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The plant stem-cell niche
and pluripotency: 15 years
of an epigenetic perspective

Ralf Müller-Xing* and Qian Xing

Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
Pluripotent stem-cells are slowly dividing cells giving rise to daughter cells that

can either differentiate to new tissues and organs, or remain stem-cells. In

plants, stem-cells are located in specific niches of the shoot and root apical

meristems (SAMs and RAMs). After ablation of stem-cell niches, pluripotent

meristematic cells can establish new stem-cells, whereas the removal of the

whole meristem destructs the regeneration process. In tissue cultures, after

detached plant organs are transferred to rooting or callus induction medium

(G5 or CIM), vasculature-associated pluripotent cells (VPCs) immediately start

proliferation to form adventitious roots or callus, respectively, while other cell

types of the organ explants basically play no part in the process. Hence, in

contrast to the widely-held assumption that all plant cells have the ability to

reproduce a complete organism, only few cell types are pluripotent in practice,

raising the question how pluripotent stem-cells differ from differentiated cells.

It is now clear that, in addition to gene regulatory networks of pluripotency

factors and phytohormone signaling, epigenetics play a crucial role in initiation,

maintenance and determination of plant stem-cells. Although, more and more

epigenetic regulators have been shown to control plant stem-cell fate, only a

few studies demonstrate how they are recruited and how they change the

chromatin structure and transcriptional regulation of pluripotency factors.

Here, we highlight recent breakthroughs but also revisited classical studies of

epigenetic regulation and chromatin dynamics of plant stem-cells and their

plur ipotent precursor-cel ls , and point out open questions and

future directions.

KEYWORDS

stem-cell formation and determinacy, pluripotent stem-cell lineages, callus
formation, adventitious shoots and roots, pluripotency factors, epigenetic
regulators, chromatin remodeling and modifications
Introduction

Unlike animals, plant growth and organ formation occur post-embryonically,

mediated by meristems that are located on the tips of growth axes in shoots and roots

(Doerner, 2003). Meristems contain a specialized cellular microenvironment known

as stem-cell niche (SCN) that provides the signals and physical support to maintain
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the pluripotent stem-cells (Sablowski, 2011). The SCN is

surrounded by a transitory population of indeterminate cells

that give rise to determinate cells and organs. Shoot and root

apical meristem (SAM and RAM), which are formed

during embryogenesis, only contributes to the main stem

and main root, respectively. Branched structures rise post-

embryonically from secondary meristems initiated from a few

cells that retain meristematic characteristics (Nicolas and

Laufs, 2022). In SAMs, the stem-cells, located at the top of

the meristematic dome, secret the signal peptide CLAVATA3

(CLV3) that represses the pluripotency gene WUSCHEL

(WUS) in cells of the organizing center (OC) underneath the

stem-cells (Müller-Xing and Xing, 2021). Along with the

pluripotency factor SHOOT MERISTEMLESS (STM), WUS

maintains the stem-cells that form with the OC the shoot SCN.

RAMs include mitotically less active organizer cells called the

quiescent center (QC) and the surrounding initials, which

together compose the root SCN. Similar to WUS, the

pluripotency factor WOX5 maintains the stemness of the

initials (Sarkar et al., 2007). Hence, ‘organizing’ cells

maintain the stem-cells and SCNs by continuous short-range

signaling. In 2007, Ben Scheres proposed in his landmark

review that the SCNs of plant and animal kingdoms are

specified by kingdom-specific patterning mechanisms, but

that connect to a related core of epigenetic stem-cell factors

(Scheres, 2007). Growing evidence endorses that plant stem-

cell fate is also determined by epigenetic mechanisms, since

the first models for an epigenetic control of plant SCNs were

proposed 15 years ago.

