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Detecting and pyramiding target
QTL for plant- and grain-related
traits via chromosomal segment
substitution line of rice

Zuyuan Mao †, Xinyan Di †, Saisai Xia, Qian Chen, Xiaohui Ma,
Mei Chen, Zhenglin Yang, Fangming Zhao* and Yinghua Ling*

Chongqing Key Lab of Application and Safety Control of Genetically Modified Crops, Engineering
Research Center of South Upland Agriculture, Ministry of Education, Rice Research Institute,
Southwest University, Chongqing, China
Introduction: Plant height and grain length are important agronomic traits in

rice, exhibiting a strong effect on plant architecture and grain quality of rice

varieties.

Methods: Methods: A novel rice chromosomal segment substitution line

(CSSL), i.e., CSSL-Z1357, with significantly increased plant height (PH) and

grain length (GL) was identified from CSSLs constructed by using Nipponbare

as a receptor and a restorer line Xihui 18 as a donor. Seven agronomic traits of

PH, PL, GL, GW, GPP, SPP, and TGWwere phenotyped, and REML implemented

in HPMIXED of SAS were used to detect the QTL for these traits. Secondary

CSSLs were screened out via marker-assisted selection (MAS) to estimate the

additive and epistatic effects of detected QTLs, evaluating the potential

utilization of pyramiding the target QTLs for yield and quality improvement

of rice varieties.

Results and Discussion: Results and Discussion: CSSL-Z1357 carried nine

segments from Xihui 18 with an average segment length of 4.13 Mb. The

results show that the long grain of CSSL-Z1357 was caused by the increased

number of surface cells and the length of the inner glume. Thirteen quantitative

trait loci were identified via the F2 population of Nipponbare/CSSL-Z1357,

including three each for GL (qGL-3, qGL-6, and qGL-7) and PH (qPH-1, qPH-7,

and qPH-12I), among which qGL-3 increased GL by 0.23 mm with synergistic

allele from CSSL-Z1357. Additionally, three single (S1 to S3), two double (D1,

D2), and one triple segment (T1) substitution lines were developed in F3 via

MAS. Results show that pyramiding the segments from Chr.3 (qGL-3 and qPH-

3), Chr.6 (qGL-6 and qPH-6), and Chr.7 (Null and qPH-7) tended to result in

better phenotype of increased GL and PH and decreased grain width, providing

a potential basis for enhancing grain yield and quality in rice breeding.

KEYWORDS

rice (Oryza sativa L.), chromosome segment substitution lines, grain-related traits,
QTL identification, pyramiding
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Introduction

Grain-related traits, including length, width, thickness,

and weight, in rice (Oryza sativa L.) determine yield and

quality of rice varieties, making them important for both

breeders and scientists (Xu et al., 2004). Up to now, a large

number of major quantitative trait loci (QTLs) controlling

grain length (GL) and other related traits were detected; some

of these QTLs were cloned and functionally profiled, e.g.,

BG1, PGL1, GL2/3, GS2/3/9, GSE5, and GW2/5/7. In addition,

several signaling pathways, including phytohormones,

ubiquitin-proteasome, G-protein, mitogen-activated protein

kinase (MAPK), transcription factors (TFs), and secreted

peptides, that control grain size have been revealed (Fan

and Li, 2019; Li et al., 2021). Brassinosteroids (BRs),

auxin, and cytokinin (CK) are the phytohormones that

play important roles in controlling grain size (Che et

al., 2015).

In rice, more than 10 genes are reported to regulate grain

size through phytohormone-related pathways. For example,

eight genes, i.e., GSE5/GW5 (Weng et al., 2008; Duan et al.,

2017; Liu et al., 2017), GSK2 (Tong et al., 2012; Lyu et al.,

2020), GSK3 (Gao et al., 2019; Liu et al., 2021), GS5 (Li et al.,

2011), GS2 (Duan et al., 2015; Hu et al., 2015), and qGL3/

OsPPKL1 (Zhang et al., 2012; Gao et al., 2019), are

documented to regulate rice grain size via the BR signaling

pathway. In addition, six genes [qTGW3 (Hu et al., 2018),

BG1 (Liu et al., 2015), TGW6 (Ishimaru et al., 2013), RBG1

(Lo et al., 2020), and qGL5/OsAUX3 (Qiao et al., 2021)]

associated with the auxin pathway, and two genes [OsPUP7

(Qi and Xiong, 2013) and BG3 (Xiao et al., 2019; Yin et al.,

2020)] linked to the CK pathway are reported to regulate

grain size in rice.

