the peach seedlings were transplanted into pots when

they grew to 10 cm in height.
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Experimental design

The experiment was conducted at a canopy of the Chengdu

Campus of Sichuan Agricultural University from March to May

2022. In March 2022, each plastic pot (21 cm diameter and

20 cm depth) was filled with 3.0 kg of air-dried and crushed soil.

Analytically pure Na2SeO3 was added and mixed into the soil to

make a final soil Se concentration of 5 mg kg−1 (Hu et al., 2019).

Each pot’s soil was watered every day to make sure that its soil

moisture content was kept at 80% field capacity. In April 2022,

four uniform peach seedlings (10 cm in height) from the plug

trays cultured seedlings were transplanted into each pot, and

evenly distributed in all four directions. Hereafter, different A.

argyi water extract concentrations (0, 100, 200, 300, and 400-fold

dilutions) were used to irrigate the pots. Each pot was irrigated

50 mL A. argyi water extract, and each treatment was repeated in

triplicate (three pots) using a completely randomized design.

Hereafter, pots were irrigated every seven days for a total of four

irrigations. The pots were watered with tap water every day to

maintain an adequate water supply for plant growth.
Determination of indicators

One month after the initial A. argyi water extract irrigation

(May 2022), mature leaves, each at the same position (middle part

of the peach stem) were collected to determine the contents of

photosynthetic pigments (chlorophyll a, chlorophyll b, and

carotenoids), antioxidant enzyme [superoxide dismutase (SOD),

catalase (CAT), and peroxidase (POD)] activities, soluble protein

content, and Se metabolism-related enzyme [adenosine

triphosphate sulfurase (ATPS), adenosine 5’-phosphosulfate

reductase (APR), serine acetyltransferase (SAT), and

selenocysteine methyltransferase (SMT)] activities. Photosynthetic

pigment contents were extracted using the acetone-ethanol

extraction method and determined at 663, 645, and 470 nm

wavelengths using a spectrophotometer (Summit, Shanghai,

China) according to Hao et al. (2004), and the chlorophyll a/b

was calculated as the chlorophyll a content/chlorophyll b content.

SOD, CAT, and POD activities were determined using the

nitrotetrazole chloride reduction, potassium permanganate

titration, and guaiacol methods, respectively, as described by Lin

et al. (2020) and Hao et al. (2004). The Coomassie brilliant blue

method was used for soluble protein content determination

according to Hao et al. (2004). The activities of Se metabolism-

related enzymes were determined using the enzyme linked

immunosorbent assay (ELISA) kits (Shanghai Enzyme Link

Biotechnology Co., Ltd., Shanghai, China) following the

manufacturer’s instructions. Hereafter, whole plants were

harvested and treated following the methods described by Li et al.

(2022). Roots and shoots were divided, and their dry weights

(biomass) were measured using an electronic balance. The dried

samples were finely ground and digested with nitrate and perchloric
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acids, and reduced in hydrochloric acid to determine total Se

content. Total Se content was subsequently measured using

hydride generation-atomic fluorescence spectrometry (AFS-9700,

Beijing Haiguang Instrument Co., Ltd., Beijing, China), as described

by Li et al. (2022). Inorganic Se content was determined using the

hydrochloric acid extraction method as described by Li et al. (2022).

Organic Se content and translocation factor were determined using

the following formulae: organic Se content = total Se content -

inorganic Se content (Li et al., 2022); translocation factor (TF) =

shoot Se content/root Se content (Rastmanesh et al., 2010).
Statistical analysis

The data were analyzed using the SPSS 20.0.0 software (IBM,

Chicago, IL, USA) with three repetitions. Data were normalized

and subjected to a homogeneity test, followed by a one-way

analysis of variance and a Duncan’s Multiple Range Test (P <

0.05). Moreover, the linear relationship between A. argyi water

extract concentration, and root and shoot total Se content was

analyzed using regression analysis. Pearson’s correlation was

used to determine the relationships among biomass, total Se

content, photosynthetic pigment content, antioxidant enzyme

activity, soluble protein content, and Se metabolism-related

enzyme activities. The grey relational analysis method was

used to analyze biomass, root total Se content, photosynthetic

pigment content, antioxidant enzyme activity, soluble protein

content, and Se metabolism-related enzyme activity

relationships with shoot total Se content, as described by

Wang (2019b) and Ma et al. (2022).
Results

Peach biomass

Both peach root and shoot biomass increased as the A. argyi

water extract fold dilution increased (Figures 1A, B). Compared

with the control, the 200-, 300-, and 400-fold dilutions of A.