High regeneration capacity is a feature of plant

development. After loss of the SCN by laser ablation, the

pluripotent meristematic cells can establish new stem-cells in

SAMs and RAMs (Reinhardt et al., 2003; Xu et al., 2006). The

removal of whole meristems leads to destruction of the

regeneration process (Sachs, 1994), indicating that

meristematic cells are more pluripotent than somatic cells. In

the RAM, the stem-cell regeneration competence correlates

with the expression gradient of pluripotency factor

PLETHORA2 (PLT2) (Figure 1A) (Durgaprasad et al., 2019).

There are at least two ways how epigenetic regulators control

stem-cell fate: (i) they directly regulate the gene loci of

pluripotency factors; or (ii) they regulate genes that are

required to maintain the meristem organization that

indirectly preserves the SCN, this may include indirect

regulation via phytohormone pathways. For instance, altered

levels of the repressive histone mark H3K27me3 at PIN gene

loci, which encode Auxin efflux-carriers, results in altered

auxin gradients, RAM size and lateral root primordia (LRP)

numbers (Figure 1C). This perspective focuses on the

epigenetic regulation of pluripotency genes that control

stem-cell fate in Arabidopsis thaliana.
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Direct and indirect regulation of
pluripotency factors by epigenetic
chromatin modifiers and remodelers
in the RAM

Epigenetic gene regulation bases on post-translational histone

modifications, nucleosome assembly and ATP-dependent

chromatin remodeling, which controls the accessibility of

chromatin to transcription factors. Although both chaperone

complexes target histone H3 variants, Histone Regulator A

(HIRA) complex and chromatin assembly factor-1 (CAF-1)

complex have opposite effects on epigenetic gene regulation

(Figure 1B). The HIRA complex deposits H3.3, which facilitates

transcription, in a DNA synthesis-independent manner (Nie et al.,

2014), whereas H3.1 deposition, which is essential for

maintenance of the repressive H3K27me3 mark through cell

division, relies on the heterotrimeric CAF-1 complex (Jiang and

Berger, 2017). CAF-1 maintains cellular and functional

organization and expression of the pluripotency gene

SCARECROW (SCR) in the RAM (Kaya et al., 2001). CAF-1

and the H2A/H2B histone chaperone NAP1-RELATED

PROTEIN1/2 (NRP1/2) play synergistic roles in root SCN

maintenance by rather maintaining of the auxin gradient

maximum at the QC than directly controlling the expression of

pluripotency genes such as WOX5 and PLT1 (Ma et al., 2018).

Similarly, NRP1/2 and the chromatin-remodeling factor

INOSITOL AUXOTROPHY 80 (INO80) synergistically

maintain histone H3 levels within the chromatin regions of

PIN1, while the simultaneous loss of these three genes results in

higher PIN1 protein levels, perturbed auxin gradients and

misexpression of the root pluripotency factors WOX5 and

PLT1/2 (Kang et al., 2019). On the contrary, the SWI2/SNF2-

family chromatin-remodeling factor BRAHMA (BRM) positively

regulates the expression of several PINs as well as PLT1/2, but

ChIP experiments indicate that only the PIN genes are directly

targeted by BRM (Yang et al., 2015). Hence, loss of BRM affects

the expression of PLT1/2 rather indirectly through impaired auxin

signaling by reduced PIN expression levels. In contrast, the non-

canonical SWI2/SNF2-type ATPase MINUSCULE2 (MINU2)

directly activates the promoter of WOX5 (Sang et al., 2012).

The repressive Polycomb group (PcG) proteins and the

activation-related Trithorax group (TrxG) proteins have been

implicated to regulate SCN maintenance and meristem activity

(Singh et al., 2020). The Polycomb Repressive Complex 2

(PRC2) deposits the repressive H3K27me3 mark, while PRC1

sets the repressive H2AK121ub mark independently of

H3K27me3 (Zhou et al., 2017). TrxG proteins were defined as

their antagonists that can range from chromatin-remodelers to

histone modifiers that deposit activation-related marks such as

H3K4me3 and histone acetylation (Müller-Xing et al., 2014b).
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FIGURE 1 (Continued)