The ubiquitination-proteasome pathway genes, including

GW2 (Song et al., 2007; Hao et al., 2021), OsOTUB1/WTG1

(Wang et al., 2017; Huang et al., 2017), LG1/OsUBP15 (Shi

et al., 2019), and TUD1(Hu et al., 2013), also play crucial roles

in the regulation of grain size. The genes DEP1, GGC2, and

GS3 (Fan et al., 2006; Mao et al., 2010; Sun et al., 2018; Liu

et al., 2018); D1/RGA1, RGB1 (Zhang et al., 2021a); RGG1
Abbreviations: QTL, Quantitative trait locus; SSSL, Single-segment

substitution line; CSSLs, Chromosome segment substitution lines; DSSL,

Double-segment substitution line; TSSL, Triple-segment substitution line;

SSR, Simple sequence repeat; MAS, Marker-assisted selection; PH, Plant

height; PL, Panicle length; GL, Grain length; GW, Grain width; TGW, 1000-

grain weight; GPP, Grain number per panicle; SPP, Spikelet number

per panicle.

Frontiers in Plant Science 02
(Tao et al., 2020); RGG2 (Miao et al., 2019); and LGY3 (Liu

et al., 2018) belonging to the G-protein pathway are also

involved in regulating grain size (Liu et al., 2018; Sun et al.,

2018). In addition, the combined MAPK module of

OsMKKK10-OsMKK4-OsMAPK6 positively regulates grain

size by affecting cell proliferation in rice (Xu et al., 2018; Fan

and Li, 2019; Li et al., 2021). The MAPK pathway can

promote rice grain development via the activation of

OsWRKY53, whereas OsMKP1/GSN1 tends to suppress

OsMAPK6 and, thus, depress the functioning of this

pathway (Fan and Li, 2019; Li et al., 2021). Several TFs are

also involved in the regulation of grain size in rice, such as

GLW7/OsSPL13 (Si et al., 2016), OsSPL16/GW8 (Wang et al.,

2012), GS9 (Zhao et al., 2018), An-1 (Luo et al., 2013), and

GL6/SG6 (Wang et al., 2019; Zhou and Xue, 2020).

GS5 is a major QTL controlling grain width (GW), grain

filling, and grain weight in rice (Li et al., 2011). The product of

GS5, a putative serine carboxypeptidase, tended to regulate

the grain size positively, thus serving as a potential candidate

for yield improvement in rice and other cereals (Li et al.,

2011). The encoded protein of GS9 had a conserved domain

with unknown function that could alter cell division and

regulate grain shape in rice (Zhao et al., 2018). In addition to

regulating grain shape, the GS9 allele exhibited functions of

improving grain appearance (as a marker of quality) in rice

(Zhao et al., 2018).

Some other phenotypic traits also contribute to the grain

size in rice. For example, grain number per panicle/plant, a

typical quantitative trait that determines rice yield, generally

correlates negatively with grains size traits (Lu et al., 2022).

Downregulation of GW10 that encodes a P450 subfamily

protein in rice tends to result in decreased GL and GW but

increased grain number (Zhan et al., 2021). A loss of function

of gad1 (grain number, grain length and awn development1)

caused by a frame-shift insertion increases grain number

while decreasing GL in rice (Jin et al., 2016). Plant height

(PH) is another typical quantitative trait that determines rice

plant architecture and affects the yield of rice varieties.

Although weak correlations between PH and GL are

documented in rice (Sabesan et al., 2009; Lakshmi et al.,

2014), some genes for PH have pleiotropic effects influencing

GL in rice. Huang and colleagues reported that the rice

m u t a n t Z P DM 1 w i t h a n e w a l l e l e o f B RD 2

(BRASSINOSTEROID DEFICIENT DWARF 2) tended to

result in the phenotype of reduced PH and smaller grain

size (Huang et al., 2022). On the other hand, a novel rice

germplasm with increased grain size but decreased height was

developed, confirming the weak correlation between PH and

GL or size. Tomita and colleagues pyramided grain size–

related gene GW2 and plant height-related gene sd1 in the

background of Koshihikari in rice, and the newly developed
frontiersin.org
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line Koshihikary-sd1GW2 exhibited significantly increased

GL and GW but semi-dwarfed PH (Tomita et al., 2022).

