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This paper describes a method based on a deep neural network (DNN) for

estimating the number of tillers on a plant. A tiller is a branch on a grass plant,

and the number of tillers is one of the most important determinants of yield.

Traditionally, the tiller number is usually counted by hand, and so an automated

approach is necessary for high-throughput phenotyping. Conventional

methods use heuristic features to estimate the tiller number. Based on the

successful application of DNNs in the field of computer vision, the use of DNN-

based features instead of heuristic features is expected to improve the

estimation accuracy. However, as DNNs generally require large volumes of

data for training, it is difficult to apply them to estimation problems for which

large training datasets are unavailable. In this paper, we use two strategies to

overcome the problem of insufficient training data: the use of a pretrained DNN

model and the use of pretext tasks for learning the feature representation. We

extract features using the resulting DNNs and estimate the tiller numbers

through a regression technique. We conducted experiments using side-view

whole plant images taken with plan backgroud. The experimental results show

that the proposed methods using a pretrained model and specific pretext tasks

achieve better performance than the conventional method.

KEYWORDS

tiller number estimation, deep neural network (DNN), pretext task, self-supervised

learning, regression
1 Introduction

A tiller is a branch of a grass plant. For grain bearing members of the grass family, the

number of fertile shoots per unit area, number of grains per ear, and size of grains are the

determinants of yield. Therefore tillering is one of the traits targeted for phenotyping,

particularly as tiller number can vary through the life of a plant in response to

environmental and genetic factors (Xie et al., 2015). Therefore, it is one of the traits

that is targeted for phenotyping. Destructive surveys have commonly been used to count

the number of tillers, because they are hard to count visually; leaves and tillers look

similar, and the density of tillers tends to be highest at the base of the plant. However,
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destructive surveys present a bottleneck to phenotyping tasks

because they are time-consuming and labor-intensive, making it

impossible to trace the growth of the plants. To achieve

nondestructive and automatic tiller number estimation, several

image-based methods have been proposed (Fahlgren et al., 2015;

Boyle et al., 2016).

However, the estimation accuracy of the conventional

image-based methods is generally poor. However, the

estimation accuracy of the conventional image-based methods

is generally poor. To estimate the tiller number, image-based

approaches use hand-crafted features1 such as the area and

aspect ratio of a plant within an image and the output of the

Frangi filter (Frangi et al., 1998) for linear regression. As these

methods only use a few heuristic features of the plants’

appearance, they do not take full advantage of the information

contained in the images. The recent development of image

recognition techniques using features learned by deep neural

networks (DNNs) surpasses the performance of conventional

hand-crafted feature-based methods (Taigman et al., 2014;

Simonyan and Zisserman, 2015; Schroff et al., 2015; Hu et al.,

2018). DNNs learn image features directly from the image

appearance. Thus, the features learned by DNNs take full

advantage of the plants’ appearance. This motivates us to use

DNNs to learn features as a means of realizing high-accuracy

tiller number estimation.

DNNs requires large volumes of training data, consisting of

pairs of an image and the corresponding ground truth. The

image dataset of Setaria plants (Gehan et al., 2015) contains only

around 600 images with the corresponding tiller numbers

because the operation of counting the tiller numbers is time-

consuming and labor-intensive, as mentioned above. Therefore,

it is difficult to prepare sufficient training data for DNNs, making

it almost impossible to apply DNN-based methods for tiller

number estimation.

As a lack of training data is commonly encountered in the

field of computer vision and pattern recognition, several

methods have been developed to enable DNNs to be used with

small-scale data. For example, transfer learning (Huang et al.,

2019) transfers the network learning to another dataset, semi-

supervised learning (Miyato et al., 2019) uses partly labeled data

for learning, and self-supervised learning (Gidaris et al., 2018)

uses self-generating labels. Some self-supervised learning

methods that learn features by solving other tasks have

achieved comparable performance to supervised methods

(Noroozi et al., 2017; Gidaris et al., 2018; Noroozi et al., 2018).

