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The medicinal plant Cannabis sativa L. (C. sativa) accumulates plant cytotoxic

but medicinally important cannabinoids in glandular trichomes and flowers of

female plants. Although the major biosynthetic pathway of cannabinoids has

been revealed, their transportation mechanism is still unknown. Multidrug and

toxic compound extrusion proteins (MATEs) can transport plant metabolites,

ions and phytohormones intra and inter-cellularly. MATEs could have the

potential to translocate cannabinoids or their synthetic intermediates to

cellular compartment, thus protecting them from unwanted modifications

and cytotoxicity. In this study, we performed a genome-wide identification

and expression analysis of Cannabis sativa MATEs (CsMATEs) and revealed 42

CsMATEs that were classified phylogenetically into four conserved subfamilies.

Forty-two CsMATEs were unevenly distributed on 10 chromosomes, with 50%

CsMATEs were physically adjacent to at least one another CsMATEs and 83%

CsMATEs localized on plasma membrane. Tandem duplication is the major

evolutionary driving force for CsMATEs expansion. Real-time quantitative PCR

revealed CsMATE23, CsMATE28 and CsMATE34 mainly expressed in flower,

whereas CsMATE17 and CsMATE27 showed strong transcription in root. Light

responsive cis-acting element was most abundant in promoters of CsMATE23,

CsMATE28 and CsMATE34. Finally, the contents of cannabinoids and

corresponding biosynthetic intermediates as well as expressions of

CsMATE28 and CsMATE34 were determined under UV-B treatment, among

which strong correlation was found. Our results indicates that CsMATEs might

involve in biosynthesis of cannabinoids and has the potential to be used in

heterologous production of cannabinoids.

KEYWORDS

Cannabis sat iva , cannabino ids , t ransporter , MATEs , genome-wide,
heterologous biosynthesis
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Introduction
The annual dioecious herb Cannabis sativa L. (C. sativa) from

Cannabis family accumulates terpenophenolic cannabinoids in

glandular trichomes and flowers of female plants (Andre et al.,

2016). Till now, over 113 cannabinoids have been isolated from C.

sativa andmany are derived from non-enzymatic decarboxylaion of

their acidic forms by heat or UV irradiation (Güllck and Moller,

2020). The well-studied cannabinoids cannabigerol (CBG), D9-
tetrahydrocannabinol (THC), cannabidiol (CBD) and

cannabichromene (CBC) share the same biosynthetic precursors

of olivetolic acid (OA) and geranyl diphosphate (GPP) (Güllck and

Moller, 2020). Phenolic OA is condensed from one molecule of

hexanoyl-CoA and threemolecules of malonyl-CoA by coordinated

work of olivetol synthase (OLS) (Taura et al., 2009) and olivetolic

acid synthase (OAC) (Gagne et al., 2012) in cytosol. The acyl-

activating enzyme 1 (AAE1) provides hexanoyl-CoA by converting

C6-hexanoic acid which is derived from fatty acid pathway (Stout

et al., 2012), while C10-isoprenoid GPP is synthesized by 2-C-

methyl-D-erythritol 4-phosphate (MEP) pathway in plastid

(Fellermeier et al., 2001). Aromatic prenyltransferase 4 (aPT4)

from UbiA protein superfamily subsequently prenylates OA by

GPP to produce cannabichromenic acid (CBGA) (Luo et al., 2019;

Güllck et al., 2020), which is further oxidized to CBG. CBGA could

be converted to D9-tetrahydrocannabinolic acid (THCA) or

cannab id io l i c ac id (CBDA) by flavopro te ins D9-
tetrahydrocannabinolic acid synthase (THCAS) (Sirikantaramas

et al., 2005) or cannabidiolic acid synthase (CBDAS) (Taura et al.,

2007), respectively, and subsequently decarboxylated to THC or

CBD by light or heat.

Low abundance in C. sativa and important pharmaceutical

use evokes tremendous interests for heterologous biosynthesis of

cannabinoids. A notable example is the de novo production of

THCA and CBDA in yeast Saccharomyces cerevisiae system (Luo

et al., 2019). Co-expression of OA synthetic pathway (CsAAE1,

CsOAC and CsOLS) along with plastid-localization-signal-free

CsaPT4, secretory-signal-free CsTHCAS or CsCBDAS in a GPP-

overproducing yeast strain yielded THCA or CBDA,

respectively. When those genes were transiently expressed in

tobacco (Nicotiana benthamiana) cells, however, either OA,

CBGA or THCA was severely glucosylated (Güllck et al.,

2020). In addition to been easily glucosylated, CBGA and

THCA are cytotoxic (Morimoto et al., 2007). Therefore,

mechanisms might exist in C. sativa cells that protect

cannabinoids from glucosylation and inhibit their cytotoxicity.