The profiling of major QTLs for grain-related traits enriches

our knowledge of grain architecture in rice as well as provides

potential genes for molecular breeding in rice variety

improvement. However, grain-related traits exhibit typical

quantitative characteristics with incompletely dissected

molecular mechanisms of inheritance. Hence, new novel grain-

related mutants are needed. In our previous work, we introduced

chromosomal segments from Xihui 18 rice, an elite restorer line,

to the background of Nipponbare, constructing a series of

chromosome segment substitution lines (CSSLs). From these

CSSLs, we identified a distinctive CSSL-Z1357 with significantly

increased GL, using SSR-based marker-assisted selection (MAS).

In the present study, we characterized CSSL-Z1357, constructed

a segregating population to detect QTLs for GL and other traits

of interest, and estimated their effects under independent and

pyramiding backgrounds. Related results provide a basis for

candidate gene dissection and grain-related trait improvement

in rice breeding.
Materials and methods

Materials and population construction

CSSL-Z1357 (Z1357) was screened out from the CSSLs

produced from the crossing of Nipponbare (receptor) and

Xihui 18 (donor). Z1357 carried nine chromosomal segments

from the donor Xihui 18 as asserted via SSR-based MAS. The

F2 population was constructed by crossing Z1357 and the

receptor Nipponbare for QTL mapping of agronomic traits

of interest. In 2017, F2 individuals containing target QTLs were

self-pollinated to construct advanced CSSLs, including three

lines carrying a single substitution segment (SSSL, S1 to S3),

two lines with double substitution segments (DSSL, D1 and

D2), and one line with triple-substitution segments (TSSL, T1).

In 2020, all six screened lines (S1 to S3, D1, D2, and T1) were

used to estimate the additive and epistatic effects of

target QTLs.
Phenotyping of specific agronomic traits

At maturity, more than eight randomly selected plants of

Z1357 and Nipponbare and all F2 individuals were cut at the

ground level; then plant height (PH, cm) and panicle length (PL,

cm) were measured. After air-drying, the grain number (filled

grains) and spikelet number (total grains of both filled and

unfilled grains) per panicle (abbreviated as GPP and SPP,

respectively) were counted; 1000 filled grains were randomly

selected for measuring of 1000-grain weight (TGW, g). Ten

random filled grains were selected for measuring grain length
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(average grain length of 10 grains, GL, mm) and grain width

(average grain width of 10 grais, GW, mm).
Observation of epidermal cells via
scanning electron microscope

During the early heading stage, young panicles of Z1357 and

Nipponbare were harvested and placed on ice for scanning

electron microscope (SEM) examination. About 5 mm

segments of middle glume were excised for observation of

inner and outer epidermal cells according to the procedures

described by Zhuang et al. (2020). The cell length and cell

number of the inner and outer epidermis and outer

parenchyma of glume within the same field of view were

collected via software Simpal PCI.
DNA extraction and molecular mapping

DNA of all lines was extracted via the CTAB procedure. All

the F2 individuals were genotyped via the polymorphic markers

screened by the introgressed segments of Z1357 (Xiang et al.,

2015). QTLs for seven agronomic traits of interest, i.e., PH, PL,

GPP, SPP, TGW, GL, and GW, were detected by the method of

restricted maximum likelihood (REML) implemented in

HPMIXED of SAS. The threshold for identifying the

association of candidate QTL and the particular trait was set

to P <.05. All detected QTLs were named as per the pattern of

qPH-1, whereby q referred to a QTL; PH to the target trait, i.e.,

PH; and the number to the chromosome of QTL location.
Effect estimating of QTL via advanced
CSSLs

For each SSSL, DSSL, and TSSL, according to the genetic

model P0 = m + ϵ for Nipponbare and Pi = m + ai + ϵ for the SSSLi
carrying a specific QTL, Pij = m + ai + aj + Iij + ϵ for DSSL, and

Pijk = m + ai + aj + ak + Iijk + ϵ for TSSL, P0 and Pi represent the

phenotype value of any plant of Nipponbare and the SSSLi
carrying the substitution segment i; Pij and Pijk represent the

phenotype value of any plant in the DSSLij and TSSLijk; m
represents the mean value of Nipponbare population; ai, aj,

and ak represent the additive effect of the QTL in substitution

segments i, j, and k, respectively; Iij and Iijk represent the aiaj
epistatic effect between QTLs in substitution segments i and j;

aiajak denotes the epistatic effect between QTLs in the

substitution segments i, j, and k, respectively; and ϵ represents

the random error (Liang et al., 2021; Wang et al., 2021). Thus,

the additive effect to the target trait was estimated via the

formula (SSSLi-Nipponbare)/2 based on S1 to S3. The epistatic

effect of each QTL pair (or substitution segment pair) to the
frontiersin.org
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control trait was estimated via the formula ((Nipponbare +

DSSLij) – (SSSLi + SSSLj))/2 based on both DSSLs (D1 and 2)

and SSSLs (S1 to S3). The epistatic effect of three QTLs (or three

substitution segments) to the control trait was estimated via

((Nipponbare×2+TSSLijk) – (SSSLi+SSSLj+SSSLk))/2 (Liang

et al., 2021; Wang et al., 2021). All calculations were carried

out using Microsoft-Excel 2016.

