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the reproductive success of red
and brown algae
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Fisheries Sciences, Hokkaido University, Hakodate, Japan
Seaweedsormacroalgaeare important primaryproducers that serveas ahabitat for

functioning ecosystems. A sustainable production of macroalgae has been

maintained by a diverse range of life cycles. Reproduction is the most dynamic

changetooccurduring its lifecycle,and it isakeydevelopmentalevent toensurethe

species’ survival. There is gradually accumulating evidence that plant hormones,

such as abscisic acid and auxin, have a role on the sporogenesis of brown alga

(Saccharina japonica). Recent studies reported that 1-aminocylopropane-1-

carboxylic acid, an ethylene precursor, regulates sexual reproduction in red alga

(Neopyropiayezoensis) independently fromethylene. Inaddition, thesemacroalgae

have an enhanced tolerance against abiotic and biotic stresses during reproduction

toprotect theirgametesandspores.Herein,wereviewedthecurrentunderstanding

on the regulatory mechanisms of red and brown algae on their transition from

vegetative to reproductive phase.
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Introduction

Seaweeds ormacroalgae are macroscopic aquatic organisms that independently evolved

three lineages that are generally named green, red, and brown algae. Macroalgae produce

natural ecosystems and support high levels of biodiversity in coastal zones by providing food,

shelter, and habitat for various marine organisms, including invertebrates, fish, mammals,

and seabirds (Graham, 2004; Teagle et al., 2017). They are also well-known sources of

hydrocolloids, cosmetic compounds, bioremediation agents, and potential biofuels as well as

foods for human nutrition (Rajapakse andKim, 2011; Deepika et al., 2022). In particular, red

and brown algae are valuable sources of carbohydrate hydrocolloids (e.g., carrageenan, agar,

and alginate), which are used as thickening and gelling agents in food (Rhein-Knudsen and

Meyer, 2021).

Many species of macroalgae have heteromorphic (two morphologically distinct

generations) or isomorphic (two morphologically similar generations) life cycles with
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sporophyte and gametophyte phases. Different phases of the

same species have abilities to exploit different ecological niches

by adapting to environmental factors, such as temperature, light

levels, desiccation, or herbivore abundance (Lubchenco and

Cubit, 1980; Zupan and West, 1990; Klinger, 1993; Thornber,

2006). Thus, an optimal timing of gametogenesis and

sporogenesis is critical for their reproductive success.

Consequently, macroalgae are expected to constantly monitor

environmental and endogenous signals to control their growth

and reproduction. Previous field surveys and laboratory studies

suggest that the transition from vegetative to reproductive

development is tightly regulated by external environmental

factors, such as day length, temperature, and nutrients

(Brawley and Johnson, 1992; Agrawal, 2012; Liu et al., 2017).

In contrast to external factors, our knowledge on endogenous

signaling molecules mediating the transition to reproductive

phase remains limited. However, recent studies suggest that

plant growth regulators, also known as plant hormones, seem

to be important regulatory molecules that control the transition

from vegetative to reproductive stage, especially in red and

brown algae.

Reproductive tissues occur by degrading cell walls for the

release of spores or gametes; thus, they are expected to be

vulnerable to abiotic and biotic stresses, such as UV radiation,

inadequate temperatures, nutrient limitation, desiccation,

pathogen, and herbivore attack. Thus, protection against

stress-induced oxidative damage during reproduction is

necessary for a successful production of offspring. Recent

studies showed that macroalgae enhance their stress tolerance

during reproduction to protect their gametes and spores. A

deeper understanding on the mechanisms of trade-off that

regulate growth, reproduction, and defense responses is

important to sustainably produce seaweeds under climate

changes and provide useful knowledge for new breeding that

could increase the yield in the future. Herein, we reviewed the

recent studies on the roles of plant hormones and stress

tolerance in the reproduction of red and brown algae.
Role of plant hormones and stress
tolerance in the reproduction of
brown algae