These other tasks are called “pretext tasks,” and they can be
1 In computer vision and pattern recognition area, image features which

are determined by reserachers are called “hand-crafterd features,”

contrast to the deep-learning-based features, which are automatically

determined by training.
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applied to problems in which large numbers of unlabeled data

are available.

In this paper, we describe the use of self-supervised learning

and transfer learning to estimate the tiller number, even though

there are relatively few training data (Utsumi et al., 2019; Kinose

et al., 2022). To the best of our knowledge, this is the first

attempt to use deep learning-based image features in

nondestructive tiller number estimation using a single RGB

image. We apply transfer learning to the estimation task and

examine how the features learned from other data affect the

estimation. We also set some pretext tasks for learning DNNs

and evaluate how the pretext tasks enhance the estimation

performance. Experimental results show that the proposed

method outperforms the conventional method and that the

pretext tasks enhance the estimation accuracy. The results

showed that when using the framework of the proposed

method, the plant trait can be estimated accurately using deep-

learning even though few training data are acquired.
1.1 Related work

1.1.1 Tiller number estimation
DNN-based tiller number estimation techniques have already

been proposed (Deng et al., 2020; Wu et al., 2021). Deng et al.

(Deng et al., 2020) applied DNN-based image detection to stubble

images as a means of counting the tillers. However, this method

requires a destructive survey, making it difficult to track the

growth traits of the plants. The idea of counting tillers proposed

byWu et al. (Wu et al., 2021) is almost the same as that developed

by Deng et al., except that the images are obtained using micro-

CT. Unfortunately, micro-CT is too expensive to be widely used.

Different from these methods, the proposed requires only an RGB

image to estimate the tiller numbers. Therefore, it is suitable for

easy and high-throughput phenotyping.

1.1.2 Image-based plant phenotyping
using DNNs

The most common task for DNN-based individual

phenotyping is leaf counting because an image dataset of

Arabidopsis thaliana was released (Minervini et al., 2016). The

dataset has since been used in the development of many methods

(Aich and Stavness, 2017; Ubbens et al., 2018; Ward et al., 2018).

However, the dataset has few image data in which the number of

leaves is identified. Therefore, techniques that artificially

increase the number of data using data synthesis based on

plant models have been proposed, enabling DNNs to be

applied to small sets of labeled data (Ubbens et al., 2018;

Ward et al., 2018). This data synthesis approach cannot be

easily applied to tiller number estimation because the structure

of grass plants is too complicated to model.

In addition to counting the leaves of Arabidopsis thaliana,

many traits have been estimated using DNNs. Roots are another
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typical subject for trait estimation using DNN-based image

analysis. For example, segmentation algorithms for root

regions (Han and Kuo, 2018; Wang et al., 2019; Gaggion et al.,

2021) and root structure analysis based on the characterization

of roots (Wu et al., 2018; Yasrab et al., 2019) have been proposed.

Certain traits of wheat, which is a member of the grass plant

family, have also been estimated, such as the number of spikes

and spikelets (Pound et al., 2017) and the emergence and

biomass (Aich et al., 2018).
1.1.3 Pretext tasks
Various pretext tasks have been proposed. For example,

colorizing images (Zhang et al., 2016), solving jigsaw puzzles

(Noroozi and Favaro, 2016), predicting image rotations (Gidaris

et al., 2018), and counting the number of objects within an image

(Noroozi et al., 2017) have been used for representation learning.

The learned representations are used for image segmentation,

image recognition, and object recognition.

In establishing the proposed method, we set some pretext

tasks for tiller number estimation according to these previous

methods. The application of pretext task means that tiller

number estimation can be conducted using DNNs, even if few

labeled data are available.
2 https://doi.org/10.6084/m9.figshare.1272859.v12

3 https://plantcv.danforthcenter.org/pages/data-sets/2013/setaria_

burnin2.html.
2 Materials and methods

We explain how the proposed method estimates the tiller

number from an image. We adopt regression-based estimation

for tiller counting, as in conventional image-based tiller number

estimation methods (Fahlgren et al., 2015; Boyle et al., 2016).