Results

Phenotypic characterization of Z1357

Phenotyping results show that Z1357 exhibited significantly

changed plant and panicle/grain architecture compared with the

receptor, i.e., Nipponbare (Nipp) (Figures 1A–D). At maturity,

seven traits of interest, including PH (cm), PL (cm), SPP, GPP,

GL (mm), GW (mm), and TGW (g), were further characterized
Frontiers in Plant Science 04
between Z1357 and Nipp. Both Z1357 and Nipp had similar SPP

(104.90 ± 2.96 for Z1347 and 105.10 ± 9.66 for Nipp) and GPP

(94.96 ± 5.07 for Z1347 and 98.99 ± 9.40 for Nipp), exhibiting

nonsignificant differences (P >.05). The contrasting trends were

observed for the remaining five traits (Figures 1E–I). Z1357 had

statistically higher PH, PL, GL, and TGW than those of Nipp

(Figures 1E–I). However, the average GW of Z1357 was

3.23 mm, significantly lower than that of Nipp (3.42 mm,

P <.05, Figure 1H).

Cytological analysis of Z1357

The morphology of glume cells was observed by SEM

(Figures 2A–D). The results show that the length of glume

inner cells of Z1357 was significantly longer (12.48%) than

that of Nipp (Figures 2A, C) (P <.05, t-test, Figure 2E). On the

other hand, the cell width of Z1357 glumes (33.55 µm) was
FIGURE 1

Phenotypes of Nipponbare and Z1357. (A) Plant architecture of Nipponbare and Z1357; (B) Panicles of Nipponbare and Z1357; (C, D) Phenotypes of grain
length (C) and width (D) of Nipponbare and Z1357; (E–I) Comparison of PH (E), PL (F), GL (G), GW (H), and TGW (I) between Nipponbare and Z1357. Bar
in A refers to 20 cm, in B to 5 cm, in C and D to 1 cm. * and ** refer to the significant differences at P < .05 and P < .01, respectively, by the t-test.
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statistically smaller than that of Nipp (40.86 µm) (P <.01,

Figure 2F), but no significant difference was observed between

cell numbers of Z1357 and Nipp (Figure 2G). These results

suggest that the increased GL of Z1357 was mainly caused by the

increased length of glume cells.
Molecular characterization of Z1357

Nine segments were introduced into the genome of Z1357,

located on seven chromosomes (Chr): Chr1, Chr3, Chr4, Chr6 to

Chr8, and Chr12. The characterization results of 10 selected

molecular markers showed that the introgressed segments carried

by Z1357 exhibited the same genotypes to those of the donor line,

Xihui18, indicating that the introgressed chromosomal segments

fromXihui18 were homologous in the genome of Z1357. Among all

seven Chrs carrying the introgressed segments, Chr3 and Chr12

contained two introgressed segments each, and the remaining five

chromes had only one segment each (Figure 3).
Frontiers in Plant Science 05
The total estimated length of all the nine introgressed

segments was 37.17 Mb with an average of 4.13 Mb. The

largest segment was detected on Chr3 with a length of 8.51

Mb (Figure 3). The shortest segment was detected on Chr12 with

a length of 0.23 Mb (Figure 3). The length of the remaining seven

segments ranged from 2.1 Mb to 8.03 Mb.
QTL mapping of the traits of interest

A total of 13 QTLs were detected for six agronomic traits

(Table 1; Figure 3). These QTLs were located on five chromosomes,

including Chr1 (four QTLs), Chr3 (three QTLs), Chr6 (two QTLs),

Chr7 (two QTLs), and Chr12 (two QTLs) (Table 1; Figure 3). No

QTLs were detected for any traits of interest on the first introgressed

segment in Chr3 (from the top), nor introduced segments in Chr4

and Chr8 (Table 1; Figure 3).