Regeneration competence of RAMs and epigenetic regulation of pluripotency genes. (A) Organization of the RAM and dependency of root tip
regeneration on the pluripotency factor PLT2. After resection, PLT2 confers regeneration potential to differentiating cells via auto-activation. Notably,
resection beyond the regeneration boundary prevents regeneration of the SCN. (B) Epigenetic gene regulation by HIRA, CAF-1, PRC2 and REF6. Beside
the eponymous histone chaperone, the HIRA complex contains Anti Silencing Factor 1 (ASF1), Calcineurin Binding protein 1 (CABIN1) and Ubinuclein (UBN)
1/2 (Nie et al., 2014), while FASCIATA1/2 (FAS1/2) and MULTICOPY SUPPRESSOR OF IRA1 (MSI1) are subunits of CAF-1 complex (Kaya et al., 2001). The
demethylase REF6 can interact with BRM and bind sequence-specifically its target genes to remove H3K27me3 (Li et al., 2016). (C) Direct and indirect
epigenetic control of root pluripotency factors. Removal of H3K27me3 by REF6 is required to maintain PIN1/3/7 expression, while PRC2 represses PIN1 by
H3K27me3 (Gu et al., 2014; Wang et al., 2019). Note that altered PIN expression indirectly changes the expression of pluripotency genes via AUXIN
RESPONSE FACTORs (ARFs). ARF7/19 recruits H3K27me3-demethylase JMJ30 and H3K36me3-transferase ATXR2 to activate LATERAL ORGAN
BOUNDARIES DOMAIN16/29 (LBD16/29) that encode key regulators of lateral root (LR) formation, while PKL recruits RBR1 that represses LBD16 (Lee et al.,
2018a; Lee et al., 2018b; Ötvös et al., 2021). ROW1 specifically binds H3K4me3 at the WOX5 promoter to repress its transcription (Zhang et al., 2015).
General Control Nonderepressible protein5 (GCN5), and its activator ADA2b promote PLT1/2 expression (Kornet and Scheres, 2009). Note that most
pluripotency factors are PcG/H3K27me3-targets (Zhang et al., 2007; Shu et al., 2019). Hence, global changes of H3K27me3 could affect their expression
directly and indirectly via changed auxin signaling by altered PIN levels. RBR1 interacts with the PRC2 component FIE (Mosquna et al., 2004), but it remains
unclear whether this connection is relevant for the GRN of the root SCN. (D) Maintenance of the shoot SCN by epigenetic regulation of root pluripotency
factors. (E) Floral stem-cell determinacy through silencing of WUS by a complex GRN (Reviewed in (Shang et al., 2019). During flower stage 2, LEAFY (LFY)
and WUS as well as the TrxG proteins ULT1 and ATX1 activate AG that in turn activate SUPERMAN (SUP) and KNUCKLES (KNU). In flower stage 6, KNU
represses CLV3 and WUS (Shang et al., 2021). Many of these transcriptional regulations are supported or driven by changes in H3K4me3 (K4m) or
H3K27me3 (K27m), which is also confirmed by the flower indeterminacy phenotypes by loss of H3K27me3 demethylases REF6, ELF6 and JMJ13 or PRC2
(Yan et al., 2018; Müller-Xing et al., 2022). Other genes directly or indirectly involved in WUS silencing: ARGONAUTE1 (AGO1), AUXIN RESPONSE
TRANSCRIPTION FACTOR3 (ARF3/ETT), CRABS CLAW (CRC), FAR-RED ELONGATED HYPOCOTYLS3 (FHY3), PERIANTHIA (PAN), REBELOTE (RBL),
SQUINT (SQN), YUCCA4 (YUC4) and the HD-ZIP class III transcription factors CORONA (CNA), PHABULOSA (PHB), PHAVOLUTA (PHV) and REVOLUTA
(REV). (F) GRN of floral stem-cell determinacy sustained by changes in H3K27me3 levels at gene loci of pluripotency genes and other key regulators (after
(Müller-Xing et al., 2022), modified). STM enhances binding of WUS to the CLV3 chromatin through STM-WUS heterodimerization (Su et al., 2020).
Arrows, transcriptional activation. Arrows with blunt ends represent repression. Double-sided arrows, protein-protein interaction. Dotted arrows indicate
either indirect regulation or possible direct regulation that is not yet verified. Arrows in green indicate positive epigenetic regulation, in red, negative
epigenetic regulation, and in black, non-epigenetic regulation. K4m, H3K4me3; K27m, H3K27me3; K36m, H3K36me3; H3/4ac, H3/H4 acetylation.
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A key role of PRC1 is the repression of several key regulators