This is because regression-based estimation is more practical

than the detection-based method. For examples, in the leaf

counting task of Arabidopsis thaliana, regression-based

method show better accuracy than the object-detection-based

method Ubbens and Stavness (2017), and many regression-

based method have been proposed Giuffrida et al. (2015);

Dobrescu et al. (2017); Aich and Stavness (2017). Tillers have

a similar appearance to leaves, and so it is hard to detect tillers

from images. Moreover, the tillers become too dense to detect as

the plant grows. Therefore, we adopt a regression-based method.

The proposed method consists of two parts: feature learning

and estimating the tiller numbers. Figure 1 shows an overview of

the feature learning part. The VGG-16, which is one of the most

popular DNN models, is pretrained on the ImageNet

classification task and pretext tasks. After pretraining, fully

connected layers are discarded and new ones are prepared

according to the tasks. Although it is common to use the

ImageNet dataset for pretraining (Figure 1A), we use images

without tiller number labels on the pretext tasks (Figures 1B–D).

The labels on the pretext tasks were acquired automatically by

image processing. Figure 2 shows an overview of the tiller
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number estimation part. In the tiller number estimation, the

features are extracted by the trained networks, which purged the

FC layers. The dimensionality of the feature is 4096. The tiller

numbers are estimated by regression; the features tiller numbers

are used as an independent and dependent value, respectively. A

small number of images with tiller numbers are used for training

the regression model of tiller number estimation. Image

resources and processing, the pretrained model, pretext tasks,

and regression models are now described in detail.
2.1 Image resources and processing

We used the dataset that appears in Gehan20152,3 The first

row in Figure S1 shows some examples of the dataset. The

dataset contains 25,570 images of potted Setaria taken from

the side in a controlled laboratory environment. The species of

the Setaria are S. viridis (A10), S. italica (B10), and eight RILs

(RIL020, RIL070, RIL098, RIL102, RIL128, RIL133, RIL161,

RIL187) from an S. viridis × S. italica population. We used

side-view whole plant images in the dataset. The images are in

RGB color, and the image resolution is 2,454 × 2, 056 pixels. In

the dataset, 576 images have tiller numbers that were counted

manually. Thus, there are 24,994 unlabeled images that have no

tiller number. Many of the unlabeled images were taken at the

same time as the labeled images. To avoid mixing unlabeled data

that are similar to the labeled data, we only used the 22,110

unlabeled images that were not taken at the same time as the

labeled images. There are some images in which plants stick out

from the frame in the dataset.

We normalized the images before the experiments. The

magnification of the images was artificially determined

according to the plant growth degree. As the first row of

Figure S1 shows, the pot size and the background differ

depending on the plant size. If such images were used for

learning, the network may learn features that focus on changes

in the pots and backgrounds. To avoid the network focusing on

parts unrelated to the plants, we normalized the images. We

executed the normalization in a semi-automatic manner: We

sampled an image from each magnification and manually

cropped a rectangle area that included the whole plant area to

remove the background. Because all plants were in pots of the

same size, the images were resized so that the pot size was the

same. After removing the background, we manually

determinated the upper part of the pot in the cropped image.

The cropped image was translated to place the center of the pot

in the center of the image and resized the cropped image because
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the pot size was 32 pixels. The images were padded with white

pixels to make the images square for input to the network.

Finally, the size of the image is 224 × 224 pixels. The rest of the

images were automatically cropped in the same area, translated

by the same amount, and scaled to the same size as the sample

image. We confirmed that all plant areas were not cut off in the

normalized images. All procedures were performed using

OpenCV, and we used the bicubic method for pixel

interpolation when the images were resized. There were no

images that some parts of larger plants are out of the frame

caused by the normalization.

We used the 22,110 unlabeled images for the training of the

pretext tasks and the 576 images which has tiller numbers for

evaluating tiller number estimation. The unlabeled images did

not overlap with the labeled 576 images.
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2.2 Feature extraction

2.2.1 Pretrained model
A sufficient number of labeled data for training is required

for a DNN to achieve good performance. However, it is often the

case that a sufficient number of labeled data are not available. A

typical solution is to use a pretrained model. Usually, a

pretrained model is trained on a large dataset, such as the

ImageNet dataset (Deng et al., 2009), in a classification task.

