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of compounds from essential
oils and their effect on
detoxification enzymes against
Planococcus lilacinus
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Mealybug, Planococcus lilacinus Cockerell, is a primary surface-feeding insect

pest of fruit and flowering plants and also transmits plant viruses, resulting in

economic crop loss. Inappropriate and recurrent use of pesticides for

mealybug control results in resistance building and deleterious effects on

humans and the environment. Essential oils are the most excellent choice for

insecticides. Insecticidal activities of pure compounds of essential oils against

P. lilacinus are not reported. The present study aims to study the insecticidal

activities of some pure active compounds and their binary mixture’s action by

topical application against P. lilacinus. Results showed that the pure

compounds of L-limonene, b-myrcene, and ocimene revealed toxicity (each

at LD50 = 0.37 µg/insect) after 96 h. The binary mixtures of geraniol + L-

menthol and L-limonene + geraniol exhibited synergistic effects (each at

LD50 = 0.03 µg/insect) after 96 h. The monoterpenes of ocimene and b-
myrcene at the higher concentration of 5,000 ppm substantially inhibited the

detoxification enzyme activities of AChE (0.93 and 0.78 mU/mg, respectively)

and GST (2.19 and 7.29 nmol/min/ml, respectively) in P. lilacinus after 48 h. SEM

analysis reported the significant anomalies on the morphology of abdominal

cuticle, setae, and thoracic leg after 96-h treatment with ocimene at 1,250 ppm

against P. lilacinus. Based on the results, the tested pure compounds and their

combinations can be suggested for the control of mealybugs.
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Introduction

Mealybug, Planococcus lilacinus Cockerell (Hemiptera:

Pseudococcidae), is a major surface-feeding pest of many fruits

and flowering plants (Huang et al., 2021; Ren et al., 2022). It is

also regarded as a major pest that causes severe damage to

various commercially significant crops, including citrus,

coconut, coffee, custard apple, dragon fruit, guava, grape,

mango, and tamarind, leading to significant economic yield

loss (Nguyen et al., 2016). Adults and crawlers can be found in

the leaf nodes, flower sepals, and tree trunk crevices, easily

carried through global trade. P. lilacinus infestations are

indicated by stunting, yellowing, distortion of leaves,

defoliation, clumping of shoots, thickening of stems, and

transmission of plant viruses. Moreover, the honeydew of P.

lilacinus released on the leaves promotes the development of

black sooty molds, obstructing photosynthesis and lowering the

crop yield of sugar apples (Jahn, 1993). The outer layer of P.

lilacinus is extensively coated with wax constituted by the lipids

that make them difficult to control.

The current management of mealybug control is being

carried out using a broad spectrum of synthetic pesticides of

various types. However, the indiscriminate and recurrent use of

pesticides against the mealybugs is unsustainable due to

environmental degradation, biodiversity loss, and resistance

development (Fouad et al., 2016). However, studies have

reported mealybugs with the resistance development to many

well-known classes of pesticides, including avermectins,

carbohydrazide , cyc lodiene , IGRs, neonicot inoids ,

organophosphates, oxadiazine, and pyrethroids in recent times

(Saddiq et al., 2014; Nagrare et al., 2020). Owing to the adverse

impact of the chemical pesticides on the public and the

environment, an immediate replacement is required to

successfully control the mealybugs. Plant-derived botanical

agents such as extracts and essential oils from non-host plants

with repellent, antifeedant, and toxicant properties may be

considered as a better alternative for chemical pesticides for

the control of pests (Regnault-Roger et al., 2012).

Several plant-derived essential oils of Acorus calamus, Aegle

marmelos, Cedrus deodara, Mentha piperita, Mentha spicata,

Murraya koenigii, and Tagetus minuta were reported to have

insecticidal activities against various insect pests in previous

studies (Reddy et al., 2016; Jayaram et al., 2022a). Additionally,

the homogeneous or heterogeneous blends of essential oils also

revealed that the insecticidal activities against various species of

mealybugs, including Pseudococcus calceolariae (Tacoli et al.,

2018), Planococcus citri (Cloyd et al., 2009; Erdemir and Erler,

2017), Planococcus ficus (Karamaouna et al., 2013; Peschiutta

et al., 2017; Tacoli et al., 2018; Brahmi et al., 2022), Pseudococcus

longispinus (Hollingsworth and Hamnett, 2009; Tacoli et al.,

2018), Paracoccus marginatus (Mwanauta et al., 2021),

Planococcus minor (Prabowo and Damaiyani, 2019),
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Phenacoccus solenopsis (Mostafa et al., 2018; Saad et al., 2021),

and Pseudococcus viburni (Ramzi et al., 2017) have been

reported earlier. Essential oils often consist of a mixture of

different biological compounds or phytochemicals with varied

polarity, and separating them is still a significant challenge

(Sasidharan et al., 2011). Henceforth, pure compounds

commercially available have been widely used to study the

insecticidal activities. To our knowledge, the toxicity of pure

compounds from the plant essential oils against P. lilacinus is yet

to be studied. Hence, exploring some plant-derived pure

compounds from the various essential oils is possible in the

present investigation to minimize the reliance on chemical

pesticides and mode of action to control mealybugs. Based on

this context, the primary objectives of this study are to

investigate the selected pure compounds and their

combinations for their toxicity, synergistic and detoxification

enzyme inhibition activities, and morphological changes against

the crawlers of P. lilacinus to find the inevitable lead(s) for

botanicals production.
Materials and methods

Chemicals

Phytochemicals such as 1-cyclohexyl-2-pyrrolidone,

camphene, cinnamaldehyde, citral, geraniol, L-carvone, L-

limonene, L-menthol, b-myrcene, ocimene, a-terpinene, and
b-terpinene (Figure 1) and other essential chemicals were

purchased from Sigma-Aldrich Chemicals Pvt. Ltd., India.
Experimental insect maintenance

P. lilacinus were collected from the outdoor area and

consistently reared on live tobacco plant, Nicotiana tabacum

L., in the insectary unit of Agrotechnology Division, CSIR-IHBT,

Himachal Pradesh, under regulated temperature (25 ± 2°C),

relative humidity (60 ± 5%), and a 16:8 light–dark environment

for several generations. The fresh second instar crawlers were

used for toxicity bioassays.
Comparative toxicity of pure compounds

The toxicity of pure compounds such as 1-cyclohexyl-2-

pyrrolidone, camphene, cinnamaldehyde, citral, geraniol, L-

carvone, L-limonene, L-menthol, b-myrcene, ocimene, a-
terpinene, and b-terpinene was initially evaluated against the

second instar crawlers of P. lilacinus as per the standard topical

application method (Machial et al., 2010) for LD50 determination.