Three QTLs, i.e., qPH-1, qPH-7, and qPH-12, were detected for

PH and were located on Chr1, Chr7, and Chr12. Mapping results
FIGURE 2

Observation and analysis of glume cells between Nipponbare and Z1357 via scanning electron microscope (SEM). A-B: SEM images of glume
inner (A) and surface (B) cells of Nipponbare; (C, D) SEM images of glume inner (C) and surface (D) cells of Z1357; E-F: Comparison of inner
glume cell length (E) and width (F) between Nipponbare and Z1357; (G) Comparison of glume surface cells number between Nipponbare and
Z1357. * and ** refer to the significant differences at P < .05 and P < .01, respectively, by the t-test.
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showed that qPH-1 could decrease PH by 3.38 cm, whereas qPH-7

and qPH-12 increased it by 2.12 and 2.67 cm, respectively, with Var

<5% (Table 1). Two QTLs controlling PL, qPL-1 and qPL-12, were

located on Chr1 and Chr12 (Table 1; Figure 3). Both qPH-1 and

qPL-1 shared the same linking marker (RM1268, Figure 3).
Frontiers in Plant Science 06
Three QTLs, i.e., qGL-3, qGL-6, and qGL-7, were detected for

GL andwere located onChr3, Chr6, and Chr7 (Figure 3).Mapping

results showed that qGL-3/6/7 was associated with the additive

effects of 0.23, 0.08, and 0.12mm toGL with Var of 36.49%, 4.19%,

and 8.84%, respectively (Table 1). The linkingmarker of qGL-3was
FIGURE 3

Genome distribution of substitution segments in Z1357. Substitution fragments are labeled in dark green. The left bar refers to the physical
position (Mb) of markers (short lines of each Chr. bar) on seven chromosomes. All detected QTLs are listed in italics (green), and the linked
marker of each QTL is listed in bold (red).
TABLE 1 Summary of 13 QTLs identified for the six interest traits via the F2 population of Nipponbare/Z1357.

Traits QTL Chr. Linked marker Estimated effect Var (%) P-value

Plant height
(PH, cm)

qPH-1 1 RM1268 -3.38 4.76 .0004

qPH-7 7 RM455 2.12 1.75 .0282

qPH-12 12 RM1226 2.67 3.37 .0040

Panicle length
(PL, cm)

qPL-1 1 RM1268 -0.37 1.95 .0196

qPL-12 12 RM1226 0.49 3.80 .0018

Grain length
(GL, mm)

qGL-3 3 RM6266 0.23 36.49 <.0001

qGL-6 6 RM7412 0.08 4.19 .0065

qGL-7 7 RM455 0.12 8.84 <.0001

Grain width (GW, mm) qGW-3 3 RM6266 -0.03 3.27 .0011

1000-grain weight
(TGW, g)

qTGW-3 3 RM6266 0.57 6.65 <.0001

qTGW-6 6 RM7412 0.54 5.65 .0009

Grain number per panicle (GPP) qGPP-1 1 RM1268 -7.05 5.89 <.0001

Spikelet number per panicle (SPP) qSPP-1 1 RM1268 -6.25 3.63 .0008
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RM6266 and the two other QTLs, i.e., qGW-3 and qkGW-3,

controlling GW and TGW, respectively, also linked with the

same marker (Table 1; Figure 3). Additionally, qTGW-3

exhibited relatively higher Var (6.65%) regarding TGW (Table 1).

Only one QTL was detected for both SPP and GPP, i.e., qSPP-

1 and qGPP-1 (Figure 3). They shared the same linking marker

(RM1268) with qPH-1 and qPL-1, with the corresponding Var

values of 3.63% and 5.89% (Table 1).

Verification and estimation of additive
effects of target QTLs

Based on the QTL mapping results using F2, three SSSLs (S1,

S2, S3) were screened out from the F3 generation via MAS.

Among these SSSLs, S1 carried four QTLs on Chr3 for GL, GW,

PH, and TGW, and they had positive additive effects of 0.45 and

0.07 mm, 9.95 cm, and 1.91 g, respectively, causing statistically

higher values of these traits than those of the receptor genotype

Nipp (Figure 4). The line S2 also carried four QTLs for GL, GW,

PH, and TGW. These QTLs were on Chr6. Two QTL (for GL

and PH) showed positive additive effects of 0.28 mm and

9.24 cm, respectively, whereas the other two QTLs (for GW

and TGW) exhibited negatively additive effects of -0.07 mm and

-0.97 g, respectively, causing significantly increased GL and PH

but significantly decreased GW and TGW than those of Nipp

(Figure 4). The line S3 contained two QTLs for PH and TGW,

presenting additive effects of 10.13 cm and -1.10 g, respectively,

causing statistically increased PH but deceased TGW compared

with those of Nipp (Figure 4).
Pyramiding and estimation of epistatic
effects of target QTLs