The use of the pretrained model is considered reasonable from

the observation that a DNN trained on a large dataset in a task

extracts effective features in a different task.

There are some standard DNNs used in the field of computer

vision. One of such DNNs is the VGG model (Simonyan and

Zisserman, 2015). Compared to ResNet He et al. (2016), another
D

A

B

C

FIGURE 1

We use four feature training methods. Figure 1A shows a typical supervised training method, which uses the ImageNet dataset. The dataset
consists of 1000 classes; thus the output layer (the last fully connected (FC) layer) of the network consists of 1000 elements. The DNN model is
trained by updating the parameters in order to reduce the error between the output of the DNN and the ground truth. We use a pretraining
model available on the web. Figures 1B–D show self-supervised methods using pretext tasks; they use 8-class classification, 4-class
classification, and regression tasks. Hence, their last layers consist of eight, four, and one element, respectively. The pretext tasks in the
proposed method estimate the area or aspect ratio of the plant within the input image. The images for training are unlabeled with the tiller
numbers. The ground truth of the area and aspect ratio of the plant within the image are calculated by using image processing beforehand.
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standard DNN, GG is simple and easy to train. Although ResNet

often achieves better performance in a complex task with a lot of

labeled data for training, VGG often performs equivalently in a

simple task with less labeled data. Since our task is simple, we use

the 16-layer VGG model, which is called VGG-16.

2.2.2 Pretext tasks
As mentioned in Section 1, it is redimpractical to learn the

feature expression from the tiller number estimation task

directly because of the shortage of labeled training data. Thus,

we use pretext tasks to learn the feature expression, and estimate

the tiller number using the learned features.

The VGG-16 model (Simonyan and Zisserman, 2015) is

trained using pretext tasks that predict appearance related values

acquired automatically from a plant image. As shown in

Figure 1, we set two pretext tasks: estimating the area of a

plant within an image and estimating the aspect ratio of a plant.

We consider the area and aspect ratio because they were used as

the dependent variables for estimating the tiller numbers in a

previous study (Fahlgren et al., 2015) and are expected to

provide good feature expressions for tiller number estimation.

We investigate two methods of estimating the area or aspect

ratio of the plant within an image in the pretext tasks: the area or

aspect ratio themselves and the discretized area or aspect ratio.

When estimating the area or aspect ratio itself, as shown in

Figure 1D, the network is trained so that the output is the area or

aspect ratio. We call the pretext task that estimates the value

itself “regression task,” because in this case, the pretext task can
Frontiers in Plant Science 05
be regarded as a regression task with the image as the

independent value and the continuous values of area and

aspect ratio as the dependent values. In the case of estimating

discrete area or aspect ratio, instead of outputting a numerical

area or aspect ratio, the network predicts the discretized area or

aspect ratio of the plants in the input image, as shown in

Figures 1B and C. Therefore, predicting discrete area or aspect

ratio is equivalent to classification. We call the pretext task

estimating the discretized values “classification task.”

We conducted network training on the pretext tasks using

the normalized images. The ground truth of the pretext tasks was

calculated automatically using image processing. Following the

“Single plant RGB image workflow” in the PlantCV tutorial4, the

normalized images were translated into HSV and Lab images,

and thresholding was applied to the saturation component of the

HSV images and the a and b components of the Lab images.

The plant area was then segmented by taking the logical sum of

the threshold results. The area and aspect ratio were calculated

from the segmented plant area. All processes were conducted

using PlantCV 5. The images were divided into four or eight

classes in the classification task according to the area and aspect

ratio values, respectively. The images were divided so that the

number of images in each class became the same.
A

B

FIGURE 2

We propose two tiller number estimation methods using different regression models: support vector regression (SVR) and linear regression (LR).
Both methods use the pretrained DNN model in Figure 1; more specifically, we use the pretrained the VGG-16 model. In both methods, a plant
image taken from the side is used for estimating the number of tillers. In SVR, a 4096-dimensional feature is extracted from the input image
using the pretrained DNN. The parameters of SVR are estimated using features extracted from labeled images; the features and tiller numbers
are used as independent and dependent values, respectively. In LR, a new FC layer consisting of an element is prepared. Using labeled images,
the DNN is trained. Then, the DNN outputs an estimated tiller number for an input unlabeled data.
frontiersin.org