such as WOX5 and PLT1/2 controlling root SCN specification

and cell proliferation (Merini et al., 2017). The CHD3-type

chromatin-remodeler PICKLE (PKL) is a TrxG protein and

acts antagonistically to the PcG protein and H3K27me3-

transferase CURLY LEAF (CLF) controlling RAM activity

(Aichinger et al., 2011). Altered meristematic activity in pkl

and clf mutants correlates with changed H3K27me3 levels and

altered expression of these pluripotency genes (Aichinger et al.,

2011). Loss of PKL decreases meristematic activity with an

increased H3K27me3 level at WOX5 and PLT1/2, whereas

mutation in CLF increases meristematic activity of the root

with loss of the H3K27me3 level. In line with the negative

effect of H3K27me3 on root pluripotency genes and SCN, the

H3K4-histone methyltransferases ARABIDOPSIS HOMOLOG

of TRITHORAX1 (ATX1/SDG27) and SET DOMAIN GROUP2

(SDG2) promote the root SCN integrity (Yao et al., 2013;

Napsucialy-Mendivil et al., 2014), but it is not yet known

whether ATX1 and SDG2 directly bind to the chromatin of

pluripotency genes.

Most chromatin modifiers and remodelers do not possess a

DNA-binding domain that would allow sequence-specific

binding to their target genes. Hence, one of the recruitment

strategies of epigenetic regulators such as PRC2 is through

intermediary transcription factors, which facilitate recruitment

to the target chromatin (Godwin and Farrona, 2022). Notably,

pluripotency factors can be such recruiters of epigenetic

regulators. WOX5, which is expressed in the QC, functioning
Frontiers in Plant Science 04
as a mobile organizer signal that represses differentiation in

neighboring columella stem-cells. There, WOX5 recruits the co-

repressors TPL/TPRs that, in turn, recruit histone deacetylase

HDA19 to silence the differentiation factor CDF4 via histone

deacetylation (Pi et al., 2015). Recently, it has been implied that

the EAR-domain of TPL can also recruit PRC2-activity, but the

proof of a direct TPL-PRC2 interaction is pending (Baile et al.,

2021). WOX5 transcription is also epigenetically regulated. SCR

recruits SEUSS (SEU), a homologue of the animal LIM-domain

binding (LDB) proteins, to the WOX5 promoter. Subsequently,

SEU recruits the methyltransferase SDG4 that deposits

H3K4me3 at the WOX5 promoter activating this key

pluripotency factor in the RAM (Zhai et al., 2020).

RETINOBLASTOMA-RELATED1 (RBR1) is a master

regulator of the cell cycle and root development. In 2007, Ben

Scheres suggested RBR1 as one potential link between stem-cell

regulation and chromatin modifications in plants (Scheres,

2007). This assumption largely relied on a study in

mammalian research revealing that retinoblastoma (RB)

protein targets PRC2 to the promoter of cell-cycle control

genes (Kotake et al., 2007). Since, it has be shown that RBR1 is

required for silencing of late embryonic genes by increasing

H3K27me3 levels via PRC2 in plants (Gutzat et al., 2011).