Multidrug and toxic compound extrusion proteins

(MATEs) are known to translocate second metabolites, ions,

and phytohormones intra and intercellularly, and are

associated with exnobiotic efflux, aluminum detoxification

and disease resistance (Upadhyay et al., 2019). Moreover,

MATEs are widely distributed in prokaryotes and eukaryotes,

including plants. YdhE was the first isolated MATE from E.coli
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as a multidrug efflux protein that confers bacteria drug

resistance (Morita et al., 1998). Soon after, ALF, the first

plant MATE from Arabidopsis thaliana (A. thaliana) (Diener

et al., 2001) and many other plant MATEs were sequentially

discovered (Wang et al., 2016; Santos et al., 2017; Wang et al.,

2017; Huang et al., 2021). Most MATEs consist of about 400-

700 amino acids with 12 transmembrane helices and a

common MatE domain (pfam 01554), but no consensus

sequence thus far has been found in all MATEs (Kusakizako

et al., 2020). MATEs transport second metabolites into and out

of the membranes through the employment of either Na+ or H+

electrochemical gradient (Hvorup et al., 2003). For instance,

NtMATE1 and NtMATE2 that localize on the vacuolar

membrane of tobacco root cells are believed to sequestrate

alkaloid nicotine within the vacuole of the roots, then nicotine

is transported to the above-ground organs of the plant in

response to plant biotic stresses (Shoji et al., 2009). Similar

function in alkaloid transportation is also found for tobacco

MATEs Nt-JAT1 and Nt-JAT2, which localize on the vacuolar

membrane of leaf cells (Morita et al., 2009). GhTT2,

GhMATE12, GhMATE16 and GhMATE38 from Gossypium

hirsutum L. localized on the tonoplast are proposed to

translocate phenolic pro-anthocyanidins (Gao et al., 2016; Xu

et al., 2019). VvAM1 and VvAM2 expressed in berry skins of

Vitis vinifera and subcellularly localized on tonoplast are

responsible of translocating flavonoid anthocyanins (Perez-

Diaz et al., 2014). Thus, we hypothesis that MATEs from C.

sativa might have the ability to bind and translocate

terpenophenolic cannabinoids or corresponding biosynthetic

intermediates, protecting them from glucosylation and

inhibiting their cytotoxicity in C. sativa cells.

In this study, we identified 42 MATEs in C. sativa genome

and characterized their physical-chemical properties, gene

structure, motif composition and gene expression patterns.

Furthermore, qRT-PCR verification and cis-acting elements

analysis of CsMATEs that predominantly expressed in

cannabinoids accumulation tissues were conducted. In

addition, effects of UV-B on accumulation of cannabinoids

and corresponding biosynthetic substrates as well as the

expression of CsMATE23, CsMATE28 and CsMATE34 were

studied. Together, our result indicates that CsMATE28 and

CsMATE34 might be involved in biosynthesis of cannabinoids

or its biosynthetic intermediates.
Materials and methods

Plant material and growing conditions

In this study, we used the C. sativa variety Dinamed Kush

(DK) for transcriptome sequencing (Yang et al., 2021). DK were

grown in the experimental field of the Institute of Chinese

Materia Medica of the Chinese Academy of Chinese Medical
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Sciences, China. Three-weeks-old C. sativa grown in green

house at 65% humidity and light wavelength of 380-780 nm

(520-860 uM m-2 s-1) was used for UV-B light treatment.
Date source

Genome of female C. sativa CRBRx (GCA_900626175.1)

and transcriptional data of other nine C. sativa varieties (Zager

et al., 2019) were obtained from the NCBI database (https://

www.ncbi.nlm.nih.gov). Arabidopsis thaliana MATE gene

family members were obtained from the Uniprot database

(www.uniprot.org).
Identification and basic information
of CsMATEs

CDS sequences and protein sequences of CRBRx were

extracted using TBtools (Chen et al., 2020). Protein

sequences of A. thaliana MATEs were used as queries to

perform homology search by BLASTp method (score value of

≥100, e-value ≤ e−10). Duplicated proteins were manually

removed. Recognizable domains were initially retrieved using

BLAST-based NCBI conserved domain searches (https://www.

ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). Molecular weights

and isoelectric points were predicted using ExPASy (Duvaud

et al., 2021). Subcellular localizations were predicted by WOLF

PSORT (Horton et al., 2007).
Chromosomal location, gene structure,
phylogenic tree, conserved motifs and
cis-acting elements analysis of CsMATEs

Visualization of CsMATEs structures and chromosome

locations were conducted using TBtools (Chen et al., 2020).

The amino acid sequences were aligned using MEGA 7.0

software (Kumar et al., 2016). Phylogenetic trees of C. sativa

and A. thaliana were constructed using the neighborjoining (NJ)

method with 1000 bootstrap replicates. Conserved motif

information of CsMATEs was analyzed using MEME (Bailey

et al., 2006). Cis-acting elements in 2000 bp upstream of the start

codon of each CsMATEs were analyzed using PlantCARE

(Lescot et al., 2002).
Transcriptomic data analysis, alternative
splicing and qRT-PCR

mRNA from five different tissues or organs of female C.

sativa Dinamed Kush were sequenced. TBtools (Chen et al.,

2020) was used to analyze and visualize the differential
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expression data of CsMATEs. RNA was extracted using a kit

(Tiangen Biotech, Beijing, China) according to manufacturer’s

instructions. Three biological replicates of each sample were

performed. Extracted RNA was examined by agarose gel

electrophoresis and concentrations were determined using

Nanodrop (Thermo fisher scientific, Beijing, China). cDNA

synthesis was performed using the Reverse Transcription Kit

(TransGen, Beijing, China) as described in instruction. qRT-

PCR was designed using NCBI-Primer blast (Supplementary

Table 1) with EF1-a as the reference gene. qRT-PCR reaction

included StarLighter SYBR green qPCR mix (Qi Heng Xing,

Beijing, China) 10 mL, cDNA template 1 mL, 0.4 mL of each

primer and ddH2O 8.2 mL. The CFX96™ real-time system

(Roter-Gene Q MDx, QIAGENBio-Rad, Germany) was used

for qRT-PCR. The reaction conditions were: 95°C for 5 min, 35

cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 90 s. Data

were processed using 2-DDCT (Livak and Schmittgen, 2001).
QQQ-MS/MS conditions

Cannabinoid content was determined using an Agilent

UPLC 1290II-G6400 triple quadrupole mass spectrometer

(QQQ; Agilent Technologies, Santa Clara, CA). The

autosampler was set to 4°C and a 3-ml sample volume was

injected. The chromatographic column was a (2.1 * 100 mm, 1.8

mm) C18 column. Mobile phase A contained water with 0.1%

formic acid; phase B was 100%methanol. Elution was performed

at 0.3 mL/min.
Statistical analysis

All the data were analyzed using Prism 8 Statistics programs.

One-way analysis of variance (ANOVA) followed by Tukey’s

multiple range test was used both for metabolic data and gene

expression data.
Results

Identification, characterization and
phylogenic analysis of the MATE
genes in C. sativa

We performed the homology search against the Arabidopsis

MATE sequences and finally 42 CsMATE candidates were

identified and named for their position on the chromosomes

(Table 1). Forty-two CsMATEs are unevenly scattered on ten

chromosomes, with chromosome four contains the highest

number of CsMATEs and chromosome six contains the least

(Table 1 and Figure 1). It’s worth noting that twenty-one

CsMATEs genes are physically adjacent to at least one another
frontiersin.org
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TABLE 1 Detail information of CsMATEs.