argyi water extract increased root biomass by 9.61%, 15.65%, and

26.34%, respectively, and the 300- and 400-fold dilutions

increased shoot biomass by 15.94% and 25.44%, respectively.

The other fold dilutions did not significantly affect root or

shoot biomass.
Photosynthetic pigment content in
peach leaves

The different A. argyi water extract concentration did not

significantly affect chlorophyll a content in the peach leaves
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(Figure 2A). The 300- and 400-fold dilution of A. argyi water

extract increased peach leaf chlorophyll b content, but decreased

chlorophyll a/b, compared with their respective controls, while

the 100- and 200-fold dilutions did not significantly affect

chlorophyll b content and chlorophyll a/b (Figures 2B, C).

However, different A. argyi water extract concentrations

increased peach leaf carotenoid content (Figure 2D).
Frontiers in Plant Science 04
Peach leaf antioxidant enzyme activity
and soluble protein content

The 100- and 200-fold dilutions of A. argyi water extract did not

significantly affect peach leaf SOD activity, while the 300- and 400-

fold dilutions increased SOD activity by 8.87% and 27.33%,

respectively (Figure 3A). The 100-fold dilution did not
B

C D

A

FIGURE 2

Photosynthetic pigment content in leaves of peach seedlings. (A): chlorophyll a content; (B): chlorophyll b content; (C): chlorophyll a/b;
(D): carotenoid content. Values are means ± SD of three replicates. Different lowercase letters indicate significant differences among the
treatments (Duncan’s Multiple Range Test, P < 0.05).
BA

FIGURE 1

Biomass of peach seedlings. (A): root biomass; (B): shoot biomass. Values are means ± SD of three replicates. Different lowercase letters
indicate significant differences among the treatments (Duncan’s Multiple Range Test, P < 0.05).
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significantly affect POD activity, while the 200-, 300-, and 400-fold

dilutions increased POD activity by 32.28%, 51.97%, and 127.57%,

respectively (Figure 3B). The different A. argyi water extract

concentrations increased CAT activity and soluble protein content

(Figures 3C, D).

Different Se forms and their transport

Peach root and shoot total Se content increased as the A.

argyi water extract fold dilutions increased (Figures 4A, B). The

100-, 200-, 300-, and 400-fold dilutions increased root total Se

content by 20.22%, 39.78%, 55.22%, and 75.72%, respectively,

and increased shoot total Se content by 18.95%, 31.31%, 39.32%,

and 51.59%, respectively. Moreover, regression analysis showed

that A. argyi water extract concentration was linearly related to

both the root total Se content (y = 0.022x + 11.848, R2 = 0.987, P

= 0.000) and shoot total Se content (y = 0.002x + 1.900, R2 =

0.967, P = 0.000). Root and shoot inorganic Se content, and root

and shoot organic Se content had similar fold dilution changes as

A. argyi water extract increased, and were the same as total Se

content (Table 1). The different A. argyi water extract

concentrations decreased the root inorganic Se proportion, but

increased the root organic Se proportion (Figure 5A). However,

the different A. argyi water extract concentrations increased the
Frontiers in Plant Science 05
shoot inorganic Se proportion, but decreased the shoot organic

Se proportion (Figure 5B). The different A. argyi water extract

concentrations decreased the TFs of total Se and organic Se to

some extent (Figures 6A, B), while increasing the TF of inorganic

Se, compared with their respective controls (Figure 6C).