https://plantcv.readthedocs.io/en/stable/tutorials/vis_tutorial/
https://plantcv.danforthcenter.org/
https://doi.org/10.3389/fpls.2022.1016507
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kinose et al. 10.3389/fpls.2022.1016507
The network was trained to predict the class to which the

input image belongs. In the regression task, the network was

trained to predict the area or aspect ratio of the input images.

Both tasks used 80% of the images for training and 20% of the

images for testing. The network used for training was the VGG-

16 model pretrained by the ImageNet dataset. The mini-batch

size, learning rate, and epochs for the training were set as 128,

0.0001, and 200, respectively. We applied horizontal and vertical

flip data augmentation. We trained the network 12 times with

the above condition and adopted the model that gave the lowest

training error for tiller number estimation. We used the Keras

TensorFlow2 backend to execute the training process.
2.3 Tiller number estimation

We use two regression models to estimate the tiller numbers,

namely support vector regression (SVR) and linear

regression (LR).

SVR involves the application of a support vector machine to

regression. The most significant advantage of SVR is that it deals

with nonlinear regression problems through the same

framework as linear SVR. In SVR, a feature space can be

mapped to a space of much higher dimension using a kernel

function. When the kernel function is nonlinear, SVR can deal

with nonlinear regression problems. Moreover, SVR can learn

from small-sized datasets. Hence, we apply SVR to tiller

estimation. Specifically, we extract features from labeled

images using the models described in Sections 2.2.1 and 2.2.2,

and then apply SVR.

We also use linear regression (LR) for the estimation task. LR

is one of the simplest regression methods and is equivalent to a

fully connected neural network without a hidden layer. Because

it is easy to implement LR with methods using DNN-based

features, we apply LR for the estimation task. As with SVR, we

learn the LR model using the features extracted from

labeled images.

We estimated the tiller number using the features extracted

by pretext-task-trained and ImageNet pretrained models. In the

case of SVR, we used scikit-learn6 for the implementation, which

is one of the most popular machine learning libraries for Python.

The radial basis function was used as the kernel. The cost

parameter C and parameter ϵ were set to 100 and 1.0,

respectively, and default values were used for the other

parameters. LR was implemented by adding two fully

connected layers to the VGG-16 model. We then trained only

the added layer while freezing VGG-16.
6 https://scikit-learn.org/stable/
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3 Results

3.1 Tiller number estimation

We executed the proposed tiller number estimation using

features extracted by models trained by pretext tasks and the

pretrained model to reveal the difference between the feature

extraction models. We used six-fold cross-validation to calculate

the accuracy of the tiller number estimation. That is, the images

were divided into six groups and the regression models were

trained with five groups and validated with the remaining group.

This process was repeated until all groups had been used for

validation. The accuracy of the model was calculated by taking

the average of each of the six cross-validation tasks. We adopt

the mean absolute error (MAE) to evaluate the accuracy of the

proposed method. We used the GPU, NVIDIA TITAN RTX, for

training the network with the pretext tasks, and the CPU server,

which has Opteron 6348 CPU (2.8GHz) and 512GB memory for

estimating the tiller numbers. We also executed the conventional

method proposed in Fahlgren2015 on the same CPU server.

For fare comparison, we executed the method proposed by

Fahlgren et al., 2015 with the dataset we used. Fahlgren et al.,

2015 estimated plant fresh weight using plant area on an original

image by the following equation.

