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Utility of Ugandan genomic
selection cassava breeding
populations for prediction of
cassava viral disease resistance
and yield in West African clones
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1National Crops Resources Research Institute, Kampala, Uganda, 2Department of Plant Sciences,
Microbiology and Biotechnology, College of Natural Sciences, Makerere University, Kampala, Uganda,
3Plant Breeding and Genetics Section, College of Agricultare and Life Sciences, Cornell University,
Ithaca, NY, United States, 4National Root Crops Research Institute, Umudike, Nigeria, 5International
Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
Cassava (Manihot esculenta Crantz) is a staple crop for ~800 million people in

sub-Saharan Africa. Its production and productivity are being heavily affected by

the two viral diseases: cassava brown streak disease (CBSD) and cassava mosaic

disease (CMD), impacting greatly on edible root yield. CBSD is currently endemic

to central, eastern and southern Africa, if not contained could spread to West

Africa the largest cassava producer and consumer in the continent. Genomic

selection (GS) has been implemented in Ugandan cassava breeding for

accelerated development of virus resistant and high yielding clones. This study

leveraged available GS training data in Uganda for pre-emptive CBSD breeding in

W. Africa alongside CMD and fresh root yield (FRW). First, we tracked genetic gain

through the current three cycles of GS in Uganda. The mean genomic estimated

breeding values (GEBVs), indicated general progress from initial cycle zero (C0)

to cycle one (C1) and cycle two (C2) for CBSD traits and yield except for CMD.

Secondly, we used foliar data of both CBSD and CMD, as well as harvest root

necrosis and yield data to perform cross-validation predictions. Cross-validation

prediction accuracies of five GS models were tested for each of the three GS

cycles and West African (WA) germplasm as a test set. In all cases, cross-

validation prediction accuracies were low to moderate, ranging from -0.16 to

0.68 for CBSD traits, -0.27 to 0.57 for CMD and -0.22 to 0.41 for fresh root

weight (FRW). Overall, the highest prediction accuracies were recorded in C0 for

all traits tested across models and the best performing model in cross-validation

was G-BLUP. Lastly, we tested the predictive ability of the Ugandan training sets

to predict CBSD in W. African clones. In general, the Ugandan training sets had

low prediction accuracies for all traits across models in West African germplasm,

varying from -0.18 to 0.1. Based on the findings of this study, the cassava

breeding program in Uganda has made progress through application of GS for
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most target traits, but the utility of the training population for pre-emptive

breeding in WA is limiting. In this case, efforts should be devoted to sharing

Ugandan germplasm that possess resistance with the W. African breeding

programs for hybridization to fully enable deployment of genomic selection as

a pre-emptive CBSD breeding strategy in W. Africa.
KEYWORDS

cassava, genomic prediction, training population and viral diseases, models,
validation set
Introduction

The raising energy demand globally in face of climate change

is popularizing cassava as an alternative source of renewable fuel

with full potential to replace fossil fuel in the developed countries

(Kang et al., 2014). Besides, being a potential crop to generate

renewable fuel at global level, cassava is a major of source of

carbohydrate and staple food for over 800 million people in the

world (Hammond et al., 2013). Because of the global importance

of the cassava, its production has steadily increased world-wide

in last the two decades from 162 MT in 1998 to 303 MT in 2018

(FAO, 2019), with the world’s highest production of ~ 60 MT

coming from Nigeria in W. Africa.

Despite the importance of cassava as food security, especially

in sub-Saharan Africa, average yields still remain low (12 t/ha)

compared with yield average of 20 t/ha recorded in Asia countries

like Thailand (Nweke, 2004). A number of biotic and abiotic

factors contribute to this yield gap in sub-Saharan Africa. The

leading biotic stress being cassava brown steak disease (CBSD)

and cassava mosaic disease (CMD) (Legg et al., 2014). While

CMD is present in all cassava producing areas in Africa and Asia,

CBSD is only endemic to Eastern and Southern and Central Africa

and more recently the disease was reported in Angola, which is

closer to West Africa especially Nigeria, the largest cassava

producer and consumer in the world (Ano et al., 2021). In

highly susceptible varieties, yield losses of up to 100% have been

reported (Hillocks et al., 2002; Alicai et al., 2007). The recent

epidemiological studies indicate that CBSD is fast spreading to

West Africa (Patil et al., 2015), and thus posing an eminent threat

to cassava production in the Western part of the continent.

Fortunately, cassava that lagged previously in terms of

genomic resources relative to cereal crops like maize, rice and

wheat and legumes such as common beans, ground nuts and

soya beans, has received significant funding to develop complete

reference genome assembly (Prochnik et al., 2012). With the

availability of the genomic resources for cassava and low-cost

genotyping technologies such as genotyping-by-sequencing

(Elshire et al., 2011; Rabbi et al., 2015) and more recently the

diversity array technology sequencing (DArTSeq) platform,
02
cassava breeding is evolving from traditional phenotypic

selection to selecting plants based on their genomic estimated

breeding values (GEBVs). Genomic selection (GS), which uses

high-density markers to cover the entire genome, was proposed

by Meuwissen et al. (2001) as a new method for selection of

individuals in a population based on the breeding values.