The commercially available botanical formulation (Neem Baan
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contains azadirachtin 1,500 ppm) for the control of sucking pests

was used as a positive control for comparison. Briefly, five

different concentrations (5,000, 2,500, 1,250, 625, and 312.5

ppm) of pure compounds and Neem Baan were prepared by

blending each compound in 0.05% Tween-80. One microliter of

sample was administered using a Hamilton micro-syringe with a

repeating dispenser dorsally to each of 10 second instar crawlers of

P. lilacinus. Treated crawlers were then transferred to tea leaf discs

(3 cm2) in each Petri plate, pressed on top of the water-agar

medium to preserve the greenness of leaf discs. Five replications

were maintained for each treatment and kept under controlled

conditions for observations. The mortality of the crawlers was

documented after 24, 48, 72, and 96 h of treatment.
Toxicity of binary mixtures of
pure compounds

Based on the toxicity study, the blends/mixtures of pure

compounds such as ocimene + b-myrcene, ocimene + L-

limonene, ocimene + geraniol, ocimene + L-menthol, b-
myrcene + L-limonene, b-myrcene + geraniol, b-myrcene + L-

menthol, L-limonene + geraniol, and geraniol + L-menthol were

prepared in five concentrations and proportions, as a 1:1 ratio of

their individual LD50 values, for the bioassay and synergistic

activity against P. lilacinus in the lab environment. Samples were

prepared and administered against the second instar crawlers of

P. lilacinus as mentioned above. Each treatment was performed

using five replications, and the mortality of the crawlers was

documented at 24, 48, 72, and 96 h after treatment for the

combined compounds to calculate the LD50 and cotoxicity

coefficient (CTC) values (Sun and Johnson, 1960). The CTC

was determined by the following equation: CTC = [LD50 of

compound/LD50 of the compound in a combination] * 100. If
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the combination provides a CTC greater than 100, a synergistic

action is exhibited; CTC less than 100, individualistic action; and

CTC equal to 100, similar action.
Detoxification enzyme inhibition of pure
compounds against P. lilacinus

Sample preparation
Inhib i t ion act iv i t ies of detoxificat ion enzymes

[acetylcholinesterase (AChE) and glutathione-S-transferase (GST)

were carried out using standard procedures (Chauhan et al., 2022).

Based on the toxicity assay report, four different concentrations of

ocimene and b-myrcene (5,000, 2,500, 1,250, and 625 ppm) were

prepared for detoxification enzyme inhibition activity. After 24 and

48 h of treatment, 20 mg of survived crawlers was taken for each

concentration and was subjected to detoxification enzyme

inhibition analysis. The crawlers for each concentration were

collected in the centrifugation tube and subjected to

homogenization using phosphate buffer (0.1 M; pH 7.4) at a 1:9

ratio in the micropestle (Tarsons). The homogenate was then

promptly shifted to fresh tubes under ice bath conditions and

centrifuged at 12,000 rpm for 30 min at 4°C. The clear supernatant

was taken for storage at −20°C for subsequent enzyme studies.

Protein estimation
xProtein estimation was analyzed following the standard

protocol (Bradford, 1976) before proceeding with the

detoxification enzyme inhibition assay. Briefly, adding 5 µl of

treated and untreated mealybug homogenates (obtained from

each concentration) with 35 µl of MilliQ water in 160 µl of

Bradford reagent in triplicate followed by the average values was

carried out for protein estimation. The blend was incubated at

room temperature (RT) for 15 min. After incubation, the optical
FIGURE 1

Some active pure compounds from essential oils.
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density was read at 595 nm, and the protein content in the

sample was estimated. Finally, the dilutions of the homogenates

were prepared with respect to lower protein concentrations for

the enzyme inhibition studies.

Acetylcholinesterase assay
Twenty-five microliters of diluted mealybug homogenates

(control and test) mixed with 25 µl of the reaction mixture that

contains 50 µl of acetothiocholine and 50 µl of DTNB in 900 µl

of assay buffer was incubated in triplicate at RT for 30 min. The

AChE activity was evaluated spectrophotometrically at 410 nm

in a microplate reader (SYNERGY H1 Hybrid Multi-Mode

reader, Biotek) and represented as milliunits per milligram of

protein (mU/mg). The AChE Kit was purchased from Abcam,

UK, for AChE determination.

Glutathione-S-transferase assay
The total volume of 100 µl reaction mixtures was prepared

by adding 10 µl of mealybug homogenates (control and test) to

75 µl of GST sample buffer, 10 µl of GST glutathione, and 5 µl of

GST CDNB (initiator) in triplicate. These reaction mixtures

were incubated at RT in a 96-well microplate. The enzyme

kinetics were measured at the absorbance of 340 nm at 37°C for

20 min in a microplate reader with continuous mixing for 10 s

after 60 s of lag time. The extinction coefficient of 0.0096 µM−1

for CDNB was used to calculate the glutathione S-transferase

activity and represented as nanomolar per minute per milliliter

of sample (nmol/min/ml). The GST Assay Kit was purchased

from Cayman Chemical, USA, for GST determination.
Scanning electron microscopy analysis of
P. lilacinus

The treated and control samples of P. lilacinus after 72 and

96 h with ocimene (1,250 ppm) were fixed in 2.5%

glutaraldehyde fixative solution in PB (0.1 M; pH 7.2) for 2 h,

followed by washing and air drying. After that, the samples were

subjected to dehydration using 30%–100% of ethanol solutions

for 15–20 min each and fixed on aluminum stubs using dual-

sided sticky carbon tape. Samples were then subjected to gold

sputter coating (MC1000 ion sputter Hitachi, Japan) for 10 s,

maintaining 10 Pa vacuum pressure. SEM images were obtained

(SU 3900 Hitachi, Japan) at the appropriate resolution for

surface morphological characteristics studies (Kanturski et al.,

2015; Jayaram et al., 2022b).
Statistical analysis

The mortality data of P. lilacinus based on the comparative

toxicity of pure and combined compounds were organized. The
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median lethal dose (LD50) and other regression parameters were

estimated by Probit analysis (Finney, 1971) in SPSS V.19.0. The

percent mortality data for P. lilacinus were also determined

using multivariate analysis of variance, and the mean values were

determined by Tukey’s post-hoc test to find out the related

significance between the tests. The requirements for

homogeneity and normality of variance test for multiple

factors and data modifications were not necessary.
Results

Toxicity of different compounds against
P. lilacinus

The toxicity effect of different compounds including 1-

cyclohexyl-2-pyrrolidone, camphene, cinnamaldehyde, citral,

geraniol, L-carvone, L-limonene, L-menthol, b-myrcene,

ocimene, a-terpinene, and b-terpinene was scrutinized, and the

nymphal mortality data of second instar crawlers of P. lilacinus

after 24, 48, 72, and 96 h of treatment are presented in Table 1. All

the topically tested compounds exhibited toxicity effects and

resulted in mortalities. Among the various compounds, L-

menthol was found to be more effective (LD50 = 1.88 µg/insect)