Gene Namea Gene IDb Lengthc pId MWe SLf

CsMATE01 gene-LOC115702550 603 9.56 64111.87 Plas

CsMATE02 gene-LOC115705200 510 6.16 55448.57 Plas

CsMATE03 gene-LOC115711014 600 5.57 66053.91 Plas

CsMATE04 gene-LOC115712910 478 8.32 52682.78 Plas

CsMATE05 gene-LOC115704231 543 6.25 58847.88 Plas

CsMATE06 gene-LOC115705064 498 8.02 53766.41 Plas

CsMATE07 gene-LOC115704998 480 7.01 52855.52 Plas

CsMATE08 gene-LOC115704386 442 5.91 48420.02 Plas

CsMATE09 gene-LOC115703842 481 6.45 53039.56 Plas

CsMATE10 gene-LOC115704479 621 5.29 68007.98 Vacu

CsMATE11 gene-LOC115704728 501 6.59 54416.21 Vacu

CsMATE12 gene-LOC115707979 524 5.31 56805.39 Plas

CsMATE13 gene-LOC115708894 540 8.7 58085.01 Plas

CsMATE14 gene-LOC115708868 491 8.22 53432.55 Plas

CsMATE15 gene-LOC115710056 507 7.05 54875.91 Plas

CsMATE16 gene-LOC115708683 319 5.94 35375.83 Plas

CsMATE17 gene-LOC115714727 485 8.19 53346.36 Plas

CsMATE18 gene-LOC115714726 495 6.11 54439.4 Plas

CsMATE19 gene-LOC115714655 492 6.47 53938.45 Plas

CsMATE20 gene-LOC115712477 488 6.54 53419.89 Plas

CsMATE21 gene-LOC115714241 490 8.66 53946.72 Plas

CsMATE22 gene-LOC115714240 491 8.68 54434.61 Plas

CsMATE23 gene-LOC115714995 511 6.1 55863.48 Plas

CsMATE24 gene-LOC115712321 500 6.94 54840.62 Plas

CsMATE25 gene-LOC115714210 497 7.53 54268.94 Plas

CsMATE26 gene-LOC115713744 502 8.82 54664.57 Vacu

CsMATE27 gene-LOC115715674 497 5.12 54424.38 Vacu

CsMATE28 gene-LOC115715639 497 5.12 54388.58 Plas

CsMATE29 gene-LOC115715820 553 6 60358.2 Plas

CsMATE30 gene-LOC115717372 483 6.95 52314.4 Plas

CsMATE31 gene-LOC115719395 505 6.1 55712.17 Plas

CsMATE32 gene-LOC115723139 516 7.95 57018.9 Vacu

CsMATE33 gene-LOC115723617 484 8.94 52901.07 Plas

CsMATE34 gene-LOC115724138 473 6.81 51277.63 Plas

CsMATE35 gene-LOC115723312 500 6.41 54589.43 Plas

CsMATE36 gene-LOC115723477 490 5.76 54286.35 Plas

CsMATE37 gene-LOC115695936 502 7.01 53538.67 Vacu

CsMATE38 gene-LOC115697672 536 8.99 58082.75 Plas

CsMATE39 gene-LOC115698206 551 5.73 58931.1 Chlo

CsMATE40 gene-LOC115700595 513 5.97 55800.43 Plas

CsMATE41 gene-LOC115699384 506 6.98 54837.94 Plas

CsMATE42 gene-LOC115701322 526 6.53 57241.14 Plas
Frontiers in Plant Science
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aGene named for their position on the chromosomes.
bAccession number of C. sativa locus ID.
cProtein length in amino acid.
dIsoelectric points.
eMolecular weight in Dalton.
fSubcellular localization, plas: plasm membrane, Chol: chloroplast, Vacu: vacuole.
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CsMATEs, such as CsMATE6–CsMATE8, CsMATE11–

CsMATE12, CsMATE17–CsMATE22, CsMATE23–CsMATE25,

CsMATE29–CsMATE30 , CsMATE33–CsMATE35 , and

CsMATE40–CsMATE41 (Figure 1). Those CsMATEs account

for ~50% of the total CsMATE genes. Moreover, near half of the

CsMATEs are located in the proximal region of chromosome

telomere (Figure 1).

We also predicted the physical-chemical properties and

subcellular localization of the CsMATEs and found that the

longest MATE is CsMATE10, consisting of 621 amino acids,

while the shortest CsMATE16 is comprised of 319 amino acids
Frontiers in Plant Science 05
(Table 1). The isoelectric points (pI) and molecular weights

(MW) of CsMATEs range from 5.12–9.56 and 35.38–68

kilodalton (kDa), respectively (Table 1). Thirty-five CsMATEs

were localized in the plasma membrane, six in the vacuole, and

only CsMATE39 localized in the chloroplast (Table 1).