Genomic selection has been reported to offer some

advantages over phenotypic selection breeding scheme: (i)

genomic selection allows for more cycles of recombination per

unit time than phenotypic selection, (ii) selection is solely based

on estimates of marker effects without prior knowledge of the

QTL and also captures variation due to loci with small effects (de

Oliveira et al., 2012). Another argument put in favor of genomic

selection is that genotyping cost will further decrease per sample;

on the other hand, phenotyping costs do not exhibit the same

downward trend, because they are dependent on human

resources and agricultural inputs. The cost of these resources

have historically been increasing (de Oliveira et al., 2012; Poland

and Rife, 2012).

Through the Next Generation Cassava Breeding project,

Uganda embraced genomic selection tool for cassava improvement

in early 2010s. The breeding program has so far developed three

recurrent genomic selection cycles, and some of the elite material has

been channeled to the variety development pipeline. Our primary

traits of focus include: CMD resistance, fresh root weight, end-user

root quality attributes (Wolfe et al., 2017) and CBSD resistance.

From historical data, Uganda has registered significant gains for

CMD and CBSD resistance breeding efforts (Manze et al., 2021), and

thus could offer CBSD resistant parents to west African cassava

breeding programs such as Nigeria where CBSD is not yet a threat.

However, because of the CBSD pandemic in Eastern, Southern and

Central Africa, there is restriction on moving plant materials

currently from Eastern, Central and Southern Africa to West

Africa, where CBSD is non-existent (Ano et al., 2021).

Nonetheless, illegal movement of plant materials due to porous

borders, besides the whitefly supported transmission could pose a

risk of CBSD reaching to West Africa (Legg et al., 2014).

We previously leveraged on the available genomic resources

under Next Generation Cassava Breeding project (https://www.
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nextgencassava.org/) to predict CBSD in West Africa using 35

clones shared from IITA, Ibadan (Ozimati et al., 2018).

Generally, low predictive ability, ranging from 0.14 to 0.36 for

CBSD foliar severity, and -0.29 to 0.11 for CBSD root necrosis

(Ozimati et al., 2018) were recorded. Building on previous CBSD

pre-emptive breeding study, which was limited by the sample

size, we expanded on sample size of the West Africa test set used

in the current study. Specifically, we assessed gains from

genomic selection for virus disease resistance and fresh root

weight in Ugandan GS training populations, and further

evaluated effectiveness of the training sets in predicting CBSD,

CMD resistance and fresh root yield in WA clones as pre-

emptive CBSD breeding strategy.
Materials and Methods

Germplasm and field evaluation

The training population comprised three recurrent genomic

selection cycles obtained from NaCRRI. These cycles were: cycle

zero (C0), cycle one (C1) and cycle two (C2). Briefly, C0

population was derived from forty-nine diverse progenitors

that were assembled from International Institute of Tropical

Agriculture (IITA), International Center for Tropical

Agriculture (CIAT) and NaCRRI. Germplasm from CIAT

(Columbia) targeted improvement of quality and yield traits,

while germplasm from the IITA (Tanzania), and NaCRRI

(Uganda) breeding programs targeted improvement of CBSD

resistance. Botanical seeds from crosses (full-sibs and half-sibs)

of forty-nine progenitors were planted in a seedling nursery at

Namulonge, and the sprouted seedlings were evaluated in an

unreplicated seedling trial at Namulonge in 2012. A total of 466

C0 seedlings were selected visually as a training population for

implementation of GS based on their CMD and CBSD

resistance, and evaluated for two years (2013 and 2014) at

Namulonge (central Uganda), Kasese (mid-western Uganda)

and Ngetta (northern Uganda), using an alpha lattice design

with two replications. Namulonge, Kasese and Ngetta were

specifically chosen because of high viral disease pressure

(cassava brown streak disease and cassava mosaic disease) and

whitefly (vector) populations (Alicai et al., 2019). The C1 clones

were derived from recurrent selection and recombination of the

best a hundred C0 clones selected through GS. A total of 667 C1

seedlings were selected visually and evaluated in a clonal trial

that was laid out using an augmented randomized block design

at both Namulonge and Serere in 2016 and 2017. Similarly, the

top hundred performers selected from C1 clonal trial were

recombined to generate the C2 population. The C2 clonal trial

comprised 421 clones and was also laid out using an augmented

randomized block design in 2019 at Namulonge for one season.

Selection of progenitors for constitution of C1 and C2 were
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based on CMD resistance, CBSD resistance, harvest index and

fresh root yield.

All clones in the training set (C0, C1 and C2) were

evaluated for CBSD and CMD severity, fresh root weight and

harvest index. CBSD foliar severity was assessed at three

(CBSD3S) and six CBSD6S) months after planting using a

standard scale of 1-5; where 1 = no apparent symptoms, 2 =

slight foliar chlorosis, but with no stem lesions, 3 = pronounced

foliar chlorosis and mild stem lesions with no die back, 4 =

severe foliar chlorosis and severe stem lesions with no die back,

and 5 = defoliation, severe stem lesions and die back (Gondwe

et al., 2003). Cassava mosaic disease was also assessed at three

(CMD3S) and six (CMD6S) after planting using a scale of 1 to

5; where 1 = no visible disease symptoms, 2 = mild chlorotic

pattern on entire leaflets or mild distortion at base of leaflets,

rest of leaflets appearing green and healthy, 3 = strong mosaic

pattern on entire leaf, and narrowing and distortion of lower

one-third of leaflets, 4 = severe mosaic, distortion of two-thirds

of leaflets and general reduction of leaf size, and 5 = severe

mosaic, distortion of four-fifths or more of leaflets, twisted and

misshapen leaves (IITA, 1990).

