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Red rot caused by the fungus Colletotrichum falcatum is the main disease

limiting sugarcane productivity in several countries including the major

producer India. The genetic basis for red rot resistance is unclear. We studied

a panel of 305 sugarcane clones from the Australian breeding program for

disease response phenotype and genotype using an Affymetrix® Axiom® array,

to better understand the genetic basis of red rot resistance. SNP markers highly

significantly associated with red rot response (≤ 10-8) were identified. Markers

with largest effect were located in a single 14.6 Mb genomic region of sorghum

(the closest diploid relative of sugarcane with a sequenced genome) suggesting

the presence of a major-effect QTL. By genomic selection, the estimated

selection accuracy was ~0.42 for red rot resistance. This was increased to ~0.5

with the addition of 29 highly significant SNPs as fixed effects. Analysis of genes

nearby the markers linked to the QTL revealed many biotic stress responsive

genes within this QTL, with the most significant SNP co-locating with a cluster

of four chitinase A genes. The SNP markers identified here could be used to

predict red rot resistance with high accuracy at any stage in the sugarcane

breeding program.
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Introduction

Cultivated sugarcane (Saccharum spp. inter-specific hybrids)

is a major food and industrial crop grown in more than 110

countries in the tropics and sub-tropics (FAO, 2020). Globally, it

is the fifth most valuable crop economically, providing >80% of

the sugar and ~35% of the bioethanol in the world. Brazil and

India combined account for more than 50% of sugarcane

production in the world. Like other crops, maintaining

resistance to important diseases is a major objective of

sugarcane breeding programs worldwide (Heinz, 1987;

Jackson, 2018). Sugarcane red rot disease caused by the fungus

Colletotrichum falcatumWent has been reported in 77 countries

and is the most damaging sugarcane disease in India, Pakistan,

Thailand, Nepal, Myanmar and Vietnam (Viswanathan et al.,

2018). The disease causes rotting of sugarcane stalk tissue,

affecting cane yield and sugar quality. Inversion of stored

sucrose by the pathogen affects sugar juice quality, causing

reduced sugar recovery in sugar mills. In India, large-scale red

rot epidemics have occurred every decade since its first

appearance in 1901, resulting in large economic loss and the

removal of highly productive and widely cultivated varieties

from production (Viswanathan et al., 2018). By contrast in some

other countries including Australia, red rot disease is present but

is observed rarely and has only a very small impact on

commercial cane production. Resolving the underlying reasons

for the differing impact between countries is of interest and

potential practical importance.

Selection and deployment of resistant varieties is the most

common strategy used to manage red rot in affected sugarcane

industries (Viswanathan et al., 2018). In India no variety is

released for commercial production unless it has resistance to

red rot. However, breakdown of red rot resistance is common

(Viswanathan, 2021). In India, Co 205, the first hybrid sugarcane

cultivar (i.e. first cultivar with a Saccharum spontaneum

ancestor) that was released in 1918, and which quickly became

dominant in northern India, succumbed to red rot within a few

years after release (Chona, 1980). Over the next 100 years, nearly

all sugarcane cultivars in India, which were resistant at the time

of commercial release, became susceptible and succumbed to the

disease within a period of 3 to 20 years following release (Chona,

1980; Viswanathan, 2021). Unlike other sugarcane pathogens,

new C. falcatum pathotypes with varying degrees of virulence are

frequently formed through mutations and parasexual

recombination, causing resistance breakdown (Viswanathan

et al., 2020). Gain and loss of virulence and occasional

emergence of super-virulent pathotypes have been reported

(Viswanathan et al., 2020). Although the underlying

mechanism for host-resistance breakdown is unclear,

development of new C. falcatum pathotypes and their

adaptation to new varieties contributes to resistance

breakdowns and disease epidemics (Viswanathan et al., 2021).
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Studies on inheritance of red rot resistance have reported a

moderate to high narrow-sense heritability and high broad sense

heritability (Babu et al., 2010; Alarmelu et al., 2010). This

indicates that both additive genetic variance (i.e. variation due

to presence or absence of alleles) and non-additive (i.e.

dominance variation due to combinations of alleles at

particular loci, or epistasis variation due to interactions

between alleles at different loci) are important. The high values

(>0.90) reported for broad-sense also indicates potentially

stronger genetic control of response to the disease compared with

environmental factors (Ram et al., 2006). A major source of resistance

in sugarcane cultivars is believed to be derived from S. spontaneum

ancestors (Natarajan et al., 2001). It is also believed that a combination

of vertical resistance (due to race specific large gene effects) and

horizontal resistance (non-race specific resistance) contributes to

overall resistance to red rot (Alarmelu et al., 2010; Babu et al., 2010).

An association mapping study on red rot resistance in sugarcane by

Singh et al. (2016) identified several markers explaining between 10-

17% of variation in resistance scores which was independent of

population structure. However, as noted by the authors, this study

was limited in statistical power to some extent by the relatively small

size of the associationmapping panel used (116 clones) and because the

majority of genotypes screened fell into the single category of being

moderately resistant.