To investigate of the evolutionary relationship of the

CsMATEs, we constructed an interspecifc phylogenic tree

using C. sativa and A. thaliana MATEs sequences with

phylogenetic inference of neighbor-joining (Figure 2). The

topology of the phylogenic tree divides CsMATEs into four

major subfamilies. Subfamily I contains 14 CsMATEs, subfamily
FIGURE 1

Distribution of CsMATEs on chromosomes of C. sativa. The y-axis indicates the length of chromosome in megabase (Mb).
FIGURE 2

Phylogenic tree of MATE proteins in Cannabis sativa (CsMATEs) and Arabidopsis thaliana (AtDTXs). Phylogenic tree was built using MEGA 7.0
software neighbor-joining method (Kumar et al., 2016) with a bootstrap analysis of 1000 replicates.
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II has 15 CsMATEs, subfamily III possesses five CsMATES, and

subfamily IV owns eight CsMATEs (Figure 2). Importantly,

physically adjacent CsMATEs were all clustered in the same

subfamily (Figure 1 and Figure 2), which indicates tandem

duplication is the major evolutionary driving force for

CsMATEs expansion (Wang et al., 2019).
Conserved motifs of CsMATEs and gene
structure of CsMATEs

Conserved protein motifs are associated with gene function

and protein subcellular localizations. We isolated 10 predicted

conserved motifs (Supplementary Figure S1) using MEME

(Bailey et al., 2006) and studied their distributions within

CsMATEs. Phylogenetic analysis grouped CsAMTEs into four

subfamilies, which is consistent with the interspecific

phylogenetic tree in Figure 2 (Figure 3A). We found that 32

CsMATEs (76% of total identified) from subfamily I, II and IV

included all 10 motifs and those motifs shared the same order.

CsMATE6, 7 and 9 were lack of motif 8; CsMATE8 is without of

moitf6 and motif8. CsMATEs from subfamily III had motifs less

than six, with CsMATE15 and CsMATE17 only containing

motifs 7, 9 and 10 (Figure 3A).

To further examine the evolutionary lineages of CsMATEs,

we compared the gene structure of CsMATEs. The results

showed that phylogenetically close CsAMTEs shared the same

exon number, length and composition (Figure 3B). For instance,

CsMATEs from subfamily IV had no intron except for CsMATE2

and CsMATE38 that contained one and two introns,

respectively. CsMATEs from subfamily III owned most exons

of at least 10. A longest intron that over 20 kb was found in

CsMATE35 from subfamily I (Figure 3B). In addition, as tandem

duplication is the main force of CsMATEs expansion, physically

adjacent CsMATEs also showed same exon/intron pattern, such
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as CsMATE6–CsMATE8 and CsMATE23–CsMATE25 (Figure 1

and Figure 3B). Although gene structures between different

subfamilies were divergent, we found two crucial domains that

closed to 5’ end of the gene bodies (Figure 3B).
Expression pattern of CsMATEs in
deferent tissues

Gene expression pattern is to some extent indicative for its

potential function, especially for transporter proteins that

mostly interact with substrates in tissues where metabolites

are synthesized (Nogia and Pati, 2021). We visualized the

CsMATEs expressions from different tissues of hemp variety

Dinamed Kush, a species with high cannabinoids content,

using FPKM (Fragments Per Kilobase of exon model per

Million mapped fragments) and cluster analysis, and indeed

found the divergent expression patterns (Figure 4A).

Specifically, only CsMATE1 showed higher expression in seed

compared with other tissues, CsMATE7 , CsMATE13 ,

CsMATE21 , CsMATE24 , CsMATE25 , CsMATE29 and

CsMATE30 exhibit relatively strong expression in root,

CsMATE22 and CsMATE36 have the moderate stronger

expression in stem, transcripts of CsMATE4, CsMATE9,

CsMATE11 , CsMATE14 , CsMATE37 , CsMATE39 and

CsMATE42 are abundantly detected in leaf, and CsMATE03,

CsMATE05 CsMATE17, CsMATE23, CsMATE28, CsMATE31,

CsMATE34 and CsMATE40 are the genes that expressed

mainly in flowers (Figure 4A).