At twelve months after planting, clonal trials were harvested

to allow evaluation of fresh root weight (FRW) and cassava

brown streak root necrosis severity (CBSDRS). All the ten plants

were harvested and partitioned into roots and above-ground

biomass (leaves and stems). Fresh root weight (FRW) and above-

ground biomass were separately weighed (kg plot−1) using a

hanging weighing scale of 200 kg capacity. On the other hand,

CBSDRS was recorded on all harvested roots per plot using a

scale of 1-5; where 1 = no observable necrosis, 2 = ≤ 5% of root

necrotic, 3 = 6 to 25% of root necrotic, 4 = 26 to 50% of root

necrotic with mild root constriction, and 5 = > 50% of root

necrosis with severe root constriction (Gondwe et al., 2003).

The validation set comprised germplasm that was sourced from

National Roots Crops Research Institute (NRCRI), Nigeria. A total

of 5,000 botanical seeds were generated from bi-parental crosses

involving forty-eight elite progenitors. The progenitors were

selected per se based on their yielding ability and resistance to

cassava mosaic disease (CMD). Accordingly, these seeds were

shipped and planted in a seedling nursery at Namulonge. Out of

the 5000 botanical seeds, 1980 successfully emerged, giving rise to

106 families. The 1980 seedlings were thus established in an

unreplicated seedling trial during the second rains of 2018

(September/October). A total of 569 clones were selected from

the seedling trial for further evaluation at the clonal stage during the

2019-2020 season, which was laid out using an augmented

randomized block design at Namulonge. At the end of clonal

evaluation, only 297 clones remained, as half of the clones were

directly culled by CBSD. These 297 clones constituted the validation

set for genomic prediction, and were assessed for CMD and CBSD

severity fresh root yield as the 3rd trait evaluated, following the

same procedure previously described for the training population.
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Genotyping of the training and
validation sets

Leaf samples were obtained from the clonal evaluation stage

of the training (C0, C1, C2) and the validation (germplasm from

Nigeria) populations and shipped to Intertek, Australia, for

DNA extraction and genotyping. Both C0 and C1 clones were

originally genotyped using genotyping by sequencing (GBS)

platform with 46K single nucleotide polymorphism (SNP) chip

at Genomic Diversity facility of Cornell University (Ozimati

et al., 2018). However, because the National Cassava Breeding

Program of Uganda recently opted for Diversity Arrays

Technology (DArT) genotyping services for routine genomic

selection work, SNP markers from GBS (for both C0 and C1)

were later imputed with those from DArT platform, giving rise

to 23K SNP markers for genomic selection. Genotyping of the

C2 and validation population (germplasm from Nigeria) was

therefore done by the DArT platform, Australia, using the same

23K SNP markers that had been used previously to genotype C0

and C1 populations. Missing markers of the genotyped

individuals were filled in by imputation, using markers from

the East Africa imputation reference panel using BEAGLE

software version 5.0 (Browning and Browning, 2007). The

markers were thereafter filtered, and those with minor allele

frequency (MAF) greater than 0.01 (21,938 SNPs) were used for

downstream analyses.

We used the 21,938 SNPs to assess the population structure

of the training population from Uganda (C0, C1 and C2) and

validation population from West Africa. The SNP genotypes

were coded as -1, 0, or +1. Principal component analysis (PCA)

was done on scaled SNPmarkers using the prcomp function in R.

The first two principal components (PC) were used to visualize

population structure.
Estimates of broad-sense heritability,
genetic gain and accuracy of
genomic prediction

To estimate heritability for each trait per cycle of GS

population (C0, C1 and C2) and the WA clones, we fitted

linear mixed models based on experimental design for each

trial, followed by extraction of variance components using

restricted maximum likelihood procedure (Spilke et al., 2005).

The variance components were then used for estimation of

broad-sense heritability per trait. Because C0 trial from Kasese

in 2014 generally had low broad-sense heritability estimates

across traits, the trial was not included for subsequent genomic

prediction analyses.

For genomic prediction, we fitted a two-stage prediction

model. At the first stage the raw phenotypes were merged across

trials (training [C0, C1 and C2] and validation trial [WA]) into a
Frontiers in Plant Science 04
single data set and fitted the linear mixed model using lme4

package in R, accounting for the environmental differences as

well as trial evaluation year as below:

  y =  Xb   +  Zclonec + Zrep(loc=study   year)r + ϵ

where, y represents raw phenotypic value; b represents fixed

effect of the grand population mean, (C0, C1, C2 andWA), study

year, and location, with X being the corresponding incidence

matrix linking observations to those effects. c and r represent

random effects of clones with c∼N(0, Is 2
c ), and replication

nested in location-study year such that r∼N(0, Is 2
r ) with

Zclone and Zrep(loc/study year) being corresponding incidence

matrices for clones and replications nested in location-study

year respectively. The residuals ϵ were distributed as: ϵ∼N(0,  

Is 2
ϵ ) with I representing the identity matrix. We extracted best

linear unbiased predictors (BLUPs) for each clone using the

ranef function available in lme4 package (Bates et al., 2015), and

these were preferred over fixed clone effects for the genomic

prediction study due to imbalances in the dataset.