Se metabolism-related enzyme activities
of peach leaves

Peach leaf Se metabolism-related enzyme (ATPS, APR, SAT,

and SMT) activities increased as the A. argyi water extract fold

dilutions increased (Table 2). The 100-, 200-, 300-, and 400-fold

dilutions of A. argyi water extract increased ATPS activity by

41.67%, 46.67%, 55.09%, and 64.26%, respectively, increased

APR activity by 13.88%, 12.31%, 19.09%, and 23.21%,

respectively, and increased SAT activity by 16.16%, 13.63%,

31.30%, and 36.05%, respectively. For SMT activity, only the

300- and 400-fold dilutions affected SMT activity, while the 100-

and 200-fold dilutions had no significant effects.

Correlation and grey relational analyses

Highly significant (P < 0.01) positive, or significant (0.01 ≤

P < 0.05) positive correlations existed among root biomass, shoot
B

C D

A

FIGURE 3

Antioxidant enzyme activity and soluble protein content of leaves of peach seedlings. (A): SOD activity; (B): POD activity; (C): CAT activity;
(D): soluble protein content. Values are means ± SD of three replicates. Different lowercase letters indicate significant differences among the
treatments (Duncan’s Multiple Range Test, P < 0.05).
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biomass, root total Se content, shoot total Se content,

chlorophyll b content, carotenoid content, SOD activity, POD

activity, CAT activity, soluble protein content, ATPS activity,

APR activity, SAT activity, and SMT activity (Table 3).

Chlorophyll a/b was highly significantly (P < 0.01) and

negatively correlated with all of the other indicators. The grey

relational analysis showed that biomass, root total Se content,
Frontiers in Plant Science 06
photosynthetic pigment content, antioxidant enzyme activity,

soluble protein content, and Se metabolism-related enzyme

activities were all correlated with shoot total Se content

(Figure 7). The top three largest indicators of the grey

correlation coefficients were root total Se content, CAT

activity, and ATPS activity with shoot total Se content, and

were also the top three closest relationships.
TABLE 1 Inorganic Se and organic Se contents in peach seedlings.

Treatment
(-fold dilution)

Root inorganic Se content
(mg kg−1)

Shoot inorganic Se content
(mg kg−1)

Root organic Se content
(mg kg−1)

Shoot organic Se content
(mg kg−1)

0 0.346 ± 0.005c 0.305 ± 0.013e 11.40 ± 0.48e 1.530 ± 0.002d

100 0.353 ± 0.010c 0.383 ± 0.005d 13.76 ± 0.24d 1.801 ± 0.051c

200 0.426 ± 0.016b 0.467 ± 0.014c 15.99 ± 0.50c 1.943 ± 0.054b

300 0.455 ± 0.018b 0.575 ± 0.015b 17.77 ± 0.58b 1.982 ± 0.054b

400 0.565 ± 0.020a 0.666 ± 0.018a 20.07 ± 0.80a 2.117 ± 0.059a
Values are means ± SD of three replicates. Different lowercase letters indicate significant differences among the treatments (Duncan’s Multiple Range Test, P < 0.05).
BA

FIGURE 4

Total Se content in peach seedlings. (A): root total Se content; (B): shoot total Se content. Values are means ± SD of three replicates. Different
lowercase letters indicate significant differences among the treatments (Duncan’s Multiple Range Test, P < 0.05).
BA

FIGURE 5

Proportions of organic Se and inorganic Se of peach seedlings. (A): root Se proportion; (B): shoot Se proportion.
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Discussion

Crop straw returning not only improves soil nutrient

supplies (Zhang et al., 2022), but also releases allelochemicals

during decay and decomposition, which has an allelopathy on

the other crops (Qi et al., 2015). For crop seeds and seedlings,

maize seeds treated with millet straw water extract promoted

seedling root and shoot growth (Dong et al., 2016), while garlic

straw water extract inhibited pepper and tomato seed

germination rates (Liu et al., 2015). Cotton straw extract has

an allelopathy promoting effect on lettuce seedling height and

fresh weight (Liu et al., 2018b), while rape straw water extract

increases rice seedling height and fresh weight (Zou et al., 2022).
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Moreover, A. argyi water extract inhibits radish and rape