against P. lilacinus after 24 h, followed by L-limonene (LD50 = 2.06

µg/insect), geraniol (LD50 = 3.32 µg/insect), and ocimene (LD50 =

5.08 µg/insect) as compared to other compounds tested. Similarly,

after 48 h, L-limonene showed the most toxic effect (LD50 = 0.92

µg/insect), preceded by L-menthol (LD50 = 1.16 µg/insect),

geraniol (LD50 = 1.30 µg/insect), and cinnamaldehyde (LD50 =

1.78 µg/insect). Subsequently, after 72 h, L-menthol was seen to be

the most effective compound (LD50 = 0.44 µg/insect), followed by

b-myrcene (LD50 = 0.52 µg/insect), L-limonene (LD50 = 0.55 µg/

insect), and geraniol (LD50 = 0.65 µg/insect). Finally, the

compounds, such as L-limonene, b-myrcene, and ocimene,

exhibited their potency (each at LD50 = 0.37 µg/insect) after

96 h of treatment. Also, the positive control Neem Baan

(pesticide) caused the toxicity with LD50 values of 5.99, 3.21,

0.62, and 0.27 µg/insect for 24, 48, 72, and 96 h, respectively.
Combination of different compounds
against P. lilacinus

The combination of different compounds, viz., ocimene + b-
myrcene, ocimene + L-limonene, ocimene + geraniol, ocimene + L-

menthol, b-myrcene + L-limonene, b-myrcene + geraniol, b-
myrcene + L-menthol, L-limonene + geraniol, and geraniol + L-

menthol, at a 1:1 ratio of their 96 h LD50 concentration was tested for

the toxicity and synergistic activity against the second instar crawlers

of P. lilacinus between 24- and 96-h time intervals, and the results are
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TABLE 1 Toxicity of various compounds against the second instar crawlers of P. lilacinus.

Compounds Time (h) LD50 (µg/insect) CL (µg/insect) Slope ± SE Chi-square P-value

1-Cyclohexyl-2-pyrrolidone 24 6.94 4.31–17.63 1.28 ± 0.25 0.40 0.94

48 2.89 1.90–6.06 0.94 ± 0.20 0.07 1.00

72 0.71 0.42–1.02 1.03 ± 0.20 0.31 0.96

96 0.38 0.19–0.58 1.14 ± 0.22 0.68 0.89

Camphene 24 7.42 4.01–31.60 0.93 ± 0.22 0.77 0.86

48 3.28 1.99–9.33 0.80 ± 0.20 0.11 0.99

72 1.54 0.97–2.75 0.81 ± 0.19 0.33 0.96

96 0.92 0.49–1.47 0.80 ± 0.19 0.28 0.96

Cinnamaldehyde 24 7.06 4.07–23.17 1.05 ± 0.23 0.58 0.90

48 1.78 1.22–2.91 0.99 ± 0.20 1.38 0.71

72 0.72 0.50–0.94 1.42 ± 0.22 3.47 0.33

96 0.40 0.23–0.57 1.36 ± 0.23 2.19 0.53

Citral 24 8.37 4.60–32.47 1.05 ± 0.23 1.21 0.75

48 4.53 2.74–12.86 0.92 ± 0.21 0.03 1.00

72 1.77 1.23–2.86 1.01 ± 0.20 0.48 0.92

96 0.61 0.32–0.91 0.96 ± 0.20 0.12 0.99

Geraniol 24 3.32 2.26–6.31 1.11 ± 0.21 0.34 0.95

48 1.30 0.96–1.77 1.31 ± 0.21 1.34 0.72

72 0.65 0.43–0.88 1.29 ± 0.21 2.06 0.56

96 0.39 0.23–0.54 1.44 ± 0.24 2.24 0.52

L-carvone 24 5.97 3.72–14.95 1.17 ± 0.23 1.43 0.70

48 2.74 1.94–4.61 1.18 ± 0.21 3.46 0.33

72 1.27 0.87–1.90 1.02 ± 0.20 3.14 0.37

96 0.68 0.36–1.03 0.92 ± 0.20 2.04 0.56

L-limonene 24 2.06 1.43–3.44 1.02 ± 0.20 1.20 0.75

48 0.92 0.54–1.40 0.89 ± 0.20 0.31 0.96

72 0.55 0.29–0.82 1.00 ± 0.20 0.20 0.98

96 0.37 0.17–0.57 1.08 ± 0.21 0.23 0.97

L-menthol 24 1.88 1.35–2.88 1.14 ± 0.20 0.19 0.98

48 1.16 0.82–1.64 1.14 ± 0.20 1.06 0.79

72 0.44 0.21–0.67 1.04 ± 0.21 1.30 0.73

96 0.39 0.19–0.57 1.18 ± 0.22 1.33 0.72

b-myrcene 24 8.70 4.47–44.83 0.92 ± 0.22 0.22 0.97

48 1.98 1.32–3.55 0.92 ± 0.20 0.80 0.85

72 0.52 0.30–0.75 1.16 ± 0.21 0.21 0.98

96 0.37 0.22–0.51 1.54 ± 0.25 1.00 0.80

Ocimene 24 5.08 3.35–10.72 1.26 ± 0.23 1.28 0.74

48 2.70 1.97–4.21 1.32 ± 0.21 1.69 0.64

72 0.83 0.51–1.20 1.00 ± 0.20 2.27 0.52

96 0.37 0.16–0.57 1.03 ± 0.21 0.45 0.93

a-Terpinene 24 8.30 4.26–44.14 0.89 ± 0.22 0.02 1.00

48 2.17 1.47–3.83 0.97 ± 0.20 0.74 0.87

72 0.97 0.67–1.35 1.15 ± 0.20 0.57 0.90

96 0.53 0.31–0.75 1.19 ± 0.21 1.01 0.80

b-Terpinene 24 9.93 5.01–53.63 0.96 ± 0.23 0.29 0.96

48 2.87 1.56–14.07 0.61 ± 0.19 0.02 1.00

72 1.41 0.67–3.54 0.58 ± 0.19 0.13 0.99

96 0.80 0.32–1.35 0.69 ± 0.19 0.13 0.99

(Continued)
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shown in Table 2. All the tested combinations against P. lilacinus