After extraction of BLUPs for each clone for each cycle, we

fitted a G-BLUP model to estimate genomic estimated breeding

values (GEBVs) that were used for assessment of gains from

genomic selection using the three evaluated Uganda’s GS cycles

(C0, C1 and C2). A one-way analysis of variance was performed

to test for significant differences among the means of the GEBVs

for the three cycles for each trait using R (R Core Team, 2021).

Mean GEBVs of three cycles were separated using Tukey’s

honestly significant difference. Gains from genomic selection

were thereafter calculated as the difference between the mean

performance of new cycle and mean performance of the previous

cycle from which the new cycle was selected.

Furthermore, we carried out 5-fold cross-validation analyses

for each training population (C0, C1 and C2) andWA clones. To

do the cross-validation, the BLUPs that were extracted from the

first stage analyses per trait were used as the response variable to

fit a second stage prediction model for five genomic prediction

models with different statistical assumptions. These models

were: genomic best linear unbiased prediction (G-BLUP)

(VanRaden, 2008; Endelman, 2011), Bayesian ridge regression

BRR (Meuwissen et al., 2001), Bayesian least absolute shrinkage

and selection operator (BL), Bayes A and Bayes B (Park and

Casella, 2008). An excellent review of these models has already

been provided by Heslot et al. (2012), and thus will be

discussed briefly.

To implement G-BLUP, we fitted a model: Y = 1b +Xg + ϵ ,
with g ~ N (0, Ks2g) and ϵ ~ (0, Is2g), where Y represents the

vector of BLUPs, b represents an overall population mean, X

represents the design matrix linking observations to genomic

values, g being vector of genomic estimated breeding values for

each clone, and ϵ represents the vector of residuals. We assumed, g

has a known covariance structure defined by the realized genomic

relationship matrix K, while I representing identity matrix.
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Additional, we implemented the four Bayesian models i.e.

BRR, BL, Bayes A and Bayes B, following the same linear mixed

model: Y = 1b +Zg + ϵ , with g~N (0, Ks2g) and ϵ ~ (0 Is2
g),

where Y represents the vector of BLUPs, b represents an overall

population mean, X represents the design matrix linking

observations to genomic values, g being vector of genomic

estimated breeding values for each clone, and ϵ represents the

vector of residuals. We assumed, g also has a known covariance

structure defined by the realized genomic relationship matrix K

and I representing identity matrix. Specifically, BRR assigns a

Gaussian prior with common variance to each marker effect, and

applies homogeneous shrinkage to all marker effects. BL employs

a double-exponential prior distribution for marker effects, which

places strong shrinkage to markers with little to no effect on the

trait. Bayes A applies a scaled-t prior distribution to marker

effects, and places slightly less shrinkage on markers with zero

effect, thereby allowing more flexibility for marker effects. Lastly,

Bayes B assumes that most of the markers have zero effect on the

trait, and assumes that the markers with an effect on the trait will

follow a scaled-t prior distribution as in the case of Bayes A,

making it relatively more stringent when compared to Bayes A.

All the four Bayesian models used in this study were fitted using

the BGLR function available in the R package BGLR (Pérez and

de los Campos, 2014). A Markov Chain Monte Carlo (MCMC)

algorithm was applied with prior parameters defined following

the procedure suggested by de los Campos et al. (2013).

Computations were performed using a chain length of 10,000

iterations, with the first 1000 iterations discarded as burn-in

(Pérez and de los Campos, 2014).

Briefly, during implementation of cross-validation within

each population (C0, C1, C2 and validation), the clones were

randomly split into five subsets (5-fold), where 4/5 of the subsets

were used to train the model, while 1/5 was reserved for model

validation and this was replicated 5 times. The accuracy of

genomic prediction for each fold was then computed as
Frontiers in Plant Science 05
Pearson correlation coefficient between the genomic estimated

breeding values and BLUPs for each trait as a response variable.

Lastly, we carried out independent validation for the WA

clones, the five evaluated genomic prediction models (G-BLUP,

BRR, BL, Bayes A, and Bayes B) were trained using C0, C1 and

C2 to predict disease severity and fresh root weight in the

validation population (West African population) that

comprised 297 clones. Similarly, the prediction accuracy for

each model was assessed using Pearson’s correlation between the

GEBVs and the BLUP values per trait.
Results

Broad sense heritability for evaluated
traits in the training and
validation populations

Plot-based heritabilities were low to intermediate (Table 1).

Estimates of plot-based broad-sense heritability for the training

set were highest for disease traits, and these ranged from 0.04 to

0.99 for CBSD foliar severity, 0.2 to 0.86 for CBSD root necrosis

severity and 0.00 to 0.99 for CMD severity. Differences in trait

heritabilities for data collected at two time points (three and six

months after planting) were not substantial, for both CBSD and

CMD severity. Heritabilities for fresh root weight were generally

modest, ranging from 0.00 to 0.99. Lowest heritabilities for

disease traits were observed at Kasese in the mid-western

Uganda, while highest heritability for both disease severity and

fresh root weight was observed at Serere in Eastern Uganda.