seedling growth, and Artemisia lavandulifolia water extract

also inhibits Tricium aestivum, Brassica chinensis, Glycine soja,

Melilotus suaveolens, Setaria chondrachne, and Solidago

decurrens seedling growth (Zhang et al., 2006; Jiang et al.,

2009). In this experiment, the 200-, 300-, and 400-fold

dilutions of A. argyi water extract increased peach root

biomass, while the 300- and 400-fold dilutions increased shoot

biomass. The other A. argyi water extract concentrations did not

significantly affect peach root or shoot biomass. These results are

consistent with previous reports on straw water extracts from

other plants (Dong et al., 2016; Liu et al., 2018b; Zou et al., 2022),

but contrast with A. argyi water extract effects (Jiang et al., 2009).
B

C

A

FIGURE 6

TF of Se of peach seedlings. (A): TF of total Se; (B): TF of inorganic Se; (C): TF of organic Se. Values are means ± SD of three replicates. Different
lowercase letters indicate significant differences among the treatments (Duncan’s Multiple Range Test, P < 0.05). Translocation factor (TF) = Se
content in shoots/Se content in roots.
TABLE 2 Se metabolism-related enzyme activity of leaves of peach seedlings.

Treatment (-fold dilution) ATPS activity (U g−1) APR activity (U g−1) SAT activity (U g−1) SMT activity (U g−1)

0 1.080 ± 0.041d 1.917 ± 0.016c 1.262 ± 0.018c 2.221 ± 0.082c

100 1.530 ± 0.037c 2.183 ± 0.087b 1.466 ± 0.022b 2.341 ± 0.043c

200 1.584 ± 0.026bc 2.153 ± 0.067b 1.434 ± 0.020b 2.369 ± 0.046c

300 1.675 ± 0.069ab 2.283 ± 0.029ab 1.657 ± 0.067a 2.668 ± 0.063b

400 1.774 ± 0.048a 2.362 ± 0.035a 1.717 ± 0.069a 2.886 ± 0.035a
Values are means ± SD of three replicates. Different lowercase letters indicate significant differences among the treatments (Duncan’s Multiple Range Test, P < 0.05).
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TABLE 3 Correlations among the biomass, total Se content, photosynthetic pigment content, antioxidant enzyme activity, soluble protein content, and Se metabolism-related enzyme activity.

Indicator Root
biomass

Shoot
biomass

Root total Se
content

Shoot total Se
content

Chlorophyll a
content

Chlorophyll b
content

Chlorophyll
a/b

Carotenoid
content

SOD
activity

POD
activity

CAT
activity

Soluble
protein
content

ATPS
activity

APR
activity

SAT
activity

SMT
activity

0.744**

-0.515* -0.955**

0.868** 0.838** -0.707**

0.468 0.848** -0.874** 0.530*

0.491 0.858** -0.887** 0.624* 0.952**

0.750** 0.840** -0.764** 0.913** 0.617* 0.777**

0.847** 0.838** -0.711** 0.898** 0.616* 0.739** 0.958**

0.816** 0.826** -0.714** 0.954** 0.585* 0.708** 0.936** 0.939**

0.850** 0.881** -0.765** 0.929** 0.706** 0.757** 0.870** 0.907** 0.938**

0.642** 0.883** -0.863** 0.877** 0.757** 0.821** 0.848** 0.814** 0.903** 0.933**

0.565* 0.908** -0.921** 0.761** 0.906** 0.936** 0.799** 0.768** 0.800** 0.861** 0.949**

at the 0.05 level (2-tailed test).

Lin
e
t
al.

10
.3
3
8
9
/fp

ls.2
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2
2
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14
4
5
4