Determining the genetic basis of resistance to the disease

through association mapping, and whether it is the same or

different in other affected countries, could allow breeders to

more effectively select for durable resistance. In Australia,

despite red rot not currently being a serious disease, it is of

interest to sugarcane breeders in Australia and India to better

understand the genetic basis of resistance for two reasons.

Firstly, this information may be used in future marker assisted

breeding programs to eliminate susceptibility in parental or

progeny populations. Secondly, this information may be

coupled with future studies to determine the likely reaction of

Australian germplasm to races of C. falcatum in India. If QTL

identified as conferring resistance in Australian populations are

not present in Indian breeding programs, these may provide a

useful target for introduction by the latter. Conversely, if these

QTLs are already present in clones susceptible to red rot in India,

this would indicate a likely biosecurity vulnerability to guard

against or address.

Genetic studies in sugarcane are usually more challenging in

comparison to those with similar goals in other major crops.

This is at least partly due to the large and complex genome of

sugarcane, which is highly heterozygous and polyploid

(frequently aneuploid). Genome wide association studies

(GWAS) have been conducted in sugarcane research to

identify specific QTL and associated DNA markers for a range

of traits including fibre composition (Yang et al., 2019), yield

traits (Gouy et al., 2015; Racedo et al., 2016; Barreto et al., 2019;

Yang et al., 2020), yellow leaf virus resistance (Debibakas et al.,
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2014; Pimenta et al., 2021), leaf angle (Chen et al., 2022) and red

rot (Singh et al., 2016) using a combination of diversity array

technology (DArT), simple sequence repeats (SSR) amplified

fragment length polymorphism (AFLP) and SNP markers in

populations of 100-300 sugarcane genotypes (clones).

GWAS studies aim to identify individual markers correlated

with traits of interest, but are constrained by limited statistical

power to identifying only QTL with moderate to large effect,

particularly when population sizes are small (eg. panels

with<1000 genotypes). This is a potentially important

limitation because it is clear that most commercially important

traits in sugarcane are controlled by relatively small effects of

large numbers of genes. Resolution of marker-trait association

by some past studies may also be limited by the small

number of available markers relative to the large size of the

sugarcane genome.

More recently genomic selection (GS) has been advocated as

a potentially useful approach that may be used in sugarcane

breeding programs to more accurately select for traits controlled

by large numbers of small effect QTL. In sugarcane this method

has been applied with encouraging results (Gouy et al., 2013;

Deomano et al., 2020; Yadav et al., 2020; Hayes et al., 2021; Islam

et al., 2021). Where individual QTL of large effect are identified,

GS can also be used in models with single QTL effects identified

using genome wide association studies (GWAS) to maximise

prediction accuracy (Bernardo, 2014). The development of a

high density sugarcane Affymetrix® Axiom® array containing

over 58K single nucleotide polymorphism (SNP) (Aitken et al.,

2017) allows for low-cost screening of sugarcane germplasm

with a far larger number of markers providing greater genome

coverage and marker density. This improves the likelihood of

identifying markers in close proximity to the gene or QTL

underlying a trait of interest.

Here we screened a population of 305 clones representative

of clones generated routinely in the Sugar Research Australia

(SRA) sugarcane breeding program for response to red rot

disease. These same clones were also genotyped using the

Affymetrix® Axiom® SNP array to identify specific markers

linked to resistance to this disease. We examined the results from

analysing data using GWAS and GS for resistance to red rot. We

evaluated the accuracy of GS using pedigree, markers and a

combination of both to predict red rot resistance. The

population of clones studied were also characterised for tonnes

of cane per hectare (TCH) and commercial cane sugar (CCS)

content, and results from these traits provided a comparison for

red rot. In particular, GS prediction accuracies for red rot

resistance were compared with TCH and CCS which have

been studied previously (Deomano et al., 2020; Hayes et al.,

2021). We also determined the genomic location of SNP markers

that were strongly associated with red rot resistance in order to

help identify candidate genes that may be related causally to the

response to red rot. Highly significantly associated SNPs were

located in close proximity to multiple stress responsive genes
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which have previously been identified in transcription studies

and this information may help resolve the genetic control of red

rot resistance in sugarcane, and lead to more robust markers for

clone selection in the future.
Materials and methods

Genetic materials, field experiment and
yield measurements

Three hundred and five clones from a final stage regional

selection trial of the SRA sugarcane were used for the study.

These clones were representative of those routinely generated

and evaluated in the Australian commercial sugarcane breeding

program, apart from three clones which were commercial

standard cultivars. The clones were derived from 186 different

parent clones and 166 crosses, also representative of those used

and generated in the Australian sugarcane breeding program.

A field trial was established at Kalamia mill estate in north

Queensland, Australia to measure cane yield (tonnes/ha, TCH)

and commercial cane sugar (% fresh weight, CCS) (BSES, 1984).