revealed toxicity and synergistic effects. Among the multiple

combinations, geraniol + L-menthol showed a significant effect

(LD50 = 0.29 µg/insect), followed by L-limonene + geraniol

(LD50 = 0.35 µg/insect), ocimene + geraniol (LD50 = 0.87 µg/

insect), and b-myrcene + L-limonene (LD50 = 0.97 µg/insect) after

24 h. Subsequently, after 48 h, geraniol + L-menthol was found to be

amore effective combination (LD50 = 0.10 µg/insect), preceded by L-

limonene + geraniol (LD50 = 0.13 µg/insect), b-myrcene + geraniol

(LD50 = 0.33 µg/insect), and ocimene + geraniol (LD50 = 0.42 µg/

insect). Furthermore, 72-h treatment showed that geraniol + L-

menthol had a significant level of toxicity (LD50 = 0.05 µg/insect),

followed by L-limonene + geraniol (LD50 = 0.08 µg/insect), b-
myrcene + geraniol (LD50 = 0.18 µg/insect), and ocimene + L-

limonene (LD50 = 0.24 µg/insect). Eventually, the combinations such

as geraniol + L-menthol and L-limonene + geraniol at 96 h showed

remarkable toxicity efficiency (each at LD50 = 0.03 µg/insect).
Percent mortality of different
compounds against P. lilacinus

The toxicity of different compounds and concentrations against

P. lilacinus reflected in the percentmortality after 24, 48, 72, and 96 h

is summarized in Tables 3–6. The pooled mean (± SE) percent

mortality was found to be significantly different across the

compounds (F11, 299 = 18.44, 12.45, 11.58, and 9.92) and

concentrations (F4, 299 = 170.29, 189.09, 159.28, and 138.44) with

p < 0.0001 for 24, 48, 72, and 96 h, respectively. However, the mean

percent mortality was not significantly different (p > 0.05) between

the interaction of compounds and concentrations. Results showed

that, among different compounds, the pooled mean mortality was

significantly higher in L-menthol (42.80 ± 19.48), L-limonene

(54.40 ± 16.60), L-menthol (66.40 ± 17.05), and b-myrcene (74.80

± 19.82) after 24, 48, 72, and 96 h, respectively, in comparison to

other tested compounds. The pooled mean mortality was higher in

the highest concentration at 5,000 ppm (48.33 ± 1.17, 66.67 ± 1.27,

81.17 ± 1.43, and 88.33 ± 1.46 for 24, 48, 72, and 96 h, respectively)

as compared to other concentrations. The overall percent mortality

was superior in L-menthol (70 ± 7.07), geraniol (82 ± 8.37),

cinnamaldehyde (94 ± 5.48), and geraniol and b-myrcene (each at
Frontiers in Plant Science
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98 ± 4.47) against P. lilacinus after 24, 48, 72, and 96 h, respectively,

in contrast to the other remaining compounds.
Detoxification enzyme activities of
ocimene and myrcene against P. lilacinus

Detoxifying enzyme inhibition activities of ocimene and b-
myrcene (based on activity and feasibility) were carried out

against P. lilacinus after 24 and 48 h of treatment and are

presented in Figure 2. Data showed that all the concentrations of

ocimene significantly inhibited the AChE enzyme after 24 and

48 h (F4,14 = 69.39; p < 0.0001 and F4,14 = 221.70; p < 0.0001) in

P. lilacinus, as compared to the control. Similarly, all the

concentrations of b-myrcene highly inhibited the AChE

activity (F4,14 = 941.73; p < 0.0001 and F4,14 = 443.20; p <

0.0001), when compared to the control after 24 and 48 h. Among

different concentrations, ocimene at 5,000 ppm reported

significantly higher inhibition of AChE after 24 and 48 h of

treatment (1.08 ± 0.01 and 0.93 ± 0.01 mU/mg, respectively),

followed by 2,500 ppm (1.31 ± 0.03 and 1.25 ± 0.01 mU/mg) as

compared to other lower concentrations (625–1,250 ppm)

(Figure 2A). Similarly, b-myrcene at 5,000 ppm revealed

higher inhibition of AChE activity after 24 and 48 h (0.80 ±

0.01 and 0.78 ± 0.02 mU/mg, respectively), followed by 2,500

ppm (1.16 ± 0.02 and 0.80 ± 0.02 mU/mg), as compared to other

lower concentrations (Figure 2B). Correspondingly, for the GST

assay, all the concentrations of ocimene after 24 and 48 h also

substantially inhibited the GST activity (F4,14 = 13.32; p < 0.003

and F4,14 = 14.89; p < 0.0001) as compared to the control.

Similarly, all the concentrations of b-myrcene significantly

inhibited the GST activity (F4,14 = 195.04; p < 0.0001 and

F4,14 = 141.74; p < 0.0001) in contrast to the control. Among

concentrations, ocimene at 5,000 ppm exhibited higher

inhibition of GST after 24 and 48 h (4.40 ± 1.68 and 2.19 ±

0.64 mU/mg, respectively) and was preceded by 2,500 ppm (6.60

± 0.64 and 4.40 ± 0.64 mU/mg) than at lower concentrations

(625–1,250 ppm) (Figure 2C). Likewise, b-myrcene at 5,000 ppm

showed higher inhibition of GST after 24 and 48 h (9.37 ± 0.92

and 7.29 ± 1.20 mU/mg, respectively), followed by 2,500 ppm

(17.70 ± 0.92 and 14.58 ± 0.92 mU/mg), when compared to

lower concentrations (Figure 2D).
TABLE 1 Continued

Compounds Time (h) LD50 (µg/insect) CL (µg/insect) Slope ± SE Chi-square P-value

Neem Baan
(Azadirachtin 1,500 ppm)

24 5.99 3.26–25.93 0.49 ± 0.21 0.49 0.92

48 3.21 1.80–13.23 0.67 ± 0.19 0.43 0.94

72 0.62 0.07–1.27 0.51 ± 0.19 0.01 1.00

96 0.27 0.02–0.57 0.63 ± 0.01 0.77 0.86
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Scanning electron microscopy analysis of
P. lilacinus

The crawlers of P. lilacinus topically treated with the

ocimene altered the motility and eventually caused mortality.

The treated P. lilacinus exhibited several deformities on the

abdominal cuticle, setae, and thoracic leg after 72 and 96 h of

treatment. The P. lilacinus treated with ocimene after 72 and

96 h showed a color change from pale yellow to dark brown with

the accumulation of body fluids and thick encrustations on the
Frontiers in Plant Science 07
external surface. SEM experiments showed that the crawlers of

P. lilacinus with ocimene resulted in multiple habitus symptoms

based on the time interval given in Figures 3A–C. Figure 3A

represents the untreated P. lilacinus (control) with the distinct

structure of cuticle, legs, and setae without any deformities after

96 h of treatment, whereas the severe leg deformities, lack of

setae, and the abdominal cuticular damages were evidenced after

72 h (Figure 3B). P. lilacinus showed complete disintegration of

external habitus after 96 h (Figure 3C) as compared to

the control.
TABLE 2 Toxicity of various combined compounds against the second instar crawlers of P. lilacinus.