Kelps (order Laminariales, class Phaeophyceae) provide

structural habitats for numerous ecologically and economically

important marine species and provide food, alginates, iodine, and

pharmaceutical products (Bartsch et al., 2008). Laminariales

typically exhibit a heteromorphic life cycle that alternates between

microscopic gametophytes and macroscopic sporophytes (Schiel

and Foster, 2006). Mature diploid sporophytes release haploid

spores that settle and develop into either female or male

gametophytes, which produce eggs or sperms, respectively, to

generate diploid sporophytes (Bartsch et al., 2008).
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The gametophytes of Laminariales are involved in sex

pheromones released from female gametes or eggs (Maier

et al., 2001). In contrast, there is evidence that two plant

hormones, abscisic acid (ABA) and auxin, are involved in the

reproduction of their sporophytes, such as in Saccharina

japonica, which is an essential ingredient for making dashi

(soup stock) as “kombu” in Japanese cuisine. An exogenous

application of ABA to sporophyte discs of S. japonica promoted

the formation of sori (Nimura and Mizuta, 2002), which are

reproductive organs with zoosporangia and paraphysis

originating from epidermal cells. During reproduction, the sori

accumulated endogenous ABA to about five times higher than

that in vegetative parts (Nimura and Mizuta, 2002). On the other

hand, ABA application inhibited their growth (Nimura and

Mizuta, 2002). In addition, a negative correlation between

endogenous ABA levels and growth rates of Laminaria

hyperborea sporophytes was reported, suggesting that ABA

acts as a vegetative growth inhibitor in Laminariales

(Schaffelke, 1995a; Schaffelke, 1995b). These findings suggest

that ABA synthesis triggers the switch to reproductive phases in

Laminariales sporophytes.

In contrast, sorus formation was markedly suppressed in the

discs of sporophytes of S. japonica and Undaria pinnatifida in

the presence of indole-3-acetic acid (IAA) (Kai et al., 2006),

which is the most studied natural auxin in land plants.

Consistent with the results, free and conjugated auxin contents

were lower in sorus parts than in vegetative parts (Kai et al.,

2006). Additionally, red light irradiation inhibited sorus

formation with a concomitant decrease in IAA oxidase activity

(Mizuta et al., 2007). Previous studies suggest that inhibitors of

sporangium formation move from intercalary meristem at the

basal to distal frond portions, leading to sorus formation

inhibition (Buchholz and Lüning, 1999; Lüning et al., 2000).

The sporulation-inhibiting factor might be IAA; however, auxin

transports through plant tissues, moving from cell to cell in

higher plants, but it remains unknown in brown algae. Although

the role of auxins in brown algae is unclear, further investigation

on functional interactions between ABA and auxins in

Laminariales could provide important findings on the

mechanisms underlying the transition of brown algae from

vegetative to reproductive phase.

In S. japonica, sorus accumulates high levels of phenolics

and silicon compared to its vegetative parts (Mizuta and Yasui,

2010; Mizuta and Yasui, 2012). In brown algae, phenolics, which

are mainly represented by phlorotannins, have high antioxidant

properties and play a defensive role in protecting against

herbivory and UV radiation (Lemesheva and Tarakhovskaya,

2018). Similarly, electron microscopic observations revealed that

many physodes, which accumulate a large amount of phenolic

substances (Schoenwaelder, 2002), appear in paraphyses and

zoosporangia of Saccharina angustata (Motomura, 1993). In

contrast to the role of phlorotannins, the effects of silicon in

macroalgae are not well-understood, although silicon in higher
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plants has been shown to be involved in amorphous silica barrier

formation, which can help alleviate both biotic and abiotic

stresses (Liang et al., 2007). Silicon is highly deposited in sori,

particularly in paraphyses and mucilage caps, which are thought

to provide a protective covering for zoosporangia (Fritsch, 1952).

Silicate uptake in S. japonica sporophytes is activated by

iodoperoxidase (IPO) whose activity is promoted in

sporophytes treated with ABA (Shimizu et al., 2018; Mizuta

et al., 2021). Therefore, phenolics, silicon, and IPO could act as a

defensive capacity for S. japonica reproduction.

Halogens also play an important role in protecting brown

algae from grazing and fungal and bacterial attacks (Al-Adilah

et al., 2022). Treatment with oligosaccharides derived from

alginate, the main brown algal cell wall polysaccharide, shows

that Laminariales has a high capacity to release iodide during

oxidative bursts (Shimizu et al., 2018) that induce subsequent

defense responses (Küpper et al., 2002; Thomas et al., 2014). In

contrast to other antioxidants, the iodine content of S. japonica

sorus is lower level than that in adjacent vegetative parts,

suggesting that the iodide released from sorus contributes to

chemical defense in reproductive tissues against fungal and

bacterial infection.

Role of plant hormones and stress
tolerance in the reproduction
of red algae

A large group of multicellular red algae, Florideophyceae,

which includes Eucheuma, Kappaphycus, Gracilaria, and

Gelidium, serve as economically important resources for

carrageenan and agar (Lim et al . , 2017) . Volat i le

phytohormones, such as ethylene and methyl jasmonate, were

reported to promote the formation of reproductive structures,

cystocarp, and tetrasporangia as well as the release of their

spores. These findings were already reviewed by Garcia-

Jimenez and Robaina (2019), so it was not mentioned here.

