
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Heba Mahmoud Mohammad Abdel-
Aziz,
Mansoura University, Egypt

REVIEWED BY

Marzieh Babashpour-Asl,
Islamic Azad University, Maragheh, Iran
Muhammad Hamzah Saleem,
University of Chinese Academy of
Sciences, China

*CORRESPONDENCE

Yang-Rui Li
liyr@gxaas.net

SPECIALTY SECTION

This article was submitted to
Plant Abiotic Stress,
a section of the journal
Frontiers in Plant Science

RECEIVED 09 August 2022

ACCEPTED 28 October 2022
PUBLISHED 01 December 2022

CITATION

Verma KK, Song X-P, Singh M,
Huang H-R, Bhatt R, Xu L, Kumar V
and Li Y-R (2022) Influence of
nanosilicon on drought tolerance in
plants: An overview.
Front. Plant Sci. 13:1014816.
doi: 10.3389/fpls.2022.1014816

COPYRIGHT

© 2022 Verma, Song, Singh, Huang,
Bhatt, Xu, Kumar and Li. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Mini Review
PUBLISHED 01 December 2022

DOI 10.3389/fpls.2022.1014816
Influence of nanosilicon
on drought tolerance in
plants: An overview

Krishan K. Verma1, Xiu-Peng Song1, Munna Singh2,
Hai-Rong Huang1, Rajan Bhatt3, Lin Xu1, Vinod Kumar4

and Yang-Rui Li 1*

1Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of
Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/
Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China,
2Department of Botany, University of Lucknow, Lucknow, India, 3Punjab Agricultural University,
Regional Research Station, Kapurthala, Punjab, India, 4Department of Botany, Government Degree
College, Ramban, India
Insufficient availability of water is a major global challenge that plants face and

that can cause substantial losses in plant productivity and quality, followed by

complete crop failure. Thus, it becomes imperative to improve crop cultivation/

production in unsuitable agricultural fields and integrate modern agri-

techniques and nanoparticles (NPs)-based approaches to extend appropriate

aid to plants to handle adverse environmental variables. Nowadays, NPs are

commonly used with biological systems because of their specific

physicochemical characteristics, viz., size/dimension, density, and surface

properties. The foliar/soil application of nanosilicon (nSi) has been shown to

have a positive impact on plants through the regulation of physiological and

biochemical responses and the synthesis of specific metabolites. Reactive

oxygen species (ROS) are produced in plants in response to drought/water

scarcity, which may enhance the ability for adaptation in plants/crops to

withstand adverse surroundings. The functions of ROS influenced by nSi and

water stress have been assessed widely. However, detailed information about

their association with plants and stress is yet to be explored. Our review

presents an update on recent developments regarding nSi and water stress in

combination with ROS accumulation for sustainable agriculture and an eco-

friendly environment.
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Introduction

Insufficient water availability is a big problem that causes

substantial global losses in plant performance and productivity

both quantitatively and qualitatively. The plants are the main

producers of bio-ecosystems, and they often have to respond to

different agroclimatic conditions such as water deficits,

submergence/soil flooding, heavy metal toxicity, pesticides/

herbicides, salt stress, high and low light intensities, pests/

insects, and pathogens (Ghorbanpour et al., 2020; Verma

et al., 2022a; Verma et al., 2022b). It is well documented that

water deficits may impair photosynthetic and metabolic

processes associated with the regulation of proper plant

growth and development (Verma et al., 2021).