Compounds Time
(h)

LD50 (µg/
insect)

CL (µg/
insect)

Slope ±
SE

Chi-
square

p-
value

Cotoxicity coeffi-
cient

Interaction
type

Ocimene+
b-myrcene

24 1.63 0.60–41.55 0.89 ± 0.25 0.28 0.97 311.66 Synergistic

48 0.56 0.24–14.49 0.60 ± 0.20 0.01 1.00 482.14 Synergistic

72 0.26 0.14–1.56 0.61 ± 0.19 0.02 1.00 319.23 Synergistic

96 0.10 0.03–0.50 0.45 ± 0.19 0.03 1.00 370.00 Synergistic

Ocimene+
L-limonene

24 1.02 0.50–6.10 1.16 ± 0.27 0.49 0.92 498.04 Synergistic

48 0.50 0.27–2.00 0.91 ± 0.21 0.36 0.95 540.00 Synergistic

72 0.24 0.15–0.70 0.79 ± 0.20 0.29 0.96 345.83 Synergistic

96 0.13 0.07–0.26 0.72 ± 0.19 0.25 0.97 284.62 Synergistic

Ocimene+
Geraniol

24 0.87 0.45–4.14 1.13 ± 0.25 0.25 0.97 583.91 Synergistic

48 0.42 0.25–1.26 0.98 ± 0.21 0.76 0.86 642.86 Synergistic

72 0.31 0.17–1.31 0.73 ± 0.20 0.60 0.90 267.74 Synergistic

96 0.14 0.08–0.31 0.70 ± 0.19 1.80 0.62 264.29 Synergistic

Ocimene+
L-menthol

24 1.51 0.59–25.76 0.93 ± 0.25 0.08 0.99 336.42 Synergistic

48 0.75 0.32–12.10 0.70 ± 0.21 0.12 0.99 360.00 Synergistic

72 0.55 0.23–31.10 0.55 ± 0.20 0.01 1.00 150.91 Synergistic

96 0.15 0.06–3.71 0.44 ± 0.19 0.10 0.99 246.67 Synergistic

b-myrcene+
L-limonene

24 0.97 0.49–5.05 1.20 ± 0.27 0.15 0.99 896.91 Synergistic

48 0.66 0.29–10.63 0.68 ± 0.20 0.06 1.00 300.00 Synergistic

72 0.38 0.16–91.80 0.47 ± 0.19 0.02 1.00 136.84 Synergistic

96 0.11 0.06–0.22 0.66 ± 0.19 0.19 0.98 336.36 Synergistic

b-myrcene+
Geraniol

24 1.47 0.52–60.41 0.74 ± 0.22 0.16 0.98 591.84 Synergistic

48 0.33 0.19–1.24 0.78 ± 0.20 0.28 0.96 600.00 Synergistic

72 0.18 0.11–0.40 0.80 ± 0.19 0.43 0.94 288.89 Synergistic

96 0.10 0.06–0.16 0.91 ± 0.19 0.31 0.96 370.00 Synergistic

b-myrcene+
L-menthol

24 1.70 0.58–72.25 0.78 ± 0.23 0.27 0.97 511.76 Synergistic

48 0.96 0.37–27.63 0.68 ± 0.21 0.24 0.97 206.25 Synergistic

72 0.45 0.22–5.70 0.63 ± 0.20 0.06 1.00 115.56 Synergistic

96 0.24 0.12–3.47 0.51 ± 0.19 0.01 1.00 154.17 Synergistic

L-limonene+
Geraniol

24 0.35 0.20–1.38 0.78 ± 0.20 0.52 0.91 588.57 Synergistic

48 0.13 0.08–0.22 0.88 ± 0.19 1.19 0.76 707.69 Synergistic

72 0.08 0.05–0.11 0.95 ± 0.20 1.15 0.77 687.50 Synergistic

96 0.03 0.01–0.05 0.86 ± 0.20 0.61 0.90 1233.33 Synergistic

Geraniol+L-
menthol

24 0.29 0.17–0.85 0.83 ± 0.20 0.28 0.96 1144.83 Synergistic

48 0.10 0.06–0.18 0.77 ± 0.19 0.21 0.98 1300.00 Synergistic

72 0.05 0.02–0.08 0.73 ± 0.19 0.10 0.99 1300.00 Synergistic

96 0.03 0.01–0.05 0.71 ± 0.20 0.05 1.00 1300.00 Synergistic
frontiersin.org

https://doi.org/10.3389/fpls.2022.1016737
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Arokiyaraj et al. 10.3389/fpls.2022.1016737
Discussion

The present study aims to apply phytochemicals to control

the mealybugs that are safer, more eco-friendly, and more

effective than chemical pesticides (Regnault-Roger et al., 2012;

Isman, 2016). In this study, toxicity and synergistic and

detoxification enzyme inhibition activities of some plant-based
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active compounds and their combinations against the crawlers

of P. lilacinus were discussed. Many of these phytochemicals are

derived from the essential oils that exhibited the insecticidal

activities reported earlier (Bakkali et al., 2008). In our study,

phytochemicals such as 1-cyclohexyl-2-pyrrolidone, camphene,

cinnamaldehyde, citral, geraniol, L-carvone, L-limonene, L-

menthol, b-myrcene, ocimene, a-terpinene, and b-terpinene
TABLE 3 Toxicity effect of various compounds against the second instar crawlers of P. lilacinus.

Percent mortality (mean ± SE) at different concentrations after 24 h

Compounds 5,000 ppm 2,500 ppm 1,250 ppm 625 ppm 312.5 ppm Pooled mean

1-Cyclohexyl-2-pyrrolidone 42 ± 8.37 28 ± 8.37 20 ± 12.25 8 ± 8.37 4 ± 5.48 20.40 ± 16.20 d