As we are interested in CsMATEs that involved in

transportation of cannabinoids, and to further verify the

accuracy of the transcriptomic data, we analyzed the

expressions of representative MATE genes by qRT-PCR (real-

time quantitative reverse transcription PCR) including

CsMATE17, CsMATE23, CsMATE28 and CsMATE34 which
BA

FIGURE 3

Conserved motifs and gene structure of CsMATEs. (A) CsMATEs Phylogenic tree and motifs distributions. Motifs are indicated as top right.
(B) Gene structure and domain distribution. UTR, untranslated region; CDS, coding region; yellow boxes, exons; gray lines, introns; pink boxes,
MATE eukaryotic domains; dark green boxes, DinF like domain. Purple dots indicates CsMATE from subfamily I; rose red dots, Subfamily II; pink
dots, subfamily III; yellow dots, subfamily IV.
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had a highest expression in flower but also expressed moderately

in stem and leaf according to transcriptome data, as well as

CsMATE21 that showed strong root specificity in transcriptomic

heatmap (Figure 4A). CsMATE17 , unexpectedly, was

predominantly expressed in root, inconsistent with the RNA-

seq data, while the other four gene showed the same expression

pattern as in RNA-seq (Figure 4B). Additionally, we also

examined the expression patterns of cannabinoid biosynthetic

pathway genes including CsOAC, CsPT1 and CsPT4 (Figure 4A).

The result showed that CsMATE23, CsMATE28 and CsMATE34

exhibited similar expression patterns with cannabinoids

synthetic genes, suggesting those genes might involve in

cannabinoids synthesis (Figure 4A).
Expression of alternative splicing
isoforms of CsMATEs and cis-elements in
CsMATE23, CsMATE28 and CsMATE34

Alternative splicing is widespread in plants as a

transcriptional regulatory mechanism that allows a single gene

to encode a variety of different transcripts and protein products

(Roy et al., 2013). To further understand the transcriptional

mechanisms of CsMATEs, we performed alternative splicing

analysis. We observed 15 CsMATEs have alternative splicing

events, accounting for about 1/3 of CsMATEs, with a total of 43

alternative splicing isoforms. Numbers of alternative splicing

isoforms of a single CsMATE range from one to seven, and most
Frontiers in Plant Science 07
of the alternative splicing isoforms form the same pre-mRNA

were differentially expressed in the same tissues. Of note,

although CsMATE23 and CsMATE34 both have an alternative

splicing isoform, the alternative splicing isoforms barely express

in the tissues we examined (Figure 5A).

Light is known to affect the content of cannabinoids

(Eichhorn et al., 2019). The cis-acting elements in the

promoter region (2 kb upstream of ATG codon) of

CsMATE23, CsMATE28 and CsMATE34 were analyzed using

plantCARE software (Lescot et al., 2002). We found that the

most abundant cis-acting element is the light responsive

element, and at least six light responsive cis-acting elements

are found in each of the CsMATE23, CsMATE28 and

CsMATE34 promoter regions (Figure 5B). Phytohormones

responsive cis-acting elements are the second abundant

found in their promoter regions (Figure 5B). We also

revealed one and two defense and stress responsive cis-acting

elements in CsMATE17 and CsMATE28 promoters,

respectively, and one low temperature-responsive cis-element

in CsMATE23 promoter (Figure 5B).
Cannabinoids contents, transcription of
CsMATE23, CsMATE28 and CsMATE34
were affected under UV-B light

As we found numerous light responsive cis-acting elements

in the promoters of CsMATE23, CsMATE28 and CsMATE34
BA

FIGURE 4

Expression of CsAMTEs and cannabinoid biosynthetic genes. (A) Expression profile of CsMATEs in seed, root, stem, leaf and flower. PFKM values
were used to configure the heatmap. Red dots, genes selected for expression verification. CsOAC, olivetolic acid synthase; CsPT1 and CsPT4,
prenyltransferase 1 and 4 gene, repectively. (B) quantitative reverse transcription PCR verification. y-axis, relative gene expression normalized to
CsEF1-alpha. x-axis, different tissues. Data, mean ± SD.
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B

A

FIGURE 5

Expression of alternative splicing isoforms (A) and cis-acting elements in CsMATEs (B). Red dots, alternative splicing isoform used for analysis in
this study. Heatmap was configured using PFKM value. Length of gene promoters in bp.
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(Figure 5B) and lights are known to affect accumulation of

cannabinoids (Eichhorn et al., 2019), we then studied the

content of cannabinoids, cannabinoids biosynthetic

intermediates and the expressions of CsMATE23, CsMATE28

and CsMATE34 under UV-B light treatment.