Several studies deepened our knowledge about how RBR

control RAM development (reviewed in (Desvoyes and

Gutierrez, 2020) but elucidation of a potential RBR1-PRC2

pathway involved in controlling the root SCN awaits

further research.
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Epigenetic regulation of the
shoot SCN, a TALE of activation
and silencing

In retrospect, the article of (Takeda et al., 2004) about

TONSOKU (TSK/BRUSHY1/MGOUN3) can be considered as

one of the first studies that addressed the role of epigenetics in

maintaining the shoot SCN. The authors showed that loss of TSK

results in disorganized SAMs with an abnormal, dispersed WUS

expression pattern, and suggested that TSK links DNA-repair

and epigenetic gene silencing, but the exact molecular function

of TSK remained vague. A most recent study revealed that TSK-

mediated DNA-repair, which can rescue broken DNA-

replication forks, involves specific interaction of TSK with

H3.1 via recognition of alanine 31 (Davarinejad et al., 2022).

H3.1 is essential for maintenance of H3K27me3 by PRC2

through cell division and silencing of the TALE class I KNOX

and pluripotency genes STM, BP/KNAT1, KNAT2, and KNAT6

(Jiang and Berger, 2017). Hence, the ability of TSK to distinguish

H3.1 from other H3 variants might play a role in TSK-

dependent epigenetic gene repression and should be addressed

in future studies.

SWI2/SNF2-type chromatin-remodelers, such as BRM and

its homologue SPLAYED (SYD), play an important role in the

accessibility of cis-regulatory DNA regions to transcription

factors. In SAMs, SYD is recruited to the WUS promoter and

directly activates WUS transcription, which is involved in

maintenance of the shoot SCN (Kwon et al., 2005). The

recruiter of SYD to the WUS chromatin is not yet known and

is a question to be addressed. BRM and SYD are not likely to

activate STM directly but via direct activation of CUC genes

(Kwon et al., 2006). The PHD-domain protein REPRESSOR OF

WUSCHEL1 (ROW1/BARD1) confines WUS expression into

the OC by binding to the WUS promoter near the SYD-binding

site. Since ROW1 and SYD interact in Co-IP assays, BARD1may

repress WUS transcription via inhibition of SYD-dependent

chromatin-remodelling that activates WUS expression (Han

et al., 2008; Han and Zhu, 2009). Also two non-canonical

SWI2/SNF2-type ATPases MINU1/MINU2 are essential to

maintain the shoot SCN but do not bind to the WUS

chromatin (Sang et al., 2012).

Strongly depleted PRC2 function results in enlarged SAMs

with increased STM expression levels and expanded expression

domain of the stem-cell marker CLV3, while WUS expression

and domain size were decreased, indicating an uncoupling of

stem-cell fate and WUS expression levels (Müller-Xing et al.,

2014a; Müller-Xing et al., 2015; Müller-Xing et al., 2022). This

downregulation of WUS might be caused by upregulation of

WUS repressors such as KNU that is an H3K27me3-target. The

mRNAs of STM and KNAT1 are expressed in the SAM but are

silent in leaf and early stages of flower primordia (Lincoln et al.,

1994; Long et al., 1996). The ASYMMETRIC LEAVES1 (AS1)-
Frontiers in Plant Science 05
AS2 transcription factor complex recruits PRC1, PRC2 and the

PcG-associated protein LHP1 to chromatin of KNAT1, KNAT2,

and KNAT6 to silence these pluripotency genes (Lodha et al.,

2013; Z. Li et al., 2016). Similarly, ARF3/4 silence directly STM

via histone-deacetylation in flower primordia, although the co-

repressor, which links ARF3/4 with HDA19, still waits to be

discovered (Chung et al., 2019). This strong epigenetic

repression of pluripotency genes in organ primordia and

differentiated tissue leads to the question how the stem-cells of

auxiliary (AMs) and flower meristems (FMs) can be de

novo initiated.
Epigenetically maintained
pluripotency facilitates de novo
stem-cell formation during
shoot branching