Camphene 44 ± 8.94 30 ± 15.81 26 ± 8.94 18 ± 8.37 8 ± 8.37 25.20 ± 15.58 cd

Cinnamaldehyde 44 ± 8.94 30 ± 7.07 22 ± 13.04 16 ± 5.48 6 ± 5.48 23.60 ± 15.24 d

Citral 38 ± 8.37 30 ± 15.81 22 ± 8.37 14 ± 5.48 4 ± 5.48 21.60 ± 14.91 d

Geraniol 60 ± 12.25 42 ± 17.89 32 ± 8.37 20 ± 10.00 14 ± 5.48 33.60 ± 19.76 bc

L-carvone 50 ± 10.00 28 ± 8.37 20 ± 7.07 16 ± 8.94 6 ± 5.48 24.00 ± 16.83 d

L-Limonene 62 ± 8.37 56 ± 5.48 46 ± 5.48 26 ± 5.48 20 ± 7.07 42.00 ± 17.79 ab

L-menthol 70 ± 7.07 54 ± 8.94 42 ± 8.37 28 ± 4.47 20 ± 7.07 42.80 ± 19.48 a

b-myrcene 40 ± 12.25 32 ± 8.37 22 ± 4.47 16 ± 5.48 8 ± 8.37 23.60 ± 13.81 d

Ocimene 50 ± 15.81 32 ± 10.95 24 ± 13.42 16 ± 5.48 4 ± 5.48 25.20 ± 18.73 cd

a-Terpinene 42 ± 4.47 32 ± 8.37 24 ± 8.94 16 ± 8.94 10 ± 10.00 24.80 ± 13.88 d

b-Terpinene 38 ± 4.47 28 ± 13.04 20 ± 10.00 14 ± 5.48 6 ± 8.94 21.20 ± 13.94 d

Pooled mean 48.33 ± 1.17 a 35.17 ± 1.17 b 26.67 ± 1.17 c 17.33 ± 1.17 d 9.17 ± 1.17 e

Compounds F11, 299 = 18.44; p < 0.0001

Concentrations F4, 299 = 170.29; p < 0.0001

Compound × Concentrations F44, 299 = 0.69; p > 0.05
Mean of five replications: Means followed by the same letters within a column are not statistically significant (p > 0.05) by Tukey’s HSD.
TABLE 4 Toxicity effect of various compounds against the second instar crawlers of P. lilacinus.

Percent mortality (mean ± SE) at different concentrations after 48 h

Compounds 5,000 ppm 2,500 ppm 1,250 ppm 625 ppm 312.5 ppm Pooled mean

1-Cyclohexyl-2-pyrrolidone 58 ± 8.37 48 ± 4.47 38 ± 10.95 26 ± 5.48 18 ± 4.47 37.60 ± 16.15 def

Camphene 56 ± 8.94 46 ± 11.40 36 ± 11.40 30 ± 10.00 20 ± 7.07 37.60 ± 15.62 def

Cinnamaldehyde 72 ± 8.37 50 ± 7.07 42 ± 8.37 34 ± 5.48 24 ± 8.94 44.40 ± 18.05 bcd

Citral 52 ± 8.37 40 ± 14.14 30 ± 12.25 22 ± 13.04 14 ± 5.48 31.60 ± 17.00 f

Geraniol 82 ± 8.37 60 ± 7.07 48 ± 13.04 32 ± 4.47 24 ± 5.48 49.20 ± 22.35 abc

L-carvone 70 ± 14.14 40 ± 7.07 30 ± 7.07 24 ± 5.48 16 ± 5.48 36.00 ± 20.62 def

L-limonene 76 ± 11.40 62 ± 4.47 56 ± 8.94 44 ± 5.48 34 ± 8.94 54.40 ± 16.60 a

L-menthol 80 ± 7.07 60 ± 10.00 52 ± 4.47 36 ± 5.48 28 ± 13.04 51.20 ± 20.27 ab

b-myrcene 68 ± 8.37 50 ± 10.00 40 ± 12.25 34 ± 5.48 24 ± 11.40 43.20 ± 17.73 bcde

Ocimene 68 ± 16.43 42 ± 8.37 32 ± 13.04 24 ± 5.48 10 ± 10.00 35.20 ± 22.38 ef

a-terpinene 62 ± 10.95 54 ± 16.73 40 ± 10.00 34 ± 11.40 18 ± 8.37 41.60 ± 19.08 cde

b-terpinene 56 ± 13.42 48 ± 8.37 42 ± 16.43 34 ± 15.17 28 ± 10.95 41.60 ± 15.73 cde

Pooled mean 66.67 ± 1.27 a 50 ± 1.27 b 40.50 ± 1.27 c 31.17 ± 1.27 d 21.50 ± 1.27 e

Compounds F11, 299 = 12.45; p < 0.0001

Concentrations F4, 299 = 189.09; p < 0.0001

Compound × Concentrations F44, 299 = 0.93; p > 0.05
Mean of five replications: Means followed by the same letters within a column are not statistically significant (p > 0.05) by Tukey’s HSD.
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have been tested to belong to the chemical class of

monoterpenoids, terpenoids, and phenylpropanoids, among

others. Essential oils are constituted by a mixture of

compounds predominantly by monoterpenes with promising

insecticidal activities (Park et al., 2017). For example, the

monoterpenoid pure compounds, such as thymol, carveol, and

cymene, and other compounds from the plant essential oils
Frontiers in Plant Science 09
exhibited effective contact toxicity against Blattella germanica

(Yeom et al., 2012). Likewise, carvone exhibited the highest

contact toxicity to Tribolium castaneum and Sitophilus oryzae

(Abdelgaleil et al., 2009). Almost all the tested compounds in the

present study showed insecticidal activity against P. lilacinus.

Among the various compounds tested, the high insecticidal

efficiency was observed in the monoterpenes of ocimene and
TABLE 5 Toxicity effect of various compounds against the second instar crawlers of P. lilacinus.

Percent mortality (mean ± SE) at different concentrations after 72 h

Compounds 5,000 ppm 2,500 ppm 1,250 ppm 625 ppm 312.5 ppm Pooled mean

1-Cyclohexyl-2-pyrrolidone 82 ± 13.04 72 ± 4.47 58 ± 4.47 46 ± 13.42 38 ± 4.47 59.20 ± 18.47 abc

Camphene 68 ± 17.89 56 ± 15.17 44 ± 13.42 38 ±18.37 30 ± 7.07 47.20 ± 18.15 de

Cinnamaldehyde 94 ± 5.48 74 ± 13.42 58 ± 10.95 44 ± 13.42 36 ± 8.94 61.20 ± 23.50 ab

Citral 68 ± 14.83 58 ± 14.83 40 ± 7.07 32 ± 13.04 24 ± 5.48 44.40 ± 19.81 e

Geraniol 92 ± 8.37 72 ± 8.37 62 ± 8.37 50 ± 7.07 36 ± 5.48 62.40 ± 20.67 ab

L-carvone 80 ± 14.14 54 ± 8.94 46 ± 5.48 38 ± 8.37 30 ± 12.25 49.60 ± 19.89 cde

L-limonene 84 ± 13.42 74 ± 5.48 64 ± 8.94 50 ± 10.00 42 ± 8.37 62.80 ± 17.92 ab

L-menthol 90 ± 7.07 74 ± 8.94 66 ± 5.48 56 ± 5.48 46 ± 11.40 66.40 ± 17.05 a

b-myrcene 86 ± 11.40 80 ± 7.07 68 ± 8.37 52 ± 8.37 40 ± 10.00 65.20 ± 19.39 a

Ocimene 84 ± 8.94 62 ± 13.04 54 ± 11.40 46 ± 5.48 36 ± 13.42 56.40 ± 19.34 abcd

a-terpinene 82 ± 10.95 66 ± 16.73 52 ± 10.95 42 ± 17.89 30 ± 10.00 54.40 ± 22.38 bcde

b-terpinene 64 ± 19.49 54 ± 11.40 48 ± 13.04 42 ± 14.83 36 ± 18.17 48.80 ± 17.40 de