Enhancing plant yield in marginal agricultural areas is an

integral part of the second agro-technological revolution, and NP-

based approaches have already demonstrated the significance of

their added advantages in plants: the ability to adapt to harsh

atmospheric conditions (Adisa et al., 2019). Consequently, research

into nanomaterials (NMs) has received significant attention due to

their unique physical-chemical characteristics. Furthermore, in

terms of diffusivity, electrical resistivity, and electrical conducting

characteristics, nanoparticles are considered completely different

from bulk materials (Khashan et al., 2016; Mary et al., 2019). Upon

comparison with their respective bulk forms, nanoparticles are

found to be almost “identical” with molecular sizes of around 1–

100 nm in diameter with specific characteristics (Verma et al.,

2022a). The rapid use and accumulation of engineered

nanoparticles (ENPs) in the environment, and their unknown

interactions with various species, revealed SNPs that are more

toxic, which has raised concerns regarding environmental health

(Nel et al., 2006; Thwala et al., 2016). Apart from this, the use of

several ENPs has had a negative impact on the natural

environment, including the quality of the water, air, and soil

(Hashimoto et al., 2017). Plants are crucial components of the

biosphere and actively interact with ENPs, and ENPs could thus

easily be absorbed by plant roots, enter the food chain through

dietary intake, and eventually have an adverse impact on human

health (Pittol et al., 2017).

Silicon (Si) is a potential element that may help plants when

responding to a water deficit by providing structural cellular

stability, including for cell organelles. Silicon constitutes a major

part of the soil in the form of silicate and aluminum silicates. It

exists as monomeric or monosilicic acid in the soil solution, where

it may be taken by plant roots and supplied to above-ground plant

parts (Verma et al., 2020; Song et al., 2021). Silicon nanoparticles

(nSi) demonstrated a potential role in enhancing proper plant

development, especially crop productivity during biotic or abiotic

stresses (Adisa et al., 2019; Hussain et al., 2019; Rajput et al., 2021).

The studies made so far observed the potential influence of nSi

through foliar/soil application or seed priming to acquire abilities

to combatmetal toxicity, UV-B radiation, alkalinity, salinity, water
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deficit or water surplus, low or high light intensity, and oxidative

stress (Siddiqui et al., 2014; Cui et al., 2017; Hussain et al., 2019;

Elsheery et al., 2020; Rajput et al., 2021).

Insufficient water may promote the generation of ROS:

hydrogen peroxide (H2O2), hydroxyl radical (•OH), and

superoxide anion ðO·
2). Plants have developed a number of

adaptative and defensive mechanisms, including the activation

of efficient enzymatic and non-enzymatic antioxidative defense

systems, to ameliorate the damaging effects of ROS (Adisa et al.,

2019; Verma et al., 2022a) (Figure 1); limited findings have been

made regarding the effects of nSi on the mechanisms of ROS

during the water-deficit condition. Therefore, various possibilities

are reported in our review on the importance of nSi in regulation

of ROS mechanisms linked with stress tolerance in plants and

crop production for sustainable agriculture.
Reactive oxygen species in
stress responses

The generation of ROS is found to be triggered from available

molecular oxygen in vivo. The adaptive mechanism of ROS

detoxification in plant cells is also supported by a variety of

adaptive metabolic strategies that balance the level of free transient

metals (Fe2+) and downregulate the production of ROS to prevent

the formation of an excessive amount of hydroxyl radicals via the

Fenton reaction (Choudhury et al., 2017). All cellular

compartments (the apoplast, chloroplast, peroxisome,

mitochondria, vacuole, cytosol, and nuclei) continuously

produce ROS, and the ROS gene network regulates the process

(Choudhury et al., 2017). The plants respond to environmental

challenges in controlling the formation of ROS (Foyer and Noctor,

2016) in the form of the singlet oxygen (1O2), superoxide anion

ðO−
2 ), hydroxyl radical (

•OH), and hydrogen peroxide (H2O2), all

of which contain oxygen and are extremely reactive due to their

electron receptivity. ROS production also results from aerobic

metabolic activities like photosynthesis and enzymatic and non-

enzymatic processes (Apel and Hirt, 2004; Jiang et al., 2021).