Mfw = 3:755� 10−5Asv − 0:2704 (1)

Mfw, Asv are estimated plant fresh weight and area of the

plant in an image, respectively. Then, the tiller number was

estimated by using the estimated fresh weight and aspect ratio of

the plant in the image as follows:

TC = 0:22Mfw − 2:19HW + 5:26, (2)

TC,HW are the tiller number and aspect ratio of the plant in

the image. We cannot directly apply the equations as we resized

the original images. Therefore, we estimated the parameters in

eq 1 using images with fresh weight. The original dataset we used

in this paper(https://figshare.com/articles/dataset/DDPSC_

Phenotyping_Manuscript_1_Files/1272859) has 158 images

that have fresh weight. We normalized the images in the same

manner as other images used for the experiments and estimated

the parameter of eq. 1. We estimated the parameter 2, and

evaluated the accuracy of the equation with the same 576 images,

which have tiller numbers, as the proposed methods were

evaluated using six-fold cross-validation. The estimated

parameters of eq. 1 are as follows:

Mfw = 0:005790Asv − 0:3372: (3)

The coefficient of determination of eq. 3 R2 was 0.9589. The

estimated parameters of eq. 2 are as follows:

TC = 0:1786Mfw − 1:1102HW + 3:885 (4)
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Table 1 presents the MAE when using SVR and LR to

estimate the tiller numbers. The total running time for

estimation per image was 98, 191, and 0.6 ms when using LR

with the proposed method, SVR with the proposed method, and

(Fahlgren et al., 2015), respectively. We also evaluated the

standard error and 95% confidence interval of the estimation,

as shown in Figure 3.
3.2 Individual estimation results

The measured tiller number (horizontal axis) and estimated

tiller number (vertical axis) are compared in Figures 4, 5

for the cases using SVR and LR for til ler number

estimation, respectively.
4 Discussion

This proposed method is the first attempt to apply self-

supervised learning using pretext tasks for plant phenotyping, as

far as we know. Plant datasets have insufficient labeled data for

applying DNNs. The proposed semi-supervised method for

estimating the number of tillers requires only a few labeled

data. Therefore, the proposed method show good estimation

accuracy. The best MAE of 0.57 is achieved when the area

regression is used for the pretext task and LR is used to predict

the tiller numbers. The MAE by Fahlgren et al. (Fahlgren et al.,

2015) was 1.187. Note that it is not possible to make a general

comparison because of the different image usage conditions and

because Fahlgren et al. (Fahlgren et al., 2015) used a different

number of images to that in the dataset (Gehan et al., 2015).

However, it appears that the proposed method achieves good

accuracy. The proposed method show good estimation accuracy.

The best MAE of 0.57 is achieved when the area regression is

used for the pretext task and LR is used to predict the tiller

numbers. The MAE by Fahlgren et al. (Fahlgren et al., 2015) was

1.187. Note that it is not possible to make a general comparison

because of the different image usage conditions and because

Fahlgren et al. (Fahlgren et al., 2015) used a different number of
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images to that in the dataset (Gehan et al., 2015). However, it

appears that the proposed method achieves good accuracy.

To clarify the effect of feature learning in the pretext tasks,

we compared the accuracy of the pretext tasks and pretrained

models. Many of the pretext tasks resulted in higher accuracy

than using the pretrained model. Therefore, learning features

using pretext tasks contributes to improving the accuracy of

estimating tiller numbers.

The tiller number estimation accuracy depends on the trait

estimated in the pretext task. The tiller number estimation

accuracy is better when the area is used in the pretext task

than when the aspect ratio is used. Therefore, the features

learned in the pretext task using the area are more effective for

tiller estimation than those learned from the aspect ratio.

The pretext task that gives the better tiller number

estimation accuracy also depends on the tiller number
TABLE 1 MAE of estimation results when using SVR and LR.

Pretext task

Area Aspect ratio

Reg. model Pretrained 4 cls. 8 cls. Reg. 4 cls. 8 cls. Reg.