Namulonge (central Uganda) registered the lowest heritability

for fresh root weight. Though heritability for fresh root weight in

the validation population was 0.00, heritabilities for CBSD and

CMD severity were moderately high (H2 > 0.65).
TABLE 1 Plot based broad sense heritability estimates for disease severity and fresh root weight for training and validation populations evaluated
at the different locations in Uganda between 2013 to 2019.

Population Year Location CBSD3S CBSD6S CBSDRS CMD3S CMD6S FRW

C0 2013 Kasese 0.31 0.30 0.45 0.64 0.45 0.40

C0 2013 Namulonge 0.33 0.37 0.60 0.42 0.74 0.40

C0 2013 Ngetta – 0.52 0.68 0.75 – 0.47

C0 2014 Kasese 0.04 0.06 – 0.00 0.00 –

C0 2014 Namulonge 0.38 0.37 0.68 0.49 0.77 –

C1 2016 Namulonge 0.40 0.17 0.20 0.80 0.83 0.57

C1 2016 Serere 0.65 0.46 0.66 0.80 0.79 0.02

C1 2017 Namulonge 0.55 0.45 0.44 0.79 0.71 0.11

C1 2017 Serere 0.99 0.99 0.86 0.99 0.94 0.99

C2 2019 Namulonge 0.70 0.54 0.5 0.84 0.90 0.00

WA 2019 Namulonge 0.81 0.67 0.84 0.91 0.94 0.00
frontier
CBSD3S and CBSD6S, cassava brown streak disease foliar severity at 3 and 6 months after planting respectively; and CBSDRS, cassava brown streak disease root severity at 12 months after
planting.
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Gains from genomic selection in Uganda’s
breeding populations from 2013 to 2019

Using a boxplot, we summarized variations for genomic

estimated breeding values across GS cycles for the six traits

assessed, with overall genetic progress recorded for most traits

except for CMD (Figure 1). Based on average genomic estimated

breeding values per cycle (GEBVs), CBSD foliar severity at three

months reduced from a mean GEBV of 0.016 for C0 to -0.008 in

C1. CBSD foliar severity at six months and CBSD root necrosis

severity exhibited a similar downward trend in disease severity

when C0 clones where recombined and advanced to C1 using

genomic selection (Table 2). With regard to CMD severity, mean

GEBVs reduced from 0.006 to 0.004, and 0.013 to -0.002, for

CMD3S and CMD6S, respectively, as clones were advanced from

C0 to C1. Fresh root weight also increased from -0.017 in C0 to

-0.004 to C1. From C1 to C2, all disease traits i.e. CBSD3,

CBSD6S, CBSDRS, CMD3S and CMD6S further exhibited a

downward trend in disease severity based on their mean GEBVs.

Fresh root weight also continued to exhibit an upward trend

when C1 clones were recombined and advanced to C2 of

genomic selection. Highest response to selection was observed

with fresh root weight, CBSD root necrosis resistance, fresh root

weight, CBSD foliar severity, and lastly CMD severity.
Population structure between training
and validation sets

Principal component analysis revealed a slight genetic

differentiation between the Ugandan and West African cassava
Frontiers in Plant Science 06
populations (Figure 2). Variations in genetic structure between

the Ugandan and West African populations were moderate, as

the first two principal components (PCs) explained

approximately 53% of the variation, where the first and second

PCs accounted for 35.5%, and 17.5%, respectively.
Cross-validation prediction
accuracies within the training
and validation populations

Cross-validation prediction accuracies were performed

using five models (Bayes A, Bayes B, BRR, BL, and G BLUP)

to assess prediction accuracy of genomic selection for CBSD

resistance, CMD resistance and fresh root weight within the

training and validation populations. We observed modest

prediction accuracies for all evaluated traits and populations

(Figure 3). Prediction accuracies in the training set ranged

from -0.06 to 0.59 for CBSD3S, -0.16 to 0.68 for CBSD6S, -0.15

to 0.68 for CBSDRS, -0.21 to 0.57 for CMD3S, -0.27 to 0.59 for

CMD6S, and -0.22 to 0.41for FRW. Of the three cycles in the

training set, C0 registered the highest prediction accuracies for

all traits, followed by C1 and lastly C2. Average prediction

accuracies for C0 were: 0.37, 0.48, 0.48, 0.33, 0.40 and 0.26 for

CBSD3S, CBSD6S, CBSDRS, CMD3S, CMD6S and FRW,

respectively. Average prediction accuracies for C1 were: 0.32,

0.34, 0.12, 0.11, 0.08 and 0.08, for CBSD3S, CBSD6S, CBSDRS,

CMD3S, CMD6S and FRW, respectively. Lastly, mean

prediction accuracies for C2 were: 0.21, 0.30, 0.11, 0.16, 0.13

and 0.00 for CBSD3S, CBSD6S, CBSDRS, CMD3S, CMD6S and

FRW, respectively. Across the three cycles and the evaluated
FIGURE 1

Performance of the three cycles (C0, C1 and C2) of Uganda’s cassava genomic selection population for disease resistance. CBSD3S, cassava
brown streak disease foliar severity scored at three months; CBSD6S, Cassava brown streak disease foliar severity scored at six months;
CBSDRS, Cassava brown streak disease root severity scored at 12 months; CMD3S, Cassava mosaic disease severity scored at three months;
CMD6S, Cassava mosaic disease severity scored at six months.
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models, CBSD6S was predicted with the highest accuracy