Pooled mean 81.17 ± 1.43 a 66.33 ± 1.43 b 55.00 ± 1.43 c 44.67 ± 1.43 d 35.33 ± 1.43 e

Compounds F11, 299 = 11.58; p < 0.0001

Concentrations F4, 299 = 159.28; p < 0.0001

Compound × Concentrations F44, 299 = 0.65; p > 0.05
Mean of five replications: Means followed by the same letters within a column are not statistically significant (p > 0.05) by Tukey’s HSD.
TABLE 6 Toxicity effect of various compounds against the second instar crawlers of P. lilacinus.

Percent mortality (mean ± SE) at different concentrations after 96 h

Compounds 5,000 ppm 2,500 ppm 1,250 ppm 625 ppm 312.5 ppm Pooled mean

1-Cyclohexyl-2-pyrrolidone 92 ± 8.37 80 ± 7.07 70 ± 7.07 62 ± 13.04 46 ± 8.94 70.00 ± 18.03 ab

Camphene 74 ± 19.49 62 ± 21.68 52 ± 8.37 46 ± 11.40 36 ± 13.42 54.00 ± 19.58 e

Cinnamaldehyde 96 ± 5.48 86 ± 8.94 68 ± 13.04 60 ± 10.00 48 ± 4.47 71.60 ± 19.51 a

Citral 82 ± 20.49 72 ± 13.04 60 ± 12.25 50 ± 12.25 40 ± 12.25 60.80 ± 20.19 bcde

Geraniol 98 ± 4.47 84 ± 8.94 74 ± 8.94 64 ± 11.40 46 ± 8.94 73.20 ± 19.73 a

L-carvone 84 ± 8.94 64 ± 16.73 56 ± 5.48 50 ± 7.07 40 ± 14.14 58.80 ± 18.33 cde

L-limonene 90 ± 10.00 80 ± 10.00 72 ± 4.47 58 ± 8.37 48 ± 10.95 69.60 ± 17.44 ab

L-menthol 94 ± 5.48 80 ± 7.07 70 ± 7.07 60 ± 7.07 48 ± 10.95 70.40 ± 17.67 ab

b-myrcene 98 ± 4.47 88 ± 4.47 78 ± 8.37 62 ± 13.04 48 ± 8.37 74.80 ± 19.82 a

Ocimene 90 ± 10.00 78 ± 10.95 70 ± 7.07 60 ± 12.25 48 ± 8.37 69.20 ± 17.30 abc

a-terpinene 90 ± 12.25 78 ± 21.68 62 ± 4.47 56 ± 11.40 40 ± 12.25 65.20 ± 21.63 abcd

b-terpinene 72 ± 16.43 62 ± 10.95 56 ± 8.94 46 ± 19.49 40 ± 15.81 55.20 ± 17.82 de

Pooled mean 88.33 ± 1.46 a 76.17 ± 1.46 b 65.67 ± 1.46 c 56.17 ± 1.46 d 44.00 ± 1.46 e

Compounds F11, 299 = 9.92; p < 0.0001

Concentrations F4, 299 = 138.44; p < 0.0001

Compound × Concentrations F44, 299 = 0.33; p > 0.05
Mean of five replications: Means followed by the same letters within a column are not statistically significant (p > 0.05) by Tukey’s HSD.
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b-myrcene (each at LD50 = 0.37 µg/insect). A previous study also

reported that such pure compounds from the essential oil of

Tagetes minuta showed residual toxicity, repellent, feeding

deterrent, growth (feeding) inhibition, and weight reduction

activities against the diamondback moth, Plutella xylostella

(Reddy et al., 2016).

Many essential oil pure compounds of monoterpenes

(carvacrol) and sesquiterpenes (a-bisabolol and chamazulene)

from various plant sources have been reported for their

insecticidal activities against various pest insects (Rodrıǵuez

et al., 2005; Tang et al., 2011; Nenaah, 2014). The contact

toxici ty experiments on P. l i lacinus revealed that

monoterpenes of ocimene and b-myrcene were the active pure

compounds that cause insecticidal activity compared to other

compounds in the present study. Ocimene is found in several

plant species, such as Ocimum gratissimum, Evodia lenticellata,

Acorus calamus, and Aegle marmelos, and has been reported to

have contact toxicity against Callosobruchus chinensis,

Lasioderma serricorne, Liposcelis bostrychophila, Oryzaephilus

surinamensis, Rhyzopertha dominica, S. oryzae, and T.

castaneum (Ogendo et al., 2008; Cao et al., 2018). b-myrcene

has been found in many plants, namely, Aegle marmelos and

Peucedanum terebinthinaceum, and has been stated to have

contact toxicity against L. serricorne, L. bostrychophila, S.

oryzae, and T. castaneum (Abdelgaleil et al., 2009; Sun et al.,

2020). These findings strongly suggested the occurrence of
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contact toxicity property of pure compounds from the

essential oils of several plants against various insect pests.

Insecticidal activities of pure compounds from plant

essential oils depend on the nature of the compound, tested

concentration, selected stage, and type of insect (Mathela et al.,

1994; Lee et al., 2001; Tripathi et al., 2001). Generally, the

biological activities of plant essential oils often result from the

synergistic nature of their varied active components that can be

used individually or as a mixture for pest control (Anaya-

Eugenio et al., 2016; Afshar et al., 2017). In our study, the

comparative toxicity assay using different compounds by the

topical application method against the second instar crawlers of

P. lilacinus revealed that the compounds, namely, L-limonene,

b-myrcene, and ocimene, were found to be most effective against

P. lilacinus (each at LD50 = 0.37 µg/insect) after 96 h of

treatment. Similar findings were reported earlier with the pure

compounds of pulegone and menthofuran from Minthostachys

verticillata against P. ficus (Peschiutta et al., 2017). Eventually,

the different combinations of pure compounds screened against

P. lilacinus revealed that the combinations, namely, geraniol + L-

menthol and L-limonene + geraniol, were found to be most

effective against P. lilacinus (each at LD50 = 0.03 µg/insect) after

96 h of treatment. Our study indicated that all the tested

combinations of the pure compounds resulted in the

synergistic activity for topical toxicity against P. lilacinus.