About ten percent (30) of the 305 clones evaluated were

replicated twice to measure error variance (see section 2.5),

while other clones were planted in one replicate. Each individual

plot had four rows, 10 m in length, and there was an interrow

spacing of 1.6 m. The trial was planted at Kalamia on 6 May

2013, and then cultivated and harvested following recommended

local commercial crop management practices. Cane yield (TCH)

and CCS were determined at harvest (12-month-old crop)

following standard methods used in the SRA breeding

program (BSES, 1984), and data for these two traits from the

plant crop (first year) and ratoon crop (second year) was

collected and analysed.
Isolation and culturing of
Colletotrichum falcatum

Sugarcane stalks showing typical red rot symptoms were

sourced from a sugarcane farm near Mackay, Queensland,

Australia. Stem cuttings were thoroughly cleaned with water,

sprayed with 70% ethanol and split longitudinally with a sterile

knife in a laminar-flow hood. Small pieces of infected tissues

were isolated under sterile condition and cultured on potato

dextrose agar in Petri dishes and stored at room temperature in

dark conditions for several days. Fungal colonies with typical C.

falcatum morphology were sub-cultured regularly to produce

pure isolates. Pathogen identity of isolates was confirmed by

conidia, culture morphology, and red rot symptoms in

sugarcane. Sporulating fungi were suspended in deionised

water and mixed with a kitchen blender to produce inoculum
frontiersin.org
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for red rot screening trials. Conidial concentration of the

inoculum was adjusted to 1 million conidia per ml.
Screening of breeding trial clones for red
rot resistance

The level of resistance to red rot was observed for all 305

clones in the trial following methods developed by the Sugarcane

Breeding Institute, Coimbatore, India and described by

Mohanraj et al. (1997). These procedures were briefly as

follows. Six-month-old cane stalks with an intact shoot top

were used for the screening trial. After stripping off the older

leaves and trimming the remaining ones to half-length, the

upper part of the stalk with seven visible nodes was cut and

inoculated by wrapping cotton swabs moistened with 5 mL of C.

falcatum conidial suspension or water (control) around the

second and third visible nodes from the top. Inoculated stalks

were positioned upright with cut end inside wet sand and

maintained in a growth chamber set at 30°C, > 90% humidity

and constant light for two weeks. The experiment design was a

randomised complete block with four replicated stalks

inoculated for each clone. A highly resistant standard

(negative control) and a highly susceptible standard (positive

control) were also included in this experiment.

After two weeks the stalks were split longitudinally and

disease symptoms were scored following the metrics described

previously (Srinivasan and Bhat, 1961): shoot top condition (0 =

healthy, 1 = dry/yellow), lesion width above inoculated node (0,

1, 2, or 3), nodal transgression of lesion (0, 1, 2, or 3 nodes

transgressed) and occurrence of white spots (0, 1 = restricted, 2 =

progressive) to give a total score from 0 (highly resistant) to 9

(highly susceptible).
Genotyping and SNP marker screening

All clones were genotyped using an Affymetrix Axiom SNP

array developed for sugarcane with 58,028 SNPs, previously

screened and chosen based on quality parameters and

polymorphism in Australian and Brazilian parental clones

(Aitken et al., 2017). High-quality DNA was extracted from

leaf tissues using a standard CTAB method, treated with

proteinase K and purified on a Qiagen column. The Axiom

assay was performed on 96-sample Axiom array following the

procedure described by Affymetrix (http://media.affymetrix.

com/support/downloads/manuals/axiom_2_assay_auto_

workflow_user_guide.pdf ). DNA samples that had a dish

quality control (DQC) measure of less than 0.82 or a quality

control (QC) call rate of less than 97% were excluded from the

analysis. Allele calling was performed using generated CEL files

with Axiom Analysis Suite (1.1.0.616) (http://media.affymetrix.

com/support/downloads/manuals/axiom_genotyping_solution_
Frontiers in Plant Science 04
analysis_guide.pdf). For each polymorphic marker, all genotypes

were given a marker score of 1 if only the most frequent allele

was present (i.e. homozygous for this allele), 0 if both alleles were

present (i.e. heterozygous), and − 1 if only the minor allele was

present. Markers in which one of these three classes occurred for

> 98% of the clones were deleted. A total of 56, 788 polymorphic

markers were retained for further analysis after the above

filtering. For each marker, missing values were replaced with

the most frequent allele within a marker.
Analysis of phenotypic data

TCH, CCS, red rot rating were analysed under a mixed

model framework using a commercial R package, Asreml-R.

For TCH and CCS, an optimal linear mixed model was first

determined for each trial crop class data from fitting different

fixed, random and residual effects (Butler et al., 2017). For fixed

effects replicate, linear row and linear column were considered.

Clone is fitted as a random factor as well as spline row and spline

column. Spatial variation along the row and along the column

was also accounted for. The best model for each trial crop data

were then used to fit a model to the multiple trial crop class data.