(0.37), followed by CBSD3S (0.29), CBSDRS (0.22) and lastly

fresh root weight (0.11). We observed that GBLUP was slightly

superior to all evaluated Bayesians models across the five traits

and three populations in the training set. On the other hand,

cross-validation predictions in the validation set (clones from

West Africa) were relatively lower than those observed in the

training population (clones from Uganda). Prediction

accuracies ranged from -0.25 to 0.31 for CBSD3S, -0.09 to

0.38 for CBSD6S, -0.36 to 0.53 for CBSDRS, -0.17 to 0.29 for

CMD3S, -0.19 to 0.37 for CMD6S, and -0.10 to 0.47 for FRW.

On average, CBSDRS was predicted with the highest accuracy

(0.29), followed by CMD6S (0.13) and lastly FRW (0.07).
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Using Uganda’s training population to
predict traits in West African clones

Analyses were performed using C0, C1, and C2 to assess

prediction accuracy of genomic selection for CBSD resistance,

CMD resistance and FRW in the West African population (297

clones) that was part of the pre-breeding populations evaluated in

Uganda for CBSD resistance. We observed extremely

low prediction accuracies for all traits (Table 3). For example,

prediction accuracies ranged from -0.07 to 0.10 for CBSD3S, -0.02

to 0.15 for CBSD6S, -0.18 to 0.05 for CBSDRS, 0.002 to 0.09 for

CMD3S, -0.034 to 0.078 for CMD6S and lastly -0.076 to 0.086 for

FRW. Average predictions were less than 0.1 for all evaluated
FIGURE 2

Population structure displayed by the first two principal components (PCs) generated for training set i.e. C0 (384 clones), C1 (638 clones), C2
(287 clones) and the validation population (279 clones from West Africa) using 21,938 SNP markers. The figure displays population structure
from PC1 vs PC2, with associated variances for each PC represented in brackets. Black = C0, Red = C1, Green = C2 and Blue = WA clones.
TABLE 2 Mean performance of genomic selection cycles and corresponding gains from selection for fresh root weight and virus disease resistance.

Cycle FRW CBSD3S CBSD6S CBSDRS CMD3S CMD6S

C0 -0.017a 0.016a 0.034a 0.063a 0.006a 0.013a

C1 -0.004a -0.008b -0.019b -0.031b -0.004a -0.002a

C2 0.044b -0.009b -0.013b -0.034b -0.001a -0.017b

P-value *** *** *** *** NS *

Gains from selection

C1 - C0 0.013 -0.024 -0.054 -0.094 -0.009 -0.015

C2 - C1 0.048 -0.001 0.006 -0.003 0.003 -0.014
fron
CBSD3S, cassava brown streak disease foliar severity scored at three months; CBSD6S, Cassava brown streak disease foliar severity scored at six months; CBSDRS, Cassava brown streak
disease root severity scored at 12 months; CMD3S, Cassava mosaic disease severity scored at three months; CMD6S, Cassava mosaic disease severity scored at six months; and FRW, fresh
root weight. Letters indicate significant differences using Tukey’s honestly significant difference (a = 0.05). * P < 0.05, *** P < 0.001, and NS = non-significant differences between average
performance of selection cycles.
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traits. Though predictions were extremely low, C1 registered the

highest prediction for CBSD6S (0.14) in WA population, and

lowest prediction was observed when C0 was used to predict

CBSDRS in the validation set. Since prediction accuracies were

extremely low, it seemed unreasonable to assess how a

combination of the three populations would affect prediction

accuracies of GS in the WA population.
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Discussion

The challenges of rapid human population growth and

climate change invariably affect agricultural productivity, and

thus the need for increased genetic gains (Hickey et al., 2017).

Currently, there are concerted global efforts to combat CBSD, a

disease that is endemic to East and Central Africa but posing a
B

C

A

D

E F

FIGURE 3

Cross validation prediction accuracies for cassava brown streak disease severity at three (CBSD3S), six (CBSD6S) and twelve months after
planting (CBSDRS), cassava mosaic disease severity at three months (CMD3S) and six months after planting (CMD6S), and fresh root weight
(FRW) using five genomic prediction models in the training (C0, C1, C2) and validation population (germplasm from West Africa). (A–F)
Represent prediction accuracies for CBSD3S, CBSD6S, CBSDRS, CMD3S, CMD6S and FRW, respectively. C0, C1, C2 represent cycle zero, cycle
one, cycle two of Uganda’s cassava genomic selection population, while WA represent West African cassava germplasm from Nigeria. BL,
Bayesian Least Absolute shrinkage and selection operator, BRR, Bayesian Ridge Regression, and G-Blup, Genomic Best Linear Unbiased
Prediction.
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significant threat to cassava production in West Africa, the

world’s largest producer and consumer of cassava (Legg et al.,

2014). In this study, we leveraged genomic prediction

approaches as a possible means to enable pre-emptive

breeding for CBSD resistance in West Africa, using elite

cassava populations from Uganda. Accordingly, three

Uganda’s populations segregating for CBSD severity comprised

the training set, and these were used to predict CBSD resistance

along with other equally important traits such as CMD

resistance and fresh root weight in the WA population that

was evaluated in Uganda, a hotspot for CBSD.