(r)1-1(r)2-8 SVR 0.80 0.74 0.78 0.91 0.73 0.73 1.00

LR 0.79 0.74 0.71 0.57 0.96 1.06 0.62

“Reg. model” stands for the regression model used for tiller number estimation. “Reg.”, “4 cls.”, “8 cls.” in the pretext task stands for Regression task, 4 class classification task, and 8 class
classification task, respectively.
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estimation method. When SVR is used, the application of

classification in the pretext task results in better accuracy than

regression. In contrast, when LR is used, the application of

regression in the pretext task achieves better accuracy

than classification.
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There is clearly a different tendency when SVR and LR are

used for tiller number estimation. As shown in Figure 4A, when

the pretrained model features are used with SVR, the estimated

tiller number is substantially underestimated when the measured

tiller number is high. In Figures 4B, C, E, F, orange dots are
D

E

A B

F G

C

FIGURE 4

Experimental results using SVR for tiller number estimation. Horizontal and vertical axes represent the measured and estimated tiller numbers,
respectively. Each red dot denotes a sample for the estimated tiller number. The black line indicates the case where the measured and
estimated data match. Therefore, the closer the points are to the black line, the more accurate is the estimation.
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FIGURE 5

Experimental results using LR for tiller number estimation. The contents of the graph are the same as in Figure 4.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1016507
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kinose et al. 10.3389/fpls.2022.1016507
distributed close to the diagonal lines. This means that the

accuracy of the tiller number estimation improves for samples

with larger tiller numbers when the features learned by

classification tasks are used, compared with pretrained model

features. Thus, using classification for the pretext tasks improves

the tiller number estimation accuracy. However, when using

regression for the pretext tasks, the estimation accuracies are

worse than those with the pretrained model. In particular, as

shown in Figures 4D, G, orange dots are plotted in the rightmost

of the figures [approximately 9 to 12 of measured (horizontal

axis)],. This means that the estimation results for samples with

larger tiller numbers are worse than those using the

pretrained model.

When regression and LR were used for the pretext task and

tiller number estimation, respectively, dots are close to the

diagonal line, as shown in Figures 5D, G. This means that the

estimation accuracy improves for all samples. In particular,

comparing the pretrained model with the regression pretext

tasks, the top right dots of regression pretext tasks is more close

to the diagonal lines. This means that the accuracy is enhanced

for samples with large measured tiller numbers. In contrast, as

shown in Figures 5B, C, E, F, dots are vary widely from the

diagonal lines. This means that when the features learned by the

classification task are used, the estimation accuracy is the same

or worse than that of the pretrained model. When the aspect

ratio is used for the classification task, the estimation accuracy

becomes worse, with the estimated tiller numbers consistently

lower than the measured values.

We used images which are taken well-controlled lab

environment and taken separately. Therefore, the proposed

method would work well on images taken in a similar

environment but not on images taken in a different

environment. For example, if the images were taken in the

field, multiple plants would appear in the images. In this case,

we need to recognize the individual plants and apply the

proposed method to each plant. However, when the plans are

crowded, recognizing individual plants in side-view images is

difficult for current image recognition. Thus, the proposed

method is hard to apply to the images taken in the field.

However, some improvements would make the proposed

method applicable to the images taken in some different

environments. When the images were taken under different

lighting conditions, we can apply the proposed method to the

images by adding the different lighting condition images for

training the network and the regression model for estimating

tiller numbers. When using the images taken with noisy

backgrounds, we can apply the proposed method by using a

plant detection method such as Amean et al., 2021 to delete the

noisy background.

In future work, we will use other pretext tasks to learn the

feature representations. The mechanisms of the pretext tasks

remain obscure, and it is not known what kinds of pretext tasks
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are most effective for a given object task. Therefore, we will

attempt to determine the most appropriate pretext task for the

object task by trial and error. We also plan to apply the proposed

method to other grass plant family such as wheat and rice.

Additionally, we will apply the proposed method to other

plant phenotyping tasks. The proposed method assumes that few

labeled training data are available. This is typically true of plant

phenotyping tasks because many appearance traits are measured

manually. We expect that the proposed method will be helpful in

automating the measurement of various traits.
5 Conclusion

This paper has proposed a DNN-based tiller estimation

method that achieves improved performance compared with

conventional methods. The proposed method uses two separate

models for feature extraction: a pretrained VGG-16 model and a

model produced by solving pretext tasks. We considered both

SVR and LR to estimate the tiller numbers. Experimental results

show that the pretrained model and the model based on pretext

tasks allow the proposed method to outperform the

conventional approach.
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