The second group of multicellular red algae, Bangiophyceae,

contains Neopyropia, Porphyra, and Pyropia. These are some of

the most important marine aquaculture crops commonly used to

wrap sushi and onigiri. The life cycle of Bangiophyceae generally

consists of a heterogeneous alternation of macroscopic leaf-like

gametophytes and microscopic filamentous sporophytes. During

the sexual life cycle of Bangiales, blade gametophytes bear non-

flagellated male (spermatia) and female (carpogonia) gametes.

Fertilization occurs when female gametes are retained on the

gametophyte, and successive cell divisions produce carpospores

that then grow into filamentous sporophytes that are referred to

as conchocelis; this was regarded as a different species before the

clarification of its life cycle (Drew, 1949; Kurogi, 1953; Iwasaki,

1961). Conchocelis, which has a shell-borne lifestyle, appears to

mitigate in grazing pressure during summer, which is the time of

heavy herbivory.
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Recent research showed that the application of 1-

aminocylopropane-1-carboxylic acid (ACC), an ethylene precursor,

induces the gametophytes to form spermatangia at the apical part and

slightly lose photosynthetic pigments in monoecious species

Neopyropia yezoensis (Uji et al., 2016), which is the main species

cultivated fornori sheet in Japan.ACCalsopromotes the formationof

spermatangia and parthenosporangia in male and female

gametophytes, respectively, in dioecious species Pyropia

pseudolinearis (Yanagisawa et al., 2019), which is harvested as food

in a local area in Japan. ACC has also been widely used to replace

ethylene treatment because the exogenous application of ACC can

greatly increase ethyleneproduction inhigherplants (Elıás et al., 2018;

Sun et al., 2019). Likewise, the release of ethylenewas increased by the

addition of ACC inN. yezoensis (Uji et al., 2016), and it was expected

that ethylenemight be involved in Pyropia/Neopyropia reproduction.

However, later research showed that the exogenous application of a-
aminoisobutyric acid (AIB), a structuralanalogofACCthatblocks the

conversion of ACC to ethylene in higher plants, mimics the effect of

ACC to induce sexual reproduction without endogenous ACC

accumulation (Endo et al., 2021). Meanwhile, 1-aminocyclobutane-

1-carboxylic acid (ACBC), an exogenous ACC analog, promotes

sexual reproduction in the same manner as ACC, whereas

ethephon, an ethylene-releasing agent, does not (Uji et al., 2020).

Therefore, these results raise an intriguingpossibility thatACCplays a

role as a signaling molecule independent from its role in ethylene

signaling for sexual reproduction regulation in Pyropia/Neopyropia.

Although the signal transduction pathways of plant hormones

remain obscure inmacroalgae, a recent study provides evidence that

phospholipase D (PLD) and phosphatidic acid (PA) are required for

signal transduction events leading to ACC-induced sexual

reproduction in N. yezoensis (Uji et al., 2022). PLD hydrolyzes

membrane lipids, producing PA, which is now regarded as a lipid

signaling molecule that regulates numerous physiological processes

in eukaryotes (Wang, 2005; Li et al., 2009). In N. yezoensis, PLD

activity and PA amount increase in response to ACC. Furthermore,

thepharmacological inhibitionofPLDby1-butanol, anantagonist of

PLD-dependent PA production, blocks ACC-induced spermatangia

and carpospore production and prevents ACC-induced growth

inhibition (Uji et al., 2022). Consistent with this observation, 1-

butanol treatment inhibits the transcript accumulation of genes

upregulated by ACC, including extracellular matrix-related genes,

and alleviates the transcriptional decrease in genes downregulated by

ACC, including photosynthesis-related genes (Uji et al., 2022). In

higher plants, there are accumulating reports that PLD and its

product PA mediate the signaling of various plant hormones,

including ABA, ethylene, jasmonic acid, and salicylic acid

(Munnik, 2001; Zhao, 2015). Likewise, PLD-PA signaling for ACC

signaling may play an important role in the sexual reproduction

of Bangiophyceae.