Broad sense heritability estimates for evaluated traits were

low (H2< 0.2) to high (H2 > 0.6), and were well in range with

heritability estimates in literature (Kayondo et al., 2018; Okul

et al., 2018; Ozimati et al., 2018). These results underpin the

general conclusion that the experimental sites were hotspots for

CMD and CBSD i.e. the disease pressure was high enough to

cause substantial variation in clone response to the virus diseases

(Alicai et al., 2019). This finding further implies that Namulonge

and Serere are suitable for screening of germplasm against CMD

and CBSD, and could be used by breeding programs threatened

by CBSD. The extremely low heritability estimates for CMD

severity are attributable to low phenotypic variations for CMD in

the evaluated Ugandan cassava populations. The low phenotypic

variations for CMD resistance traits were attributable to the fact

that breeding efforts targeting resistance to CMD have been

ongoing since 1930s (Legg and Thresh, 2000), which is sufficient

time for increasing the frequency of resistance alleles in the

breeding populations (Hallauer et al., 1988), and thus we might

have fixed CMD resistance alleles in our recently developed
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cassava germplasm. The low heritabilities of CBSD traits are also

attributable to the low phenotypic variations in CBSD severity

observed in C0, C1 and C2, which were also attributable to

selection and recombination. These low phenotypic variations

for CMD and CBSD resistance imply that the breeding program

has attained a usable level of resistance to virus diseases in most

of its elite material, and therefore, alleles for yield and end-user

preferred traits need to be introgressed into disease resistance

background to allow enhancement of yield traits.

We observed substantial gains for all evaluated traits in

Uganda’s GS cycles. This finding is agreement with findings

from Sweeney et al. (2021) who reported increased gains from

GS in the spring barley breeding program. The observed

improvements in trait means based on their GEBVs is an

indication that genomic selection successfully increased

frequency of desirable alleles for target traits in the evaluated

cassava populations. These findings further imply that even with

low predictions accuracies of less than 0.40, genetic gains are

possible with GS for low heritability traits. The low gains in

CMD resistance could be due to low phenotypic variability in the

evaluated traits i.e. clones exhibited a similar level of resistance

both at three and six months after planting for the three

evaluated cycles with a mean severity score of 1.4. With the

observed downward trend in disease severity and a concurrent

upward trend in fresh root weight, genomic selection is likely to

fast-track variety replacement and/or increase variety turnover

in cassava especially in this era of climate change and rapid

population increase.

Having observed significant gains in traits using genomic

selection, we evaluated the importance of our GS cassava
TABLE 3 Independent validation prediction accuracies for cassava mosaic disease severity, cassava brown streak disease severity and fresh root
weight using five genomic prediction models and three cycles of genomic selection.

Cycle Model CBSD3S CBSD6S CBSDRS CMD3S CMD6S FRW

C0 BayesB -0.057 -0.019 -0.085 0.007 0.032 0.007

C0 BayesA -0.056 -0.011 -0.061 0.042 0.068 0.042

C0 BL -0.057 -0.008 -0.084 0.074 0.078 0.074

C0 G-Blup -0.039 0.019 -0.181 0.057 0.075 0.057

C0 BayesRR -0.072 -0.007 -0.085 0.086 0.073 0.086

C1 BayesB 0.066 0.151 -0.086 0.036 0.044 -0.028

C1 BayesA 0.093 0.153 -0.151 0.002 0.014 -0.013

C1 BL 0.085 0.153 -0.053 0.042 0.043 -0.015

C1 G-Blup 0.088 0.107 -0.072 0.005 0.002 -0.022

C1 BayesRR 0.104 0.154 -0.089 0.037 0.066 0.012

C2 BayesB 0.028 0.124 0.056 0.032 0.021 -0.006

C2 BayesA 0.053 0.125 -0.016 0.052 -0.034 -0.017

C2 BL 0.052 0.141 0.012 0.092 -0.022 -0.076

C2 G-Blup 0.039 0.096 0.021 0.049 -0.010 -0.069

C2 BayesRR 0.017 0.131 -0.003 0.058 -0.010 -0.034
frontier
BL, Bayesian least absolute shrinkage and selection operator; G-BLUP, Genomic best linear unbiased prediction method; BRR, Bayesian Ridge Regression. CBSD3S, cassava brown streak
disease foliar severity scored at three months; CBSD6S, Cassava brown streak disease foliar severity scored at six months; CBSDRS, Cassava brown streak disease root severity scored at 12
months; CMD3S, Cassava mosaic disease severity scored at three months; CMD6S, Cassava mosaic disease severity scored at six months; and FRW, fresh root weight.
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populations in predicting cassava traits in West Africa, where