The stresses may enhance ROS formation by raising ROS levels

in plants (Ahmad et al., 2010). Besides these events, genetically

programmed enzymatic mechanisms such O−·
2 generation by

NADPH oxidases or the production of photoactivation

phytoalexins may actively produce ROS in response to stress

(Flors and Nonell, 2006). By reprogramming gene expression,

altering cell walls, and rarely inducing programmed cell death

(i.e., the hypersensitive response) to protect against viruses and

other hazards, ROS may help cells adapt to stress (Waszczak et al.,

2018). However, if the plant’s antioxidant system is unable to

regulate the timing and amount of ROS generation, ROS may

disrupt the plants’ own membrane lipids, proteins, and DNA

(Demidchik, 2015; Czarnocka and Karpinski, 2018). Apart from

this, a few studies also indicated the time and intensity of ROS
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generation and their types, produced in various cellular

compartments to mitigate the consequences of oxidative stress

(Gadjev et al., 2006; Shapiguzov et al., 2012).
Defense mechanism against
ROS generation

ROS has been confirmed to play an important role in

connecting various morpho-physiological processes in living

organisms (Jiang et al., 2021). The chloroplast, mitochondria,

peroxisome, and apoplast are the four important ROS-producing

organelles (Jiang et al., 2021) subjected to environmental stresses.

The production of ROS may also maintain balance in the energy

transfer between PSII and PSI under stressed conditions (Kleine

and Leister, 2016). The alleviation of chloroplastic ROS was found

to be influenced by an array of ROS-scavenging enzymes and Fe-

and CuZn-SODs, Asada-Foyer-Halliwell pathways, and excess

levels of antioxidatives (Choudhury et al., 2017). ROS may cause

proteins to undergo reversible and/or irreversible modifications and

may also alter plant metabolism through transcriptional regulatory

systems along with sulfonylation, carbonylation, glutathionylation,

and S-nitrosylation found to be regulated by ROS-induced post-

translational modifications (Choudhury et al., 2017).

Various reports demonstrated the efficiency of ENPs in

agriculture (Manjunatha et al., 2016; Adisa et al., 2019; Verma

et al., 2022a; Verma et al., 2022b). However, the majority of

earlier investigations on the interactions between plants and

ENPs concentrated on the possible toxicity of nanoparticles to

higher plants. ENPs have been found to have both a significant
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and insignificant impact on plants (Hatami and Ghorbanpour,

2014). Generally, the formation of ROS in plant cells creates an

interface for the phytotoxicity of ENPs (Melegari et al., 2013).

According to Rico et al. (2015) and Ma et al. (2015), plants

typically produce ROS as a byproduct of metabolic processes in

chloroplasts and other organelles. However, excessive ROS

production may harm the photosynthetic apparatus and other

physiological and biochemical systems, eventually leading to the

activation of defense mechanisms in plants, like increased

antioxidant activity (Du et al., 2017). Additionally, the

formation of ENPs may activate defense systems by activating

antioxidant enzymes to eliminate the toxicity of ROS (Rai et al.,

2018). The variations in nSi types, exposure situations, and

variety of crops may influence its generation/accumulation

levels and antioxidant responses (Ghorbanpour et al., 2020).
Nanosilicon and ROS action
of mechanism in response to
water deficits

Reactive oxygen species are generally formed as a by-product

of plant metabolic processes. Numerous ecological conditions

may cause overproduction of ROS in plants with progressive

oxidative damage (Chahardoli et al., 2020; Elsheery et al., 2020).