Previous studies showed that the exogenous application of

ACC and ACC analogs enhances the tolerance of N. yezoensis

gametophytes to hydrogen peroxide (H2O2) and heat stress (Uji

et al., 2016; Uji et al., 2020; Uji andMizuta, 2022). In contrast, ABA
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and salicylic acid application fails to mitigate the negative effects of

heat stress on gametophytes (Uji and Mizuta, 2022). In

photosynthetic organisms, the control of reactive oxygen species

(ROS), such as superoxide andH2O2 accumulation in chloroplasts,

is very important for their survival because the ROS produced in

chloroplasts can cause irreversible oxidative damage, leading to

serious damage to photosynthetic apparatus, particularly in

photosystem II (PSII) (Suzuki et al., 2012; Gururani et al., 2015;

Wang et al., 2018). Previous studies revealed that N. yezoensis

gametophytes treatedwithACCmitigate thedecrease inFv/Fm, the

maximum quantum efficiency of photosystem II (PSII)

photochemistry, under oxidative and heat stress (Uji et al., 2016;

Uji et al., 2020; Uji and Mizuta, 2022). In addition, NyHLIP

transcripts encoding a homolog of high-light-inducible protein

(HLIP) of cyanobacteria as well as ascorbate (AsA), a non-

enzymatic antioxidant, are increased during sexual reproduction

induced by ACC treatment (Uji et al., 2020; Uji andMizuta, 2022).

The HLIP of cyanobacteria plays a protective role against singlet

oxygen generation to prevent PSII photoinactivation (Sinha et al.,

2012; Komenda and Sobotka, 2016). AsA, which is abundant in

chloroplasts, is known to function as an electron donor for PSII, so

it can protect PSII from inactivation under high temperature and

high light conditions in higher plants (Tóth et al., 2011). N.

yezoensis gametophytes generally produce spermatia and

carpogonia at the beginning of spring. After fertilization,

liberated carpospores germinate into sporophytes that grow

during summer after being exposed to high light and heat stress.

These findings suggest that an increase in HLIP and AsA during

sexual reproduction may protect against PSII photoinactivation,

which is critical to the acclimation of sporophytes to the habitat.
Link between ROS and reproduction

Although ROS can cause oxidative damage to cells during

abiotic and biotic stresses, ROS were found to regulate the

development, cell proliferation, redox levels, stress, and plant

hormone signaling in plants (Schmidt and Schippers, 2015;

Mittler, 2017). For example, previous studies showed that

decreasing the ROS levels of plant cells to below a particular

threshold could result in a suppressed cellular proliferation

(Mittler, 2017). In macroalgae, a high intracellular ROS

production was observed during zoosporangium formation and

paraphyses elongation in S. japonica (Mizuta and Yasui, 2010). Its

sorus had significantly higher activities of ROS scavenging

enzymes, such as ascorbate peroxidase, catalase (CAT),

superoxide dismutase, and glutathione reductase compared to

those of adjacent non-sorus blade sectors (Mizuta and Yasui,

2010). The high activity of ROS scavenging enzymes in the sorus

may contribute to control the ROS levels and ensure the proper

progression of reproduction.

Similarly, ROS generation in N. yezoensis gametophytes

treated with ACC was observed to be accompanied by an
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(Rboh) gene (Uji et al., 2020) that encodes nicotinamide

adenine dinucleotide phosphate (NADPH) oxidases, which are

the key producers of ROS. Packets of 128 spermatia are generally

produced from a vegetative cell of N. yezoensis gametophytes by

a series of mitotic cell divisions, while 16 carpospores are formed

in a carpogonium after fertilization. Thus, a high amount of ROS

during sexual reproduction may play an important role in cell

proliferation to ensure the production of gametes and spores, in

a particular spermatia. ROS also may contribute to the loosening

of cell walls during reproduction to release gametes and spores

because ROS plays a role in cleaving cell wall polysaccharides,

causing the wall to loosen (Passardi et al., 2004). Among ROS

scavenging enzymes, the mRNA levels of the CAT gene, which

encodes catalase, are increased in mature gametophytes induced

by ACC treatment (Uji et al., 2016).

In addition to ROS, previous studies presented evidence of

the multifunctional role of AsA, such as in the regulation of cell

division, cell expansion, and cell wall modification (Smirnoff,

1996). AsA is a crucial molecular modulator involved in cell

progressing to S phase from G1 in root meristems and pericycle

(Liso et al., 1988; Arrigoni et al., 1989). AsA can also act to the

generated OH to cleave polysaccharides, leading to cell wall

loosening (Fry, 1998). The increase in AsA during sexual

reproduction in N. yezoensis appears to be a key player in

forming gametes and spores and in cleaving cell wall

polysaccharides for the liberation of gametes and spores, in

addition to its role as a protection against abiotic stresses.