Shoot branching requires the initiation of auxiliary

meristems (AMs) and de novo stem-cell formation from a few

cells of the leaf axil that retain some meristematic characteristics,

named premeristems (Nicolas and Laufs, 2022). In the

premeristemic cells, ATH1-STM heterodimer binds the

pluripotency gene STM to maintain its expression at a low

level, which endows permissive STM chromatin for subsequent

upregulation of STM during AM initiation (Figure 2A). During

the premeristemic stage, low STM transcription maintains low

levels of repressive H3K27me3 and high levels of the active

chromatin marker H3 acetylation, which allows the STM locus

to remain epigenetically active (Cao et al., 2020). Hence,

pluripotency seems sustained through low and epigenetically

maintained expression of pluripotency genes in precursor-cells

of stem-cells. It would be certainly interesting to investigate

whether this is true throughout the plant life-cycle

demonstrating that pluripotency is epigenetically maintained

in plant stem-cell lineages.

Stem-cell determinacy during flower
development by epigenetic silencing
of several pluripotency genes

Flowers are determinate structures. A feedback loop, built

by WUS and AGAMOUS (AG), terminates the stem-cell pool of

FMs by silencing WUS during floral stage 6, which is time-

buffered via epigenetic regulation by PcG and TrxG proteins

(Müller and Goodrich, 2011). In the last two decades, near a

dozen pathways were discovered, which also contribute to the

epigenetic silencing of WUS by H3K27me3 (Figure 1E). We

recently revealed that during FM arrest also several other

pluripotency genes, including STM and other TALE KNOX

genes, are silenced by H3K27me3 (Figure 1F). This
frontiersin.org
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FIGURE 2 (Continued)

Pluripotency acquisition during de novo stem-cell formation and de novo organogenesis. (A) Organization of the SAM and epigenetic maintenance of
premeristem cells for shoot branching. STM is silenced by H3K27me3 in differentiated tissue, while low expression rates of STM, which interacts with
ATH1, auto-activates its own transcription in premeristemic cells. REV directly upregulates STM expression in leaf axil meristematic cells (Shi et al., 2016).
(B) Vascular-associated pluripotent cells are key for callus formation and de novo organogenesis. Several epigenetic regulators control callus development
including PRC2 that promotes callus formation by repressing leaf-regulatory genes (X) by H3K27me3 (He et al., 2012). Although CUC2 and GCN5
promote shoot regeneration, both suppress M/G2-phase marker CYCB1;1 and cell proliferation in callus tissue (Daimon et al., 2003; Kim et al., 2018; Li
et al., 2016). (1) Conceptional model of the transcriptional and epigenetic regulation of DNRR (after (Jing et al., 2020); modified): ULT1, which can
associate with PcG protein EMF1, suppresses DNRR by negative regulation of ERF109 that is activated by the wounding-induced Jasmonate signaling
(Zhang et al., 2019; Tian et al., 2022). ERF109 and ERF111 activate the auxin synthesis gene ASA1 and the transcription factor SPL10 that in turn represses
ASA1 (Ye et al., 2020). Auxin synthesis and transport produce an auxin maximum near the wounding site, which triggers the GRN composed of ARFs,
WOX11/12, LBD16/18, WOX5/7 and PLT1/2. (2) Pluripotency acquisition in the middle cell layer of callus: WOX5 and PLT1/2 directly interact to activate
TAA1 to accelerate endogenous auxin production. WOX5 also interacts with the B-type ARABIDOPSIS RESPONSE REGULATOR12 (ARR12), which
represses A-type ARRs breaking the negative feedback loop in cytokinin signaling. Overall, the promotion of auxin biosynthesis and the enhancement of
cytokinin sensitivity are both required for pluripotency acquisition for shoot and root regeneration (Zhai and Xu, 2021). (3) Pluripotency acquisition in
microcallus: Protoplast isolation from differentiated mesophyll cells induces stochastic gene expression of WUS and DORNRÖSCHEN/ENHANCER OF
SHOOT REGENERATION1 (DRN/ESR1), which accelerate microcallus formation and, subsequently, shoot regeneration (Xu et al., 2021). The stochastic
gene expression of WUS and DRN in protoplasts and microcalli might be caused by variant levels of epigenetic modifications such as H3K27me3 by PRC2.
(C) Models of cell-type-specific transcriptional and epigenetic regulation, interaction and subnuclear localization during distal root SCN maintenance.
WOX5 represses QC divisions by repressing CYCLIN D (CYCD) activity within the QC (Forzani et al., 2014). Although WOX5 and PLT2/3 proteins are
present in nuclei of QC and columella stem-cells (CSCs), PLT3 recruits WOX5 only in the CSCs into nuclear bodies. The H3K27me3-reader PWWP-
DOMAIN INTERACTOR OF POLYCOMBS1 (PWO1) associates with PRC2 and can form nuclear PcG bodies (Hohenstatt et al., 2018; Mikulski et al., 2019).
Since TPL can recruit PRC2 activity, WOX5-TPL-HDA19 and PWO1-PRC2 might co-localize in the same nuclear body. In the columella cells (CCs), CDF4
is expressed promoting cell division und differentiation. (B, C) In future studies, it would be interesting to address whether WUS, WOX5 and other
pluripotency factors interact with further epigenetic regulators. Arrows, transcriptional activation. Arrows with blunt ends represent repression. Double-
sided arrows, protein-protein interaction. Dotted arrows indicate either indirect regulation or possible direct regulation that is not yet verified. Arrows in
green indicate positive epigenetic regulation, in red, negative epigenetic regulation, and in black, non-epigenetic regulation. K4m, H3K4me3; K27m,
H3K27me3; K36m, H3K36me3; H3ac, H3 acetylation; H3/4ac, H3/H4 acetylation.
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synchronized silencing of several pluripotency genes could