Besides SSSLs (S1-S3), two DSSLs (D1 and D2) and one

TSSL (T1) were also purposefully screened out from F3

generation via MAS according to the target QTL. D1 carried

two chromosomal segments from Chr3 and Chr6 for GL, GW,

PH, and TGW, and the broad interactive or epistatic effects (I)

were detected for QTLs controlling the corresponding traits

(Figure 4). For GL, the estimated I between qGL-3 and qGL-6

was -0.34 mm, and the pyramiding of these two QTLs caused

significantly greater GL of D1 than that of Nipp (Figure 4A). A

contrasting trend was observed for GW of D1. The estimated I

between qGW-3 and qGW-6 was -0.07 mm, and the pyramiding

of these two QTLs caused significantly decreased GW of D1

compared with Nipp (Figure 4B). Additionally, the estimated I

between qPH-3 and qPH-6 was -7.62 cm. The epistatic effect

between qTGW-3 and qTGW-6 was -1.16 g for TGW; the

interaction effects caused significantly increased PH but
Frontiers in Plant Science 07
nonsignificant changed TGW in D1 compared with Nipp

(Figures 4C, D).

D2 captured two segments from Chr6 and Chr7. Although

D2 carried only one QTL for each of GL (qGL-6) and GW

(qGW-6), the interaction effects (I) were also observed between

the introgressed segments with and without (Null) the target

QTL. The estimated I between qGL-6 and Null was 0.09 mm,

whereas the estimated epistatic effect between qGW-6 and Null

was -0.02 mm (Figures 4A, B). These interaction effects caused

significantly increased GL but decreased GW of D2 (P <.01),

which was similar to the findings on D1 (Figures 4A, B). The

estimated difference between qPH-6 and qPH-7 was -7.38 cm,

and that between qTGW-6 and qTGW-7 was 2.27 g (Figures 4C,

D). These diverse interaction effects for PH and TGW caused

similar phenotypes of D2 and D1 by the pyramiding of the

target QTL.

T1 captured all three segments from Chr3, Chr6, and Chr7.

The pyramiding of qGL-3, qGL-6, and Null caused the highest

GL of T1, and the estimated interaction effect of qGL-3 vs Null

and qGL-3 vs qGL-6 vs Null was -0.15 mm (Figure 4A). In

contrast to GL, T1 also had the lowest GW by pyramiding qGW-

3, qGW-6, andNull, and the estimated interaction effect of qGW-

3 vs Null and qGW-3 vs qGW-6 vs Null was -0.13 mm

(Figure 4B). Trends similar to those of GL were also observed

for PH and TGW of T1. The estimated interaction effect of qPH-

3 vs qPH-6 vs qPG-7 was -15.99 cm, and that of qTGW-3 vs

qTGW-6 vs qTGW-7 was 0.51 g; hence, pyramiding of these

QTLs significantly increased PH (P <0.01) but did not

significantly change TGW (P <0.13) of T1 (Figures 4C, D).

Additionally, the pyramiding of targets QTLs in T1 also caused

improved quality of T1 grains (Figure 5A). For example, the

chalkiness rate of T1 grains was 11.86%, statistically lower than

that of Nipp (32.00%, P <.01, Figure 5B). The overall chalky

grain rate of T1 (41.02%) was also significantly lower than that of

Nipp (69.36%, P <.01, Figure 5C).
Discussion

Z1357 provides a potential tool for
dissecting quantitative traits

Populations consisting of SSSLs are one of the major

sources for QTL detection of complex quantitative traits for

the distinctive features of eliminating background influences to

the mapping procedures (Li et al., 2005; Tian et al., 2017; Chen

et al., 2018; Zhang, 2021b). SSSLs have a background nearly the

same as the receptor parent except for the introduced segment

from the donor (Li et al., 2005; Chen et al., 2018; Tian et al.,

2018). In our previous work, a set of CSSLs were developed by

crossing Nipponbare (donor parent) and Xihui 18 (donor
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parent), and a distinctive line, Z1357, was screened out with

significantly increased GL and PH but decreased GW

(Figure 1). Results from phenotypic characterization also

suggest that the introduced chromosomal segments from

donor parent into Z1357 showed similar traits of GPP and

SPP to those of the receptor parent (P >.05, Figure 1). Although

the final yield of Z1357 was significantly lower than that of the

receptor, the distinctive characteristics of Z1357 regarding
Frontiers in Plant Science
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increased GL (15.6%, P <.01) and PH (20%, P <.01), but

decreased GW (5.6%, P <.05) showed a potential for

utilization in grain quality improvement in rice breeding

and research.