However, the present study attempted for the first time to
B

C D
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FIGURE 2

Detoxification enzyme inhibition activities. AChE inhibition in P. lilacinus treated with ocimene (A) and b-myrcene (B). GST inhibition in P.
lilacinus treated with ocimene (C) and b-myrcene (D). Bars represent the standard error ( ± SE) of three replications. Means followed by the
same letters within a column do not differ significantly by Tukey’s HSD test (p > 0.05).
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study the combined actions of pure compounds of essential oils

against P. lilacinus. The primary components of plant essential

oils are blended to form a new formulation (binary mixtures)

possessing additive or synergistic properties upon toxicity

(Feitosa-Alcantara et al., 2017). The current findings of our

study coincided with the synergistic activity of the major

compounds of the essential oil from Artemisia absinthium,

namely, a-bisabolol, carvacrol, and chamazulene, at a 1:1:1

ratio against Diaphorina citri (Rizvi et al., 2018). It is

comparatively suggested that the binary mixtures of pure

compounds rather than individual compounds can be helpful

since they possess numerous mechanisms of action and may stall

the emergence of resistance in pests.

Generally, the botanicals exhibit potent insecticidal activities

by directing the neuro-endocrine system and metabolism of the

target insects reported earlier (Parthiban et al., 2020;

Ramachandran et al., 2022). Therefore, before exploratory

findings, several studies have consequently documented the

suggested alterations in various biochemical components of

target insects exposed to various botanicals (Shekari et al.,

2008). The prominent detoxification enzymes such as AChE,

carboxyl esterase, cytochrome P450 monooxygenases, and GST

enable the surface-feeding insects to retain their biological roles

by detoxifying the toxic chemicals (xenobiotics), including
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insecticides and harmful secondary metabolites that originated

from the host plants (Oakeshott et al., 2005; Vashist and Ahmad,

2011; Feyereisen, 2012). The biochemical changes may be linked

to the lethal effect of applied botanicals, resulting in insect

physicochemical process interruption (Parthiban et al., 2020).

The pure compounds of essential oils follow a number of

mechanisms against the insect pests, including the inhibition

of GST and cytochrome P450 monooxygenase, digestive

enzymes, growth, and neurotoxicity (Park and Tak, 2016).

Most of the essential oils are constituted by monoterpenes that

follow neurotoxicity as the primary mode of action observed by

the symptoms against the biological control of various insects

reported earlier (Kostyukovsky et al., 2002; Priestley et al., 2003;

Bullangpoti et al., 2012; Yeom et al., 2012).

Among the various detoxifying enzymes, AChE and GST are

the primary target enzymes of various researchers to study the

biochemical changes in insects (Koodalingam et al., 2011;

Shojaei et al., 2017). AChE and GST are familiar because of

their crucial role in metabolism, physiological activities, and

detoxification processes (Parthiban et al., 2020). Hence, in the

present study, AChE and GST were chosen for their actions in P.

lilacinus fed with tea leaves and topically treated at different

concentrations of pure compounds, namely, ocimene and b-
myrcene (monoterpenes), which significantly inhibited the
FIGURE 3

SEM analysis on deformities observed in P. lilacinus treated with ocimene. (A) Control, (B) 72 h after treatment, and (C) 96 h after treatment. AN,
antenna; TL,thoracic leg; AC,abdominal cuticle; AS, abdominal setae; D, deformity or disintegration.
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enzyme activity for 24 and 48 h after treatment compared to

control mealybugs. AChE inhibition is generally involved in the

accretion of acetylcholine (ACh) in cholinergic synapses that

result in the higher modulation of the cholinergic system (Boyer

et al., 2012). Subsequently, GST catalyzes the synthetic pesticides

usually later in the phase I metabolic process (Kranthi, 2005).

The current findings were supported by the results of Dolma

et al. (2021), stating that T. minuta oil inhibited the AChE and

GST activity against P. xylostella. Similarly, the essential oil from

Artemisia maritima inhibited the GST activity against C.

chinensis and C. maculatus, as reported previously (Chauhan

et al., 2022). However, pure compounds of monoterpenes such

as a-bisabolol, 1-8-cineole, carvone, carvacrol, chamazulene,

and limonene decreased the AChE and GST activities in

insects (Abdelgaleil et al., 2009; Rizvi et al., 2018).

The integument of insects is broadly classified into a

hydrophilic layer (endocuticle) composed of proteins and

lipids and a lipophilic layer (epi/endocuticle) constituted by

chitin (Yu, 2008). It is well-known that the polar terpenoid

compounds improve the entry of hydrophilic drugs, while non-

polar terpenoid compounds facilitate the uptake of lipophilic

medicines (Tak and Isman, 2017). Similar to this, the

monoterpenoid compounds of essential oils frequently exhibit

a variety of hydrophilic–hydrophobic characteristics that allow

them to readily pass insect cuticles and affect their physiological

processes (López and Pascual-Villalobos, 2010; Tak et al., 2016).

These findings also suggested that monoterpenes ocimene and

b-myrcene followed the same mode of action to arrest the

physiological processes in P. lilacinus.

SEM studies revealed that the ocimene caused significant

structural changes in the abdominal cuticle, setae, and thoracic

leg of P. lilacinus, also discussed here. Due to the lack of

literature about the effect of pure compounds of essential oils

against P. lilacinus, the SEM findings were not compared to the

earlier studies. However, few studies on the structural

deformities caused by T. minuta oil against A. craccivora

(Jayaram et al., 2022b) and P. xylostella (Dolma et al., 2021)

were reported earlier, which strongly supported the current

findings of the present study. Sahu et al. (2021) reported that

some pure compounds, namely, diallyl disulfide and eucalyptol,

resulted in severe damage to the elytra against S. oryzae. It is

suggested that the pure phytochemical compounds lead to scales

injury, impairment of setae, and disintegration of the

epicuticular layer that results in cuticle abrasion and

desiccation (Sahu et al., 2021). The penetration of the

eucalyptol from rosemary essential oil topically applied against

Trichoplusia ni was also evidenced earlier (Tak and

Isman, 2017).

The present investigation concluded that P. lilacinus can be

controlled using the pure compounds from essential oils of
Frontiers in Plant Science 12
various plant sources. The toxicity of subjected individual pure

compounds or their combinations may be the cause of insecticidal

activity. The effectiveness of pure compounds against P. lilacinus

has not been previously described, according to the literature

review. As a result, this investigation is a novel approach and has

never been done before to examine the toxicity of pure

compounds from the essential oils against P. lilacinus.
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