Trial crop is added as a fixed effect in the model. Also, a

correlated genetic variance was fitted to the G matrix to

account for genotypic variance heterogeneity and correlated

measurements between trial crop classes. On the other hand,

an unstructured general correlation model and heterogenous

variance form was used for the R matrix to account for

heterogenous and correlated error variances of trial crop classes.

For red rot, the linear mixed model can be described as

follows:

y  =  m  +  date  +  rep=date  +  clone  +  e

where y is the measurement of total score from each plot, m is

a grand mean and e is the residual effects. Date, replicates within

date (rep/date) and clone were set as random effects. All the

random effects were assumed to follow iid N(0, Is2). Similarly,

BLUPs of clonal effects and the broad-sense heritability were

estimated from the model, which were used as observed values in

genomic selection.
Genome wide association studies

The association between each individual SNP marker and

Red Rot resistance, TCH, and CCS was analysed using ASReml-

R package based on the following mixed model:

y  =  a  +  d  +  r=d  +  SNP  +  u  +  e

where y is BLUP of a trait obtained from the above analysis,

a i the intercept, SNP is a fixed effect of SNP, u is a polygenic
frontiersin.org
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effect ~ N(0, As2a) where A is the numerator relationship

matrix and s2a is the polygenic variance; e = random residual

effects ~ iid N(0, Id⊗s2
ed)

Linkage disequilibrium between highly significant SNPs

(P<10-7) was calculated using Haploview software (Barrett

et al., 2005). SNPs with an LD score of ≥ 0.8 were allocated to

the same linkage group for the purpose of examining potentially

causal linked genes. These linkage groups are putative only as

resolution for this test is limited by our population size. For a

comparison with results for red rot, we performed a GWAS for

TCH and CCS for all clones in the same population as screened

and reported for red rot resistance.

Highly significant SNPs for red rot resistance were aligned to

the sorghum genome in order to identify genes that were

physically located next to or on top of these SNPs. Some

details of the methods used are provided below.
Identification of nearby genes

The genomic location of SNPs most significantly associated

with red rot resistance, TCH and CCS was determined by

searching the sugarcane and sorghum genomes on the CSIRO

public genome browser (http://gbrowse-ext.bioinformatics.csiro.

au /). Sorghum was used as a reference genome as it is the closest

diploid relative to sugarcane with a high level of synteny between

the two genomes, but is smaller with more detailed gene

annotation (Garsmeur et al., 2018). Genes located at or within

5 kb of a significant SNP were investigated to determine their

likely biological function. This was determined by observing

their sequence homology to characterised genes, and their

transcriptional regulation in sorghum using the Morokoshi

sorghum transcriptome database (http://matsui-lab.riken.jp/

morokoshi/Home.html).
Genomic selection

Methods for genomic selection and prediction mostly

followed those detailed by Deomano et al. (2020). For each

trait, four Bayesian models and two Machine Learning methods

were fitted to the data. The Bayesian models used were BayesA,

BayesB, Bayesian Lasso (BL), and Genomic BLUP (GBLUP)

(Crossa et al., 2010; Pérez and Campos, 2014). The Bayesian

models differ on the assumed distribution of the clone effects.

Three sets of explanatory variables per model were used, with

these being pedigree (A), marker (M) and pedigree + marker

(AM) information (Deomano et al., 2020). Pedigree data over 3 -

10 generations was retrieved from information on ancestors in a

database owned by SRA. What was previously considered to be a

semi-parametric method (Gianola et al., 2006), the Reproducing
Frontiers in Plant Science 05
Kernel Hilbert Spaces (RKHS) is now also included in the

Machine Learning (ML) group (Gonzalez-Recio et al., 2014).

The A type of explanatory variable was used on RKHS. For both

the M and AM type, the Reproducing Kernel Hilbert Spaces-

Kernel Averaging (RKHS-KA) model was used (Gonzalez-

Camacho et al., 2012). Random Forest (RF) (Breiman, 2001),

one of the popular ML methods, which is a tree-based ensemble

method for regression was fitted to the data using the A, M and

AM explanatory variables. For all three sets of explanatory

variables and 6 models, the full SNP data was fitted.

For the Bayesian models including RKHS the BGLR R-

package (Pérez and Campos, 2014) was used with default

values provided by the software. The number of MCMC

iterations, burn in and thinning were 10K, 1K and 10,

respectively. The ranger R-package was used for the RF model

with ntree = 500, nodesize = 5 and other parameters set to

default (Gonzalez-Camacho et al., 2018). Each model per type

per trait was cross-validated on 50 replicates of a randomised 80

training:20 test dataset. The prediction accuracy of a model was

calculated as the Pearson’s product-moment correlation

coefficient between the observed trait and predicted trait for

the test dataset. Accuracy was calculated for each replicate for

each model per type per trait. Accuracies were then averaged

across 50 replicates per model per type per trait.