The activities of antioxidant enzymes in plants increase in

response to atmospheric environmental variables (Adisa et al.,

2019). Plant tolerance to oxidative stress may be improved by

increased antioxidant enzyme activities (Mittler, 2002) with the

activation to catalase (CAT), a crucial enzyme that scavenges
FIGURE 1

Schematic presentation indicating the possible causes for overproduction of ROS that could damage the normal functions of the cells. O·
2 ,

Superoxide; OH·, hydroxyl; HO·
2 , hydroperoxyl; RO

·
2 , peroxyle; CO

·−
3 , carbonate; RO·, alkoxyl; SQ·, semiquinone; O3, ozone; H2O2, hydrogen

peroxide; 1O2, singlet oxygen; HOBr, hypobromous acid; ROOH, hydroperoxides; HOI, hypoiodous acid; and HOCl, hypochlorous acid.
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ROS in plant cells. CAT participates in the main defensive

mechanism against the enhancement of H2O2 and may control

H2O2 levels in cells (Song et al., 2016). The enhanced CAT may

be attributed to more elevated superoxide dismutase (SOD) and

higher production of H2O2 (Chahardoli et al., 2020).

Peroxidase (POD) influences the production of lignin,

ethylene, and the breakdown of indole-3-acetic acid (IAA) in

addition to lowering H2O2 generation under oxidative stress; it is

also associated with plant tolerance to pathogens and an aid for

wound healing (Song et al., 2016). By accelerating the dismutation

of free hydroxyl radicals to H2O2 and O2, SOD was found to be

essential (Chahardoli et al., 2020), enhancing the development of

plant incase associated with nano-based approaches. Thus, a

variety of nano-sized particles have been manufactured recently

to enhance the productivity of crops in marginal agricultural areas

subjected to adverse environmental variables (Elsheery et al., 2020;

Rajput et al., 2021; Verma et al., 2022a).

Plants need to balance/maintain their ROS levels inside the cell

to deal with oxidative damage during environmental stress, and this

is accomplished through complex enzymatic activities, such as SOD,

CAT, POD, GR, and APX, and also non-enzymatic activities, i.e.,

carotenoids, non-protein amino acids and phenolic compounds

(Yang et al., 2010; Adisa et al., 2019). Theminimal oxidative damage

indices that followed rehydrating plants with nSi indicated its major

role in scavenging excessive ROS and activating antioxidant defense

mechanisms in plants during drought. The excess level of ROS

could be due to decreased CAT activity during unfavorable

environmental variables (Chahardoli et al., 2020; Verma et al.,

2022a; Verma et al., 2022b). The enhanced CAT activity in the

plants associated with nSi reveals an enhancement in the ROS-

scavenging capacity of stressed plants, which is accompanied by

plant protection/production from oxidative damage. POD activity

was substantially enhanced during water-stressed conditions; the

production of H2O2 found apparently beyond capacity of plant cells

creates ROS formation/oxidative stress in plants. POD facilitates the

conversion of H2O2 intoOH˙ (Chen and Schopfer, 1999). Plant cells

are protected against oxidative stress and lipid peroxidation, APX—

a component of the ascorbate-glutathione (AsA-GSH) cycle, and

the major ROS scavenging process (Candan and Tarhan, 2003;

Elsheery et al., 2020). Hence, activation of SOD, if accompanied by

the other ROS-scavenging enzymes, enables defense strategies to

alleviate oxidative burst during times of drought in plants

(Ghorbanpour et al., 2013) (Figure 1).
Conclusions and future prospects

To alleviate the various adverse environmental variables, recent

agricultural approaches need to fine-tune the intrinsic capabilities of

cellular systems/plants. Agricultural applications and approaches

may also aim to enhance plant production during climate change,

which may cause major losses to overall plant performance and

productivity. Hence, we require the implementation of newer
Frontiers in Plant Science 04
approaches to ensure food security in developing countries,

adapting to cropping systems growing under changing

environmental conditions associated with application of suitable

irrigation methods and fertilizers. To solve this concern, effective

low-cost agro-technologies will be useful for agrofarmers. ROS

appear to be important to plants faced with environmental

challenges, as ROS enable them to change their metabolic activities

and develop a suitable acclimation response: as long as the cells are

balanced, there are adequate energy stores to detoxify ROS. nSi has

been found to have a significant role in agro-ecosystems and to

increase stress resistance capacities for future sustainable agriculture.
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