SEM showed that the lengthening and narrowing of grains

were caused by the increase of cell length (12.48%) and the

decrease of cell width (17.89%) in the glumes compared with

Nipponbare (Figure 2). Dissection of other traits of interest
frontiersin.org
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FIGURE 4

Phenotypes and estimated effects of QTLs for GL, GW, PH, and TGW among Nipponbare and the screened CSSLs. (A) Grain length (mm),
(B) Grain width (mm), (C) Plant height (cm), (D) 1000-grain weight (g). m: the average phenotypic value, a: denotes the additive effect of QTLs, i:
denotes the additive × additive epistatic effect among QTLs. **, significant at.01 level (P < .01); NS, not significant. The P-value for a SSSL
indicates the probability of a significant difference between the SSSL and Nipponbare.
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using Z1357 would be useful in the related future research on

these traits.
Identification of QTLs via Z1357 and
comparison with the reported genes

The QTL mapping results based on the F2 indicated that five

out of nine substitution segments contained in Z1357 carried

QTLs for six traits of interest, i.e., QTLs for PH and PL on

segments of Chr1, Chr7, and Chr12 andQTLs for GL and GWon

Chr3 and Chr6, respectively (Table 1). We also found that each

introduced fragment containedmultiple QTLs for different traits,

and for each trait, the detected QTLs were located on different

introgression segments, which indicated a complex cross-talk

between introgression segments and the traits of interest.

Grain type in rice, especially GL and GW, is one of the most

important components for quality improvement of rice varieties.

As expected, GL was a typical quantitative trait and was

controlled by both the major and minor QTLs. Numerous

QTLs associated with GL have been reported across the entire

rice genome using populations of F2, F3, and recombinant

inbred lines (Zhang et al., 2021). However, the features of

those populations limit the thorough dissection of candidate

QTLs, such as cloning and functional profiling. In the present

study, we identified the major QTLs for GL and GW within the

introduced segments of Chr3 and Chr6, respectively; in

particular, qGL-3 on Chr3 increased GL by 0.23 mm with Var

of 36.5% (Table 1). At the locus of qGL-3, a functional gene of

GL3.1 controlling the GL in rice was reported (Qi et al., 2012).

The coding product of GL3.1 is Ser/Thr phosphatase that
Frontiers in Plant Science 09
belongs to protein phosphatase kelch-like (PPKL) family (Qi

et al., 2012). Qi and colleagues revealed that GL3.1 functioned by

influencing the phenotype of grain size and yield of rice via

regulating a cell cycle-related protein (cyclin-T1;3) via

dephosphorylation (Qi et al., 2012). The downregulation of

cyclin-T1;3 by dephosphorylation tended to produce shortened

rice grains (Qi et al., 2012).

On Chr6, the reported functional gene, GW6a, was located

in the same region as qGL-6 (Song et al., 2015). The product of

GW6a is a new-type GNAT-like protein, serving as intrinsic

histone acetyltransferase (OsglHAT1) (Song et al., 2015).

Overexpression of OsglHAT1 tended to increase the overall

acetylation levels of histone H4 and the cell number in grains,

resulting in enlarged grain size and enhanced final yield of rice

(Song et al., 2015). Another reported gene, GW7/GL7 is located

in the same region as qGL-7 (Wang et al., 2015a, b). The product

of GW7/GL7 corresponds to longitudinal cell elongation,

homologous to the LONGIFOLIA protein of Arabidopsis

(Wang et al., 2015). The increased abundance of GW7/GL7

coding product in vitro accelerated the longitudinal cell division

and decreased the transverse cell division, resulting in increased

GL and improved grain quality in terms of appearance (Wang

et al., 2015).

The gene OsBZR1 is responsible for PH in rice and is located

in the physical interval of qGL-7 (Qiao et al., 2017). The OsBZR1

serves as the signal molecule downstream of the brassinolide

transduction pathway (Qiao et al., 2017). Overexpression of

OsBZR1 tended to increase the sugar accumulation in

developing anthers and seeds and also enhanced GL, GW,

thickness, TGW, and spikelet number (Qiao et al., 2017). In

summary, the QTLs reported in the present study (qGL-3, qGL-

6, and qGL-7) were located within the same regions as the four
FIGURE 5

Chalkiness comparison of Nipponbare and T1. (A) Polished grain of Nipponbare and T1; (B) Chalkiness degree (%) of Nipponbare and T1;
(C) Chalky grain rate (%) of Nipponbare and T1. **, significant at.01 level (P < .01).
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genes reported in the literature, i.e., GL3.1, GW6.1, GW7/GL7,

and OsBZR1. Further work is needed to reveal whether those

three QTLs contain the allelic variations of the reported genes.
Potential utilization of the identified
QTLs in rice grain improvement