The above methods were also applied for the M type models

except with some markers with large effects identified from the

GWAS analysis considered as fixed effects, and all other markers

considered as random effects. Except for RFR, the second set of

SNP data consisting of the remaining non-significant SNPs were

fitted as random effects. For the RKHS model, only one kernel

was used in the model.
Results

Analysis of variance and distribution of
red rot resistance

The broad-sense heritability for the scores for response to

red rot was estimated to be 0.89, indicating nearly 90% of

variation in measured phenotype was attributable to genetic

effects (with the remainder due to experimental or

environmental effects). The majority of clones appeared

resistant or highly resistant to red rot in response to the

screening method (Figure 1).
Genome-wide association studies

A summary of the results of association tests between

individual SNP markers and red rot resistance are given in
frontiersin.org
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Table 1. Figure 2 shows a quantile-quantile plot of p-values for

all SNPs in the red rot association mapping population. The

observed p-values in our study deviated significantly from a

normal distribution that would be expected by chance if there

was no association with the trait. This is consistent with markers

declared significant at the lowest P values having low false

discovery rates (i.e. ratio of number of markers expected at the

P value to be declared by random chance compared with number

observed if the null hypothesis of no markers linked to the trait

was valid, Table 1), meaning there is a high level of certainty that
Frontiers in Plant Science 06
none of these markers are being declared as significant due to

Type 1 statistical errors (random chance).

Thirty-five markers were found to be significantly associated

with red rot at P ≤ 10-7, and this level of P corresponded to a near

zero false discovery rate. These markers were all found to be in

LD, with most in strong LD (r > 0.8), suggesting all were

associated with a common QTL for resistance to red rot.

The number of markers associated with TCH and CCS at

low P values (<10-4) was considerably less than for red rot, with

no markers associated at P values less than 10-6. However, a
FIGURE 1

Distribution of estimated red rot BLUPs. Lowest BLUP values correspond to greater resistance levels. Photographs show typical symptoms
observed in resistant and susceptible clones in the assay.
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higher number of markers than expected by random chance

were associated with TCH and CCS in both the plant and first

ratoon crops for p values between 0.001 and 0.01, with the

ratoon crop having higher numbers. For TCH, a higher number

of SNPs were also associated with the trait than expected by

random chance for P values ≤ 0.0001 and ≤ 0.00001. This was

also the case for CCS for P ≤ 0.0001 in the ratoon crop only. SNP
Frontiers in Plant Science 07
associations for each of TCH and CCS traits were strongly

correlated between plant and ratoon crop measurements,

consistent with performance for each of these traits being

correlated between crop cycles (data not shown). However,

there was no correlation between SNP marker effects for TCH

and CCS, indicating that these two traits appear governed by

different genes.
FIGURE 2

Quantile – Quantile plot of red rot SNPs. Expected normal distribution of p-values assuming no associations (null hypothesis) is given on the x
axis, and the observed p-values on the y axis. The red line indicates the expected trend if observed p-values were normally distributed. The
most significant SNP (AX-117209536) is indicated on the figure and was associated with red rot disease at p = 8.00 x 10-10.
TABLE 1 GWAS results for all traits.

P value By random chance Red Rot resistance Tonnes cane per hectare Commercial cane sugar

P 1R P 1R

≤ 10-2 352 714 907 1083 497 1037

≤ 10-3 35 243 184 232 63 134

≤ 10-4 4 184 42 47 3 23

≤ 10-5 0 141 10 4 0 0

≤ 10-6 0 99 0 0 0 0

≤ 10-7 0 35 0 0 0 0

≤ 10-8 0 10 0 0 0 0

≤ 10-9 0 1 0 0 0 0
f

The number of SNPs associated with Red Rot resistance, cane yield (TCH) and commercial cane sugar content (CCS) at different p values is shown, along with the number of SNPs expected
to be associated with the trait by random chance (i.e. assuming the null hypothesis of no markers linked to red rot resistance). For TCH and CCS, the crop cycle in which the trait was
measured is indicated where P, plant crop; 1R, first ratoon.
rontiersin.org

https://doi.org/10.3389/fpls.2022.1021182
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


O’Connell et al. 10.3389/fpls.2022.1021182
TABLE 2 Genes co-located with red rot resistance associated SNPs.

SNP
(AX#)

P
value

Effect
size

Nearby genes
(Sobic.#)

kb from
SNP

Gene family/function

117163812 3.73E-
08

-0.8772 001G000400 0.0 Pleiotropic drug resistance protein.

117962959 1.13E-
09

-0.9654 002G141200 0.0 DNA binding protein.

117995732 1.39E-
07

0.8357 003G302400 0.0 Unknown protein.

117891751 8.65E-
09

0.8897 005G126600 0.0 Auxin signalling F-box 2.

118058341 3.78E-
08

0.8504 005G142900 0.0 Pentatricopeptide repeat (PPR) superfamily protein.

118121450 8.50E-
08

0.8353 005G143300 0.0 Histone chaperone domain CHZ domain containing protein.

117949242 6.62E-
09

-0.9233 005G149600 2.5 Cytochrome P450, family 76, subfamily C, polypeptide 2. Biotic stress inducible in
Arabidopsis.