Three-weeks-old cannabis seedlings were subjected to UV-B

light treatment, and quantitative analysis of cannabinoid

contents from leaves was performed by QQQ-MS/MS. In

summary, content of OA decreased significantly after two

hours or six hours UV-B treatment and reached highest at 12

hours, whereas we only observed a decrease of GPP at 12 hours

(Figure 6A). Except for CBD that showed a decrease at two hours

treatment and an increase after 12 hours UV-B treatment, the

contents of CBGA, CBG, THCA, THC and CBDA increased

after two hours, then decreased at six hours, reached the highest

at 12 hours (Figure 6A).

Correspondingly, expressions of CsMATE23, CsMATE28

and CsMATE34 also exhibited significant changes under UV-B

treatment (Figure 6B). CsMATE23 was greatly reduced after two

hours UV-B treatment and restored its expression at 12 hours.

The expression of CsMATE28 and CsMATE34 displayed no

significant change during the first six hours treatment, but

significantly increased at 12 hours. (Figure 6B).
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Discussion

MATEs have been identified in a variety of plant species,

including 56 MATEs in Arabidopsis, 55 in rice (Wang et al.,

2016). 67 in tomato (Santos et al., 2017), 64 in potato (Huang

et al., 2021), 70 inMedicago truncatula (Wang et al., 2017), 72 in

cotton (Xu et al., 2019) and 117 in soybean (Liu et al., 2016). In

the present study, we identified 42 CsMATEs and investigated

their physical-chemical properties, gene distribution,

evolutionary relationships, conserved motifs, gene structures

and gene expressions. CsMATEs contains only 42 members

(Table 1) and is the fewest when compared with other plant

species, which suggests CsMATEs may have undergone

contraction during evolution. Those 42 CsMATEs were

divided into four subfamilies and distributed on 10

chromosomes, with ~50% CsMATEs adjacent to at least one

another CsMATEs (Figure 1), thus the expansion of CsMATEs

might be largely due to tandem duplication (Wang et al., 2019).

Although cannabinoids synthetic pathways have already

been illustrated, the translocation of the cannabinoids and

biosynthetic intermediates are not known (Güllck and Moller,

2020). This inevitably hinders cannabinoids heterologous

biosynthesis (Güllck et al., 2020). Cannabinoids are
B

A

FIGURE 6

Cannabinoids contents (A) and expression of CsMATE23, CsMATE38 and CsMATE34 under UV-B light (B). Leaves from UV-B treated three-
weeks-old C. sativa seedlings were collected at 0, 2, 6 and 12 hours. Cannabinoids contents were measured using QQQ MS/MS. gene
expressions were detected by qRT-PCR with CsEF1-alpha as internal reference. Three biological repeats were performed. Different letters above
the bars indicate significantly different values (p < 0.05) calculated using one-way analysis of variance (ANOVA) followed by Tukey’s multiple
range test.
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synthesized in glandular trichomes and flowers of female C.

sative and their biosynthetic processes undergo cellular

compartmentalization (Güllck and Moller, 2020). For instance,

plastid localized CsaPT4 prenylates cytosolic synthesized OA in

chloroplast to yield CBGA (Taura et al., 2009; Gagne et al., 2012;

Luo et al., 2019; Güllck et al., 2020). Metabolite transporter

proteins that could shuttle from cytosol to chloroplast should

exist in C sativa cells. However, subcellular localization

prediction indicates that vast majority of CsMATEs locate in

vacuole or plasma membrane (Table 1). Although CsMATE39

contains putative chloroplast localization signal (Table 1), it

expresses mainly in leaf (Figure 4A), the tissue that is not the

most abundant cannabinoids accumulate. We assume that

transporters from other families might be involved in

translocating phenolic OA such as ATP binding cassette

transporters which could translocate plant phenolic

metabolites (Hwang et al., 2016). THCAS is secreted to

apoplastic space of the glandular trichome to carry out

oxidative cyclization of CBGA (Sirikantaramas et al., 2005).