Based on the results of QTL mapping, six further

substitution fragment lines (S1-S3, D1-D2, T1) were screened

out (Figure 4). Characterization of these six lines provides the

practical knowledge for molecular or QTL-based improvement

of target traits in rice. For example, in rice variety improvement,

breeders prefer to select longer grains or grains with higher ratio

of length/width (Li et al., 2021). The results of mapping and

effect estimation indicated that qGL-3 and qGL-6 could both

increase the GL in rice (Figure 4A). If these two QTLs acted

together, then the CSSL D1 that carried both QTLs should show

increased GL by 1.46 mm (0.45x2+0.28x2) with respect to the

receptor parent Nipp. Hence, the GL of D1 should be 8.39 mm

(6.93 + 1.46) if qG-3 and qGL6 acted jointly on GL. However, the

observed GL of D1 was 7.71 mm (i.e., <8.39 mm), suggesting

that qGL3 and qGL6 acted antagonistically to each other

regarding GL in rice (Figure 4A). Furthermore, the t-test

results showed that the GL of D1 was higher than that of S2

that carried only qGL6 (P <.01), and qGL6 interacted even

negatively with qGL3. This result suggests that, in the breeding

activities related to GL improvement, we can either utilize qGL3

independently or pyramid qGL-3 and qGL-6 to produce longer

grains in rice.

Interestingly, using the F2 population, qGL-7 for GL was

detected on the introgressed segment from Chr7, but no QTL for

GL was identified via the CSSL S3; even the core marker linked to

qGL-7 was fixed within the introgression segment on Chr7

carried by S3 (Figure 4A). However, the phenotypic results

showed that the introgressed segment carried by S3 (Null)

exhibited a weak increasing effect on GL (0.03 mm, Figure 4A).

Such a weak effect caused by Null might have resulted from

complex relationships of GL, PH, PL, and other agronomic traits

(Zhang et al., 2020). In addition, Null interacted with qGL-6 and

exhibited a positive epistatic effect of 0.09 mm to GL (Figure 4A).

When qGL-3, qGL-6, and Null were pyramided, i.e., T1, the GL

was the longest (8.17 mm, Figure 4A). These results indicated

that using the target QTLs or gene(s) for improvement of

candidate trait(s) should be done with a strong consideration

of the locus or chromosomal regions without target QTLs.

Despite the increasing effect of qGW-3 on GW, both qGW-6

and Null had negative effects to GW, and the exacerbated

negative trends were observed after pyramiding qGW-3, qGW-

6, and Null (Figure 4B). Phenotyping results showed that the

strongest decreasing effects were caused by the epistatic

interaction of qGW-3, qGW-6, and Null (T1), then qGW-6 and
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Null (D2), and then qGW-3 and qGW-6 (D1, Figure 4B). These

results suggest that, if one tended to decrease GW in rice slightly,

one could utilize qGW-6 alone or combine qGW-3 and qGW-6

together, which would cause approximately a 4% decrease of

GW. To achieve a moderate decrease of GW, the integration of

qGW-6 and Null would tend to produce approximately a 7%

decrease of GW. Finally, the pyramiding qGW-3, qGW-6, and

Null in breeding activities might result in about a 10% decrease

of GW in rice. In addition to the improved phenotypic

performances of GL and GW, the pyramiding of target QTLs

in T1 also caused side effects for better quality of polished grains

in T1 (Figure 5), implying more potential utilization for yield

and quality improvement of rice varieties.
Conclusion

In the present study, an elite CSSL named Z1357, screened

from the progeny derived from crossing of Nipponbare as the

receptor and Xihui18 as the donor, was characterized by carrying

nine substitution segments with the average length of 4.13 Mb.

Thirteen QTLs were detected on nine substitution segments for

the seven traits of interest. Results via other CSSLs, i.e., S1 to S3,

D1, D2, and T1, showed that pyramiding the segments from

Chr3 (qGL-3, qPH-3, and qGW-3), Chr6 (qGL-6, qPH-6, and

qGW-6), and Chr7 (qPH-7 and qTGW-7) tended to produce

increased GL and PH and decreased GW, providing a potential

theoretical basis for enhancing grain yield and quality in

rice breeding.
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