Fro
n
tie
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in

P
lan

t
Scie

n
ce

fro
n
tie

rsin
.o
rg

0
8

Root biomass

Shoot biomass 0.954**

Root total Se
content

0.953** 0.929**

Shoot total Se

content

0.923** 0.911** 0.992**

Chlorophyll a
content

0.592* 0.759** 0.650** 0.697**

Chlorophyll b
content

0.905** 0.966** 0.899** 0.883**

Chlorophyll a/b -0.908** -0.906** -0.879** -0.839**

Carotenoid
content

0.725** 0.812** 0.854** 0.891**

SOD activity 0.898** 0.902** 0.805** 0.744**

POD activity 0.969** 0.928** 0.917** 0.873**

CAT activity 0.844** 0.859** 0.942** 0.964**

Soluble protein
content

0.819** 0.864** 0.898** 0.927**

ATPS activity 0.783** 0.832** 0.905** 0.947**

APR activity 0.839** 0.901** 0.900** 0.919**

SAT activity 0.878** 0.872** 0.945** 0.942**

SMT activity 0.949** 0.923** 0.947** 0.913**

N = 15. **: Correlation is significant at the 0.01 level (2-tailed test). *: Correlation is significant

https://doi.org/10.3389/fpls.2022.1014454
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Lin et al. 10.3389/fpls.2022.1014454
These results indicate that a low A. argyi water extract

concentration (i.e., high fold dilution, such as 300- and 400-

fold) could promote peach growth, while high concentrations

(low fold dilution) had no effects, which may be related to A.

argyi flavonoids (Li et al., 2016). This is because flavonoids can

inhibit or promote plant growth at different concentrations

(Zong et al., 2017). A. argyi water extract fold dilutions less

than 100 may inhibit peach growth. Therefore, since A. argyi

water extract inhibited the growth of other crops (Jiang et al.,

2009), it may be related to high concentrations. This further

suggests that a low A. argyi water extract concentration (high

fold dilution) could promote peach growth.

Photosynthe t i c p igment content reflec ts p lant

photosynthetic capacity and affects plant growth (Tholen et al.,

2007; Wang et al., 2013). Chlorophyll is related to the rate of

photosynthesis and plays a crucial role in crop photosynthesis,

and its content affects the absorption, transmission, and

conversion of light energy by crop leaves (Scandalios, 1993;

Jackson et al., 1996; Wang et al., 2008). Carotenoids are

important light-absorbing auxiliary pigments in plant

photosynthesis, which can absorb excess light energy and

protect photosynthetic organelles (Lu et al., 2022). Different

corn straw water extract concentrations are known to inhibit

chlorophyll content in wheat seedlings, and this inhibitory effect

is strengthened as the concentration increases (Zhen et al.,

2015). However, pepper straw promotes the synthesis of

photosynthetic pigments in watermelon seedlings (Wang and

Hao, 2021), while Artemisia anethifolia water extract also

promotes the synthesis of photosynthetic pigments in wheat

(Guan, 2014). In this study, different A. argyi water extract

concentrations did not significantly affect peach leaf chlorophyll

a content, but increased carotenoid content. Only the 300- and

400-fold dilutions of A. argyi water extract increased chlorophyll

b content, and decreased peach leaf chlorophyll a/b. These
Frontiers in Plant Science 09
results differ from corn straw water extract effects on wheat

seedlings (Zhen et al., 2015), but are, however, consistent with

other studies (Wang and Hao, 2021; Guan, 2014). These results

also indicate that A. argyi water extract could produce an

allelopathic effect that promotes peach photosynthetic pigment

synthesis to some extent, which may be related to A. argyi

flavonoids content (Li et al., 2016). Therefore, A. argyi water

extract had various effects on peach chlorophyll a, chlorophyll b,

and carotenoid synthesis. Its mechanism therefore requires

further study.

Antioxidant enzymes, including SOD, CAT, and POD, can

remove excess reactive oxygen species (ROS) produced in plants

(Fu et al., 2007; Li et al., 2007; Gan et al., 2010), thereby reducing

or avoiding cell damage caused by ROS (Jiang et al., 2013).