117315834 1.03E-
07

-0.8287 005G153000 0.0 Agenet domain containing protein.

118032095 1.09E-
08

-0.8979 005G154800 0.0 OsWAK receptor-like cytoplasmic kinase.

118019715 9.90E-
08

0.8439 005G160600 0.5 OsFBO15 – F-box and other domain containing protein.

117191093 8.34E-
08

-0.8368 005G162900 0.0 DNAJ heat shock N-terminal domain-containing protein.

117891837 1.01E-
07

0.8397 005G163400 0.0 DNAJ heat shock N-terminal domain-containing protein. Biotic stress responsive in
Arabidopsis.

117992398 1.67E-
07

0.8141 005G176600 1.0 Eukaryotic aspartyl protease.

117209536 8.00E-
10

0.9071 005G177800 0.0 Basic helix-loop-helix (bHLH) DNA-binding superfamily protein.

117272856 1.21E-
07

0.8837 005G180900 1.0 DUF630/DUF632 domains containing protein, putative, expressed. bZIP transcription
factor.

117155383 5.83E-
08

0.8824 005G181000 0.0 Acyl-coenzyme A oxidase. Biotic stress responsive in Arabidopsis.

117133021 7.78E-
09

-0.9088 005G182200 0.0 NB-ARC domain-containing disease resistance protein.

117177631 1.02E-
09

-0.9732 005G183600 0.0 Mannose-binding lectin superfamily protein. Similar to Jasmonate-induced protein.

118058750 3.87E-
08

-0.9076 005G186200 0.5 PATATIN-like protein 4.

117168779 7.38E-
08

0.9070 005G189700 0.0 Expressed protein.

117870219 2.06E-
09

0.9613 005G200300 1.0 Tyrosine aminotransferase.

118126726 1.99E-
08

0.9474 005G204700 0.0 Pectin lyase fold/virulence factor domain containing protein.

118011427 4.81E-
08

0.9321 005G209600 0.0 P-loop nucleoside triphosphate hydrolases superfamily protein with CH (Calponin
Homology) domain.

117927589 1.03E-
09

-0.9799 005G212800 2.0 Carboxyl-terminal peptidase, unknown function.

117301744 1.34E-
08

0.8960 009G216700 0.0 WD domain, G-beta repeat domain containing protein.

117874758 9.39E-
08

0.8523 010G054400 0.0 Leucine-rich repeat protein kinase family protein. Biotic stress responsive in
Arabidopsis.

117154432 2.00E-
07

0.8357 010G214500 0.0 Purple acid phosphatase.

(Continued)
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Location of significant SNPs on sorghum
and sugarcane genomes, and
nearby genes

SNPs associated with resistance to red rot at P< 10-7 were

aligned with the sorghum genome, and those SNPs (29) with

closely located genes (< 5kb from the SNP) were listed in Table 2.

Many of the SNPs occurred within the coding sequence of genes,

reflected in Table 2 by the high proportion of genes located 0.0 kb

from significant SNPs. Out of these 29 SNPs, most (21) were

aligned to sorghum chromosome 5, and a smaller number were

aligned to several other chromosomes (Figure 3). Of these, 17

SNPs corresponded to a 14.6Mb section of sorghum chromosome

5 (Figure 4). All of these SNPs were in strong LD in the sugarcane

population in this study apart from one, AX117209536, which was

in weaker LD (although still statistically significant) with the

others in this group (Figure 4). A weak LD in our breeding

population among SNPs closely physically located on the genome
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could arise because of recombination in one or more key

ancestors. In addition, sugarcane sorghum chromosomes 5, 6

and 7 are rearranged in some of the chromosomes inherited from

S. spontaneum which could lead to incomplete synteny to

sorghum in this region (Garsmeur et al., 2018).
Genomic prediction

Accuracies of genomic prediction for red rot resistance, CCS

and cane yield are presented in Table 3. The accuracies attained

for red rot (up to 0.50) were greater than for the other traits. This

is consistent with what may be expected considering that a

higher number of markers were observed as associated with red

rot at low p values than for the other traits.

For red rot, the A type model (i.e. using just pedigree data

without marker data) gave lower accuracy than the M and AM

models (Table 3). This indicated the inclusion of DNA marker
TABLE 2 Continued

SNP
(AX#)

P
value

Effect
size

Nearby genes
(Sobic.#)

kb from
SNP

Gene family/function

117133579 5.39E-
09

-0.9333 K004600 1.0 NADH:ubiquinone/plastoquinone oxidoreductase, chain 3 protein.

117879610 7.51E-
08

-0.8435 K031500.1 0.0 DNA binding, ATP binding.
A distance from SNP of 0.0 kb indicates that the SNP occurs within the gene. Only highly significant SNPs (p ≤ 10-6) with closely co-located genes on the sorghum genome are listed in the
table. Effect size indicates the difference between clones with the SNP and the clones that are homozygous and lack the SNP (in rating units).
FIGURE 3

Manhattan plots showing P value of SNPs obtained from association analysis for red rot resistance score versus locational alignment to the
sorghum genome (chromosomes numbered 1 to 10, U indicating no alignment found). For guidance, the red line indicates p = 5x10-8 and the
blue line p = 1x10-5.
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TABLE 3 Genomic prediction accuracies per type, per model, per crop class and per trait.