accelerate FM determinacy in a way that cannot be achieved

by silencing WUS alone (Müller-Xing et al. , 2022).

Considering the complexity of the gene regulatory

network (GRN) controlling H3K27me3-mediated silencing of

WUS (Figure 1D), similar complex regulation might wait

to be revealed for the other H3K27me3-silenced floral

pluripotency genes.

Epigenetics facilitate de novo
organogenesis from vascular-
associated pluripotent cells

Similar to shoot branching, de novo organogenesis depends

on de novo stem-cell regeneration from pluripotent precursor-

cells. De novo root regeneration (DNRR) can occur directly from

detached organs such as leaves (Chen et al., 2014) or indirectly,

like shoot regeneration, from auxin-induced callus tissue (Skoog

and Miller, 1957). Lateral roots (LRs), adventitious roots (ARs)

and callus derivate from pluripotent cells that can be collectively

termed vasculature-associated pluripotent cells (VPCs): LRs rise

from pericycle cells (Malamy and Benfey, 1997), the root-

founder cells of ARs emerge through cell-fate-transition from

procambium cells or its nearby parenchyma cells (Liu et al.,

2014), and callus origins from xylem-pole pericycle and

pericycle-like cells (Figure 2B) (Atta et al., 2009; Sugimoto

et al., 2010). The formation of LRs, ARs and callus is regulated
Frontiers in Plant Science 07
by several epigenetic regulators including PRC2 (Reviewed in