Based on the above, we propose a possiblemodel of the regulatory

mechanismson the transition fromvegetative to reproductivephase in

Laminariales (Figure 1) and Bangiales (Figure 2).
Conclusion and perspectives

Recent studies suggest that ABA and ACC trigger the switch

from vegetative to reproductive growth in Laminariales and

Bangiales, respectively. So far, the knowledge on the roles of

ABA has been accumulated in land plants (Brookbank et al.,

2021). However, ABA is present and functions in various

organisms, including algae, suggesting that ABA has a

functional significance in diverse organisms (Takezawa et al.,

2011). ACC also appears to be a universal and ancient plant

growth regulator according to recent research (Van de Poel,

2020), although its roles remain insufficiently understood. For a

long time, ACC has only been noted for its function as an

ethylene precursor. However, in recent years, a growing body of

evidence indicates its role as a signaling molecule distinct from

its role in ethylene biosynthesis in land plants (Polko and Kieber,

2019). In addition, the findings on the effects of ACC on red

algae suggest that ACC signaling independent from ethylene is

an ancient pathway conserved after years of evolution (Van de

Poel, 2020). Thus, elucidating the functions and signaling
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pathways of ABA and ACC in various macroalgae is needed to

clarify the mechanisms that regulate the switch between the

vegetative and reproductive phases and the evolutionary

perspective of plant hormones.

Further investigations are also needed to elucidate how

environmental factors that influence their reproduction are

involved in intrinsic factors, such as plant hormones ABA and

ACC. Temperature and photoperiod are major important

factors that influence the timing of seasonal reproduction in

macroalgae (Brawley and Johnson, 1992; Agrawal, 2012; Liu

et al., 2017). Hence, a systematic literature search implies that

warming caused by anthropogenic climate change may result in

a mismatch between temperature and light requirements,

possibly leading to negative effects on their reproduction (De

Bettignies et al., 2018). To date, there is an accumulating

knowledge on mechanisms how macroalgae adapt to changes
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2012; Sun et al., 2015; Wang et al., 2018; Uji et al., 2019; Zheng

et al., 2020). In contrast, the photoperiod measuring system,

which is a mechanism how macroalgae can count day or night

lengths, is still unclear. A recent study reported that histone

modification proteins were identified as potential key players

that regulate diurnal rhythmic genes (Kominami et al., 2022).

Thus, the elucidation of chromatin regulatory mechanisms

related to photoperiod and plant hormone pathways may help

unravel the mechanisms underlying the seasonal control of their

reproduction. In addition to temperature and photoperiod,

nutrients also influence macroalgal reproduction. For example,

the seasonality of sorus formation in S. japonica was linked

closely to the nitrogen content of sporophytes (Mizuta et al.,

1998). In laboratory culture experiments, sorus formation in S.

japonica was delayed in a nutrient-poor medium (Mizuta et al.,
FIGURE 1

Model of the defense system during sorus development in Saccharina japonica. Arrows represent positive regulation, and blocked arrows
represent negative regulation. ABA, abscisic acid; ROS, reactive oxygen species; IPO, iodoperoxidase; APX, ascorbate peroxidase; CAT, catalase;
SOD, superoxide dismutase; GR, glutathione reductase.
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1999), and the sorus area increased with the accumulation of

nitrogen or phosphorus (Nimura et al., 2002). The progress of

research on the coordination between nutritional and hormonal

signaling may be important in understanding the molecular

mechanisms of macroalgal reproduction.

In Laminariales and Bangiales, growth and reproduction

showed a negative correlation, while reproduction and stress

tolerance showed a positive correlation, indicating that the

success of their reproduction is required to allocate limited

resources to them adequately. It is important to explore the

cross-talk between ROS and plant hormones to help understand

the mechanisms how macroalgae can invest their energy in

growth, reproduction, and defense against biotic and abiotic

stresses. A better understanding of mechanisms of trade-off may

provide opportunities to design new breeding strategies that

favor algal productivity and quality, such as by developing high-

yielding cultivars by manipulating the resource allocation of

reproduction and defense activation to growth.
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FIGURE 2

Model of ACC-mediated stress tolerance and sexual reproduction in Neopyropia yezoensis. Arrows represent positive regulation, and blocked
arrows represent negative regulation. ACC, 1-aminocylopropane-1-carboxylic acid; ROS, reactive oxygen species; CAT, catalase; PLD,
phospholipase D; PA, phosphatidic acid; Rboh, respiratory burst oxidase homolog; HLIP, high-light-inducible protein; AsA, ascorbate.
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