The plastid produced CBGA thus should be translocated

across the plasm membrane. Thirty-five CsMATEs are

predicted to localized on plasm membrane (Table 1). Of them,

CsMATE03, CsMATE05, CsMATE23, CsMATE28, CsMATE31,

CsMATE34 and CsMATE40 had a highest expression in flower

but also expressed moderately in stem and leaf (the tissues that

have glandular trichomes) according to transcriptome data

(Figure 4A) and qRT-PCR (Figure 4B). Although we don’t

have the trichome-specific transcriptional data of those seven

genes in variety DK, they uniformly expressed in the trichomes

of the other nine C. sativa varieties (Zager et al., 2019,

Supplementary Figure S2). Moreover, the seven genes

exhibited similar expression pattern in different tissues as that

of cannabinoid synthetic genes (Figure 4A), which further

indicates the involvement CsMATEs in biosynthesis

of cannabinoids.

Within the seven genes, except for CsMATE23, CsMATE28,

CsMATE34 and CsMATE40 all have an unexpressed alternative

spliceform in tissues we studied (Figure 5A). Light responsive

cis-acting elements were abundantly detected in promoters of

the representative CsMATEs (CsMATE23, CsMATE28 and

CsMATE34), reflects those genes could be regulated by lights.

UV-B is known to affect accumulation of cannabinoids (Lydon

et al., 1987). In accordance with this, the contents of

cannabinoids and corresponding intermediates were changed

under UV-B treatment (Figure 6A). As expected, the variation

trend of CBGA was analogous to its direct downstream THCA,

CBDA and CBG (Figure 6A), reflects the precursor nature of the

CBGA (Güllck et al., 2020). Notably, although overall variation

of OA is similar to CBGA, accumulation of OA is opposed to

CBGA at two hours treatment where OA content was decreased

but CBGA contents was increased compared to zero hours

treatment (Figure 6A). Meanwhile, GPP did not show any

change at two hours treatment (Figure 6A). Therefore,
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increase of CBGA after two hours UV-B treatment could be

largely caused by over-usage of OA for synthesizing CBGA

either due to enhanced CBGAS activity or more efficient

translocation of OA form cytosol to plastid. Unfortunately,

none of the CsMATEs we tested was up-regulated after two

hours treatment (Figure 6B). We reasoned that plastid located

ATP binding cassette transporters that translocate phenolic

metabolites might responsible for OA transportation (Hwang

et al., 2016). Moreover, Although the transcriptional variation of

CsMATE23 is analogous to the content of OA (Figure 6B), OA is

synthesized in cytosol and CsMATE23 is localized in plasma

membrane (Table 1). Meanwhile, CsMATE23 is barely

transcribed in C sativa root, however its Arabidopsis ortholog

AtRHS2 (AtDTX31) located in plasma membrane of root is

required for hairy root elongation (Won et al., 2009). Hence, we

may also exclude participation of CsMATE23 in transporting

OA precursors.

The most interesting finding we observed is the correlation

between transcriptional alterations of CsMATEs with the

accumulation of CBGA, THCA and CBDA (Figure 6). As the

precursor of THCA and CBDA, CBGA content did not show

much alteration at 12 hours treatment compared to the control

zero hour (Figure 6A). However, the contents of THCA, THC,

CBDA and CBD were all increased at least more than four times

at 12 hours compared to zero hours and transcriptions of

CsMATE28 and CsMATE34 were also significantly enhanced

at 12 hours (Figure 6B). This could be explained by that

increased CsMATE28 or CsMATE34 more inefficiently

transport CBGA to the apoplastic space to enable its

subsequent conversions (Sirikantaramas et al., 2005).
Conclusion

We identified 42 CsMATEs and analyzed their structural

features, evolutionary relationships and expression patterns. We

found number of CsMATEs was subjected to contraction and its

expansion within the family was mainly due to tandem

duplication. Though RNA-seq and qRT-PCR analysis, we

found two root-specifically transcribed CsMATEs (CsMATE17

and CsMATE27) and three CsMATEs (CsMATE23, CsMATE28

and CsMATE34) whose transcription pattern were correlated

with transcriptions of cannabinoids biosynthetic genes. In

addition, although CBGA content was not much affected

under UV-B treatment at 12 hours, accumulations of THCA,

CBDA and CBG were increased. This could be due to the

increased expression of CsMATE28 or CsMATE34. Although

multiple evidences suggest that CsMATEs may play an

important role in the synthesis and transport of cannabinoids,

the transport of cannabinoids is a complex process. Therefore.

The functions of candidate genes (CsMATE28 and CsMATE34)

in cannabinoid transportations should be investigated in depth

in the future.
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