(Jing et al., 2020). Callus does not consist of dedifferentiated cells

(Fehér, 2019) and comprise rather features of LRPs including

stem-like cells. Treatment on shoot or root induction medium

(SIM or RIM) gives raise to de novo organogenesis (Figure 2B). A

recent study using single-cell transcriptomics revealed that only

the middle cell layer of callus acquires pluripotency, which is

required for organ regeneration (Zhai and Xu, 2021). In this QC-

like middle layer, pluripotency depends onWOX5 that functions

as master regulator activating auxin synthesis while suppressing

cytokinin signaling (Figure 2B). The pluripotency acquisition of

callus depends also on histone modifications and nucleosome

assembly, since overexpression of the atypical histone variant

H3.15, which cannot be H3K27me3, promotes callus formation

(Yan et al., 2020). During shoot regeneration, WUS is essential

for de novo establishment of the shoot SCN. After transferring

the callus to SIM,WUS is epigenetically reactivated by a two-step

mechanism: (i) the cytokinin-rich environment initially

promotes the removal of repressive H3K27me3 at WUS in a

cell cycle-dependent manner; subsequently (ii), B-type

ARABIDOPSIS RESPONSE REGULATORs (ARRs) spatially

activate WUS expression through binding with HD-ZIP III

transcription factor REVOLUTA (REV) (Zhang et al., 2017).

With extreme treatments, single somatic cells also can reacquire

pluripotency and totipotency forming into entire plants (Takebe

et al., 1971). While WOX5 provides pluripotency in auxin-

induced callus, WUS accelerates microcalli formation and,

subsequently, shoot regeneration from mesophyll protoplasts
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(Xu et al., 2021). It is yet not known whether WUS and WOX5

interact with epigenetic regulators to provide pluripotency

during de novo organogenesis (Figure 2B).
Discussion

In the last 15 years, numerous studies have enhanced our

understanding about how epigenetics play a crucial role in

initiation, maintenance and determination of plant stem-cells, yet

many open questions remain. For example, the HIRA complex

deposits the histone variant H3.3 that correlates with active gene

transcription (Nie et al., 2014). However, HIRA interacts with AS1

and AS2 to repress the class I KNOX genes (Phelps-Durr et al.,

2005). HIRA has at least the potential to act in gene repression

since HIRA contributes to nucleosome occupancy also at

heterochromatic regions that are silenced (Duc et al., 2015).

Similarly, TrxG factors ATX1 and ULTRAPETALA1 (ULT1)

and the PcG protein EMF1 interact to prevent synergistically

seed gene misexpression in RAMs (Xu et al., 2018). Yet the exact

molecular mechanisms remain unclear how epigenetic regulators

such as HIRA and ATX1/ULT1, whose main function is

transcriptional activation, achieve gene repression. In general, the

question remains how the epigenetic pathways corporate with each

other and which upstream signals modulate their spatiotemporal

specificity. Most recently, it has been shown that glucose-activated

TOR kinase controls genome-wide H3K27me3, which limits SAM

size (Ye et al., 2022) indicating that glucose signaling controls stem-

cell fate also epigenetically.

Some findings of single-gene approaches were recently

challenged by whole-genome studies. For example, STM

misexpression in PRC1 mutants suggested that STM is a direct

target (Xu and Shen, 2008), while recent ChIP-Seq data show

that STM is an H3K27me3-target but not of the PRC1 mark

H2AK121ub (Zhou et al., 2017). Similarly, manipulation of cell

cycles with pharmacological agents suggests that KNU loses

H3K27me3 passively by cell division in flower primordia (Sun

et al., 2014), while ChIP-Seq data show that demethylases

RELATIVE OF EARLY FLOWERING6 (REF6), ELF6 and

JMJ13 are required for active H3K27me3-removal at KNU in

inflorescences (Yan et al., 2018). It should be emphasized that

passive and active H3K27me3-removal could work hand-in-

hand at the KNU gene locus.

A recent study showed that the pluripotency factors WOX5,

PLT2 and PLT3 form alternative complexes in different cell-

types of the RAM (Burkart et al., 2022). It seems reasonable to

anticipate that epigenetic complexes and their recruiters are also

cell-type-specifically formed (Figure 2C). Although single-cell

studies are currently rather used for whole-genome profiling, cell

type-specific investigation will also become more common in

single-gene/protein approaches in which protein-protein and

protein-DNA interactions are investigated. Advanced confocal

microscope approaches reached now a new level that allows in
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vivo FRET-FLIM in single cells of the RAM (Long et al., 2017),

which will reveal cell-type-specific protein interactions of

epigenetic complexes in the future.
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