Type Model Red Rot resistance CCS TCH

Random Mixed P 1R P 1R

A BayesA 0.25 0.20 0.19 0.11 0.16

A BayesB 0.26 0.19 0.18 0.11 0.16

A BL 0.25 0.18 0.18 0.11 0.16

A GBLUP 0.24 0.22 0.22 0.11 0.16

A RKHS 0.25 0.22 0.21 0.12 0.16

A RFR 0.18 0.18 0.17 0.11 0.14

M BayesA 0.40 0.15 0.27 0.27 0.20 0.22

M BayesB 0.44 0.48 0.18 0.20 0.17 0.19

M BL 0.41 0.50 0.28 0.28 0.20 0.22

M GBLUP 0.41 0.50 0.28 0.28 0.20 0.22

M RKHS 0.41 0.51 0.29 0.29 0.19 0.22

M RFR 0.46 0.49 0.28 0.28 0.31 0.33

AM BayesA 0.40 0.27 0.28 0.20 0.23

AM BayesB 0.45 0.23 0.23 0.17 0.19

AM BL 0.42 0.28 0.29 0.20 0.22

AM GBLUP 0.40 0.28 0.28 0.18 0.22

AM RKHS 0.40 0.28 0.28 0.17 0.21

AM RFR 0.46 0.27 0.28 0.30 0.32
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CCS, commercial cane sugar; TCH, tonnes cane per hectare; RR, red rot. The types of model refer to models (Bayes A, Bayes B, Bayesian Lasso, Ridge regression (GBLUP), Kernal Hilbert
spaces (RKHS), Random Forest Regression (RFR), with pedigree data only (A), marker data only (M) and pedigree and marker data combined (AM). For Red Rot resistance, accuracies are
given for models assuming random marker effects only (random) and models assuming a mixed model (Mixed), with 29 markers given in Table 3 designated as fixed effects and the
remaining markers as random effects.
FIGURE 4

Linkage disequilibrium. r2 (expressed as %) observed between 17 significant SNP markers, and physical alignment to the sorghum genome. These
SNPs are closely linked on the sorghum genome and are significantly (P< 10-7) associated with resistance to red rot.
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data in the model improved prediction of trait performance over

and above that which can be attained through pedigree

data alone.

In addition to “standard” genomic prediction models where

markers are assumed as random effects, the 29 red rot SNPs

listed in Table 2 at P< 10-7 were added as fixed effects. Except for

one case, the accuracies of prediction in most cases for the model

with the fixed effects added were higher (0.48 to 0.51) than

without (0.41-0.46). This result indicates adding large effect

markers separately in the genomic prediction models can

improve prediction capacity. However, there was a single

exception to this result with the Bayes A model gave a very

low accuracy when the fixed effects were added, and reasons for

this were unclear.
Effect of the QTL

Average resistance scores for clones homozygous for each

allele, and heterozygous for the alleles were determined for each

of 29 markers listed in Table 2. Effects for each of the individual

29 markers were very similar (data not shown), as expected given

the strong LD (correlation) among this group of markers, and

thus similar to the overall average of all markers (Figure 5).

Clones with the resistance allele were more resistant by about 1.5

resistance rating units than clones without the resistance allele. A

strong dominance effect of the resistance allele is also apparent,

with the average resistance of the heterozygous clones being

similar to that for clones homozygous for the allele conferring
Frontiers in Plant Science 11
resistance (Figure 5). This result suggests that the QTL (or

multiple closely linked QTL) linked with this group of SNP

markers has both an additive and dominance variation component.

Clones were classed into those putatively with and without

the QTL (or multiple QTLs) characterised by the presence of

alleles of the 29 linked SNP markers in Table 2, as follows. The

allelic composition of each clone was firstly determined in terms

of the number of the 29 SNP markers for which it had at least

one copy of the allele found positively associated with resistance

to red rot. The number of clones with different numbers

(ranging from zero to 29) of SNP markers with at least one

copy of the positively associated allele is shown in Figure 6. For

example, this shows there are 82 clones for which only one of the

29 SNP markers presented with the allele positively associated

with red rot resistance. Because of the high linkage

disequilibrium among this set of markers, the clones are

distributed as two contrasting and distinct groups. This

consisted of one group of 170 clones (on the left side of

Figure 6) having most of the 29 SNP markers not presenting

with the allele associated with resistance (i.e. most markers SNP

presenting as homozygous for the alternative alleles to the alleles

associated with resistance), and another group (on the right side

of Figure 6) having most of the SNP markers presenting with the

allele positively associated with resistance (either as being

heterozygous for the two alternative SNP alleles or

homozygous for the SNP allele positively associated with

resistance). Based on these results, the clones on the right-

hand side of Figure 6 (with most of the 29 SNP markers)

presenting with at least one copy of the resistance allele) were
FIGURE 5

Resistance to red rot of groups of clones with the three different observed SNP marker genotypes (ie. Each of two homozygotes, and the
heterozygote) for the markers found associated with red rot resistance at P<10-7. Average resistance score BLUPs for genotypes within each of
the three groups were determined for each of the 35 markers individually, and the average of all 35 markers is shown.
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arbitrarily classed for the purpose of further investigation as

having the QTL associated with red rot resistance, while those on

the left-hand side were considered to not have the QTL.