Soluble protein is an important osmotic regulating substance,

which plays a protective role in cell substances and biofilms, and

is one of the indicators of resistance (Shan, 2020). Previous

studies showed that mustard straw decomposition treatment

increased cowpea SOD, POD, and CAT activities (Chen et al.,

2019), while maize straw water extract decreased wheat POD

activity (Zhen et al., 2015). Additionally, wheat straw water

extract increased the soluble protein content in Salvia

miltiorrhiza and Forsythia suspensa (Hua and Li, 2019). In this

study, only the 300- and 400-fold dilutions of A. argyi water

extract increased peach SOD activity, while the 200-, 300-, and

400-fold dilutions increased POD activity. The different A. argyi

water extract concentrations increased peach CAT activity and

soluble protein content. These results are consistent with

previous studies (Chen et al., 2019; Hua and Li, 2019),

indicating that A. argyi water extract could improve peach

resistance to some extent. Flavonoids can improve plant

oxidative stress cause by the environment (Nakabayashi et al.,

2014). Therefore, improving peach resistance may be related to

A. argyi flavonoids (Li et al., 2016), which require further study.
FIGURE 7

Grey correlation coefficient of the biomass, root total Se content, photosynthetic pigment content, antioxidant enzyme activity, soluble protein content,
and Se metabolism-related enzyme activity with the shoot total Se content. RB, root biomass; SB, shoot biomass; RSe, root total Se content; Cha,
chlorophyll a content; Chb, chlorophyll b content; Cha/b, chlorophyll a/b; Car, carotenoid content; SOD, SOD activity; POD, POD activity; CAT, CAT
activity; SP, soluble protein content; ATPS, ATPS activity; APR, APR activity; SAT, SAT activity; SMT, SMT activity.
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Se is a trace element that promotes plant growth (Tang

et al., 2022). Plants Se is mainly absorbed from the soil

through the roots, and Se exists as various forms in the soil,

such as selenate, selenite, elemental selenium, and organic

selenium compounds (Wang et al., 2014). Selenite migrates

with difficulty in plants, and most of the selenite absorbed by

plant roots is directly assimilated into organic selenium

within the roots, where it also accumulates (Li et al., 2008;

Chen et al., 2014). Plant Se metabolism is a series of reactions

completed by several related enzymes and proteins (Ma et al.,

2017). Selenite is converted to selenide within the plant body

after absorption, and selenide is then converted to

selenocysteine by O-acetylserine lyase (OAS-TL) and

acety lser ine trans ferase (Wal lenberg et a l . , 2010 ;

Yarmolinsky et al., 2013). Increased selenium content in the

environment can promote acetylserine transferase gene

expression, which in turn increases selenocysteine

conversion (Van Hoewyk et al., 2008). In this study,

different A. argyi water extract concentrations increased the

various peach Se forms (total, inorganic, and organic Se), Se

metabolism-related enzyme (ATPS, APR, SAT, and SMT)

activities, and inorganic Se TF to some extent, while

decreasing total Se and organic Se TFs to some extent. The

different A. argyi water extract concentrations decreased root

inorganic Se, but increased the root organic Se, while

increasing shoot inorganic Se and decreasing shoot organic

Se. These results are consistent with a previous study (Liu

et al., 2021), as well as other straw studies on crop nutrient

uptake (Li, 2007; Zhang et al., 2015; Huang et al., 2017; Zhou

et al., 2019), which indicate that A. argyi water extract could

promote Se peach uptake. The reason may be that the

allelopathic effects of A. argyi stimulated an increase in

plant Se metabolism-related enzyme activities, as well as an

increased Se resistance (Nakabayashi et al . , 2014).

Additionally, correlation and grey relational analyses

showed that root total Se content, CAT activity, and ATPS

activity were the three most closely associated factors with

total shoot Se content, indicating that root total Se content,

CAT activity, and ATPS activity significantly promoted peach

Se uptake. However, their mechanisms require further study.
Conclusion

The different A. argyi water extract concentrations increased

peach carotenoid content, CAT activity, and soluble protein

content, and only the 300- and 400-fold dilutions increased
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biomass, chlorophyll a content, SOD activity, and POD activity.

The different A. argyi water extract concentrations also

promoted peach total Se, inorganic Se, and organic content

uptake to some extent. A. argyi water extract concentration

exhibited a linear relationship with root and shoot total Se

content by increasing Se metabolism-related enzyme activities.

Notably, root total Se content, CAT activity, and ATPS activity

were all closely associated with total shoot Se content. So, A.

argyi water extract can promote the growth and Se uptake of

peach seedlings. Future studies should focus on replicating these

findings in peach fields to study the application effects of, and Se

uptake in, peach fruits.
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