CBSD is an eminent threat. Based on principal component

analysis of SNP data, we observed a close relationship between

the training set (Uganda’s cassava populations) and validation

set (West African cassava population), with a slight population

structure and genetic differentiation between the two

populations (Figure 2). This low genetic variability and lack of

clear structure within these populations underpins the likelihood

that the East and West African materials might have shared a

common ancestry, a situation that could be attributed to

germplasm exchange between east and west Africa in the

1930s, during the advent of cassava mosaic disease (CMD)

pandemic (Jennings, 2002). The absence of clear population

structure and low genetic variation between the evaluated

populations also suggested the appropriateness of using

Uganda’s population (C0, C1, and C2) as a training

population for genomic prediction of the West African

populations and subsequent selection of individuals using

GEBVs as a pre-emptive breeding strategy. Accordingly,

analyses were performed to determine whether the close

relationship between the populations would result into high

prediction accuracies when Uganda’s population was used to

train models for prediction of disease resistance and fresh root

weight in the WA population. Surprisingly, the west African

population which was fairly genetically similar to Uganda’s

training population, was predicted with extremely low

accuracy (ranging from -0.07 to 0.15) for all evaluated traits

when C0, C1 and C2 were separately used as training

populations, suggesting that there could be other factors that

affected the prediction accuracy of GS other than the

relationship between training and validation sets.

Several genomic prediction models have been developed to

predict trait performance under different genetic architecture

and the five GP models (Bayes A, Bayes B, BRR, BL and G-

BLUP) chosen for this study also differed in assumptions about

the genetic architecture of the evaluated traits. Results revealed

that models performed similarly for the most part, but there also

occasions where G-BLUP was slightly superior to Bayesian

models used in this study. These results were in good

agreement with earlier findings from Wolfe et al. (2016) and

Kayondo et al. (2018). Superiority of G-BLUP could be that the

true QTL effects for evaluated traits were relatively small and

that the distribution of these effects could be less extreme. The

superiority of G-BLUP could be also attributed to its ability to

take advantage of the relationships among individuals at the

causal loci for the traits under analysis (VanRaden, 2008),

indicating that models that might estimate relationship

information between training and test sets could be more

valuable than those that estimate marker effects directly.

Average cross validation prediction accuracies across the

three populations for CBSD and CMD resistance fresh root
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weight ranged between 0.26 to 0.48, and were comparable to

findings by Wolfe et al. (2017); Wolfe et al. (2016); Kayondo

et al. (2018) and Ozimati et al. (2018). The low cross validation

prediction accuracies suggested that they could be attributed to

the low phenotypic variations for the studied traits observed in

the evaluated populations. These cross validation predictions

within the three populations were encouraging and thus

highlighting the utility of GS for improving CBSD and CMD

resistance, and fresh root weight. On the other hand, cross

validation prediction accuracies in the validation set (west

African clones) were much lower than that was observed in

the Ugandan training set, and this could be attributed to the fact

that west African clones might be deficient in CBSD resistance

alleles (Ano et al., 2021).

On the other hand, independent validation prediction

accuracies of genomic selection were generally low, and they

were lower than cross-validation prediction accuracies for CMD,

CBSD traits and fresh root weight. Given that the training and

validation populations were fairly genetically similar, the low

prediction accuracies for independent validations could be

attributed to genotype by environment interaction i.e. the

training and validation populations were evaluated during

different seasons. These low predictions could also be attributed

to the fact that west African cassava populations were deficient in

CBSD resistance alleles (Ano et al., 2021). No consistent superior

performance was observed for any of the prediction models that

were assessed, and this was in good agreement with Heslot et al.

(2012) and Jannink et al. (2010). Although the models tested in

this study assumed different distributions of marker effects

(Meuwissen et al., 2001; Lorenz et al., 2011), their similarity in

prediction accuracies could be interpreted as approximation to

optimal genomic prediction models, where all the models capture

the same or similar QTL effects across the genome (Su et al., 2014).

In such a situation, choice of GS model would be less important

than choice of training population.

The C0 training set yielded the lowest prediction accuracies,

with negative average accuracies for all traits across all models.

The disparity between the predictive ability of the C1, C2 and the

C0 training sets might be because the C1 training set was able to

capture more genetic signals for CBSD foliar and root symptom

expression in the West African clones than C0 training set. This

phenomenon was noted by Ozimati et al. (2018) who reported

that optimized Ugandan training sets were able to capture more

genetic signals and yielded higher prediction accuracies for

CBSD resistance in IITA clones than random training sets.

Another possible explanation might be that the quantitative

trait loci (QTLs) responsible for CBSD resistance in the two

populations were different. This might be due to recombination

events that might have occurred in their genomes, resulting in

the rearrangement of QTLs responsible for CBSD resistance in

the three populations.
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Conclusion

Based on the findings of this study, the breeding program in

Uganda has made genetic progress through GS accelerated

breeding cycles for most target traits, especially for CBSD root

necrosis which is one of the must to have traits in a variety,

demonstrating the worthwhile of GS for rapid population

improvement and variety development. In general, low

prediction accuracies were recorded from using Ugandan

training set to predict traits in African clones, suggesting

inadequacy of utilizing Ugandan training set, especially for

CBSD pre-emptive breeding in WA. In this case, efforts should

be devoted to sharing Uganda’s germplasm that possess

resistance with the W. African breeding programs for

hybridization to fully enable deployment of genomic selection

as a pre-emptive CBSD breeding strategy in W.A
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