As shown in Figure 5, clones were arbitrarily classed into

three resistance groups, as (i) susceptible, (ii) intermediate, and

(iii) resistant, based on having a BLUP for resistance score of >2,

2 to 0, and<0, respectively. These classifications were cross-

tabulated with presence or absence of the putative QTLs for

resistance as defined above (Table 4). Of the one hundred and

thirty-five clones with the resistance QTLs, 126 were resistant to

red rot, and only two were classed as susceptible (Table 4). By

contrast, there were 51 clones that were classed as susceptible, 49

of these did not have the resistance QTLs (Table 4). However,

there were also 91 clones that were classed as being resistant but

without the QTLs, which indicates that some other genetic

factors could also contribute to resistance. In summary, these

results are consistent with the resistance QTL (linked to the

cluster of 21 (16 high LD) markers in Table 2 having a

penetrative, dominant effect on resistance, but with some other
Frontiers in Plant Science 12
genetic factors present on other chromosomes also

independently imparting resistance.
Discussion

The results indicate that a major QTL affects resistance to

red rot within germplasm generated in the Australian sugarcane

breeding programs. The presence of this effect, indicated by a

cluster of closely linked SNP markers, appears to provide a high

chance of resistance, with only a very small proportion (2% or

less) of clones with resistance alleles linked to this QTL showing

susceptibility. However, the presence of resistance in over 50% of

clones without this QTL also indicates that other genetic factors

also contributed to red rot resistance in the germplasm studied,

reducing somewhat the overall difference in resistance levels of

clones with the QTL versus those without, across the

whole population.

The set of clones sampled for this study represented those

routinely generated in the commercial sugarcane breeding

program in Australia. The observation that less than 20% of

the sampled clones were susceptible to red rot, with most clones

exhibiting resistance, is consistent with the situation seen for

many years in the Australian sugarcane breeding program and

industry, where susceptibility to red rot is not generally an

important problem. However, this situation is clearly different

to other countries, such as southern Asian countries where

cultivar susceptibility to red rot is a critical problem, and it is

of interest to understand possible reasons for the difference. It is

at present unclear if the potentially important QTL conferring

resistance to red rot in the germplasm, or other genetic effects,
TABLE 4 Numbers of clones at different levels of resistance and
whether a QTL for resistance to red rot was putatively present.

Resistance level Resistance QTL present? Grand Total

No Yes

Susceptible 49 2 51

Intermediate 30 7 37

Resistant 91 126 217

Grand Total 170 135 305
FIGURE 6

Number of clones (out of 305) versus number of the 29 SNP markers listed in Table 2 that detected the allele (for each marker) associated with
resistance to red rot.
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contributes to the high proportion of resistant clones relative to

the situation in other countries, or if pathogen variation is the

major cause of differences. It is of interest to understand if the

major QTL in the Australian germplasm exists in sugarcane

cultivars and breeding programs in countries such as India. At

this stage, the value of this QTL in other countries is unknown,

and its effectiveness (or vulnerability) against different evolved

strains of red rot in other countries should be investigated. The

use of common SNP markers available for easily comparing

germplasm in different programs will facilitate this investigation

in the future. For the Australian sugarcane breeding program,

based on the results in this study, it would be possible to screen

for several of the SNP markers (listed in Table 2) linked to the

major resistance QTL to ensure elimination of red rot

susceptible material from any selection populations. In

addition, selected SNPs for red rot resistance could possibly be

usefully included in a targeted, low-cost marker platform used to

screen sugarcane clones for multiple disease traits.

The pattern of results shown in Table 4 suggests some degree

of non-additive genetic effects may arise, which could limit

prediction of resistance using models based on only additive

genetic effects, including the standard GWAS methods and most

of the well-established genomic prediction models used in this

study. In this situation, models based on decision trees may be

more effective in predicting resistance. For example, a decision

tree that is based on an initial branch that predicts a clone is

relatively resistant if it had a set of alleles associated with

resistance for the majority of the SNP loci indicated in

Table 2, may be appropriate. This may be one reason why the

random forest method of genomic prediction produced slightly

better accuracy levels than the other methods (where the QTL

effect was not included as a separate fixed effect) (Table 3).

A cluster of SNPs strongly associated with resistance to red

rot were located within a 14.6 Mb region of sorghum

chromosome 5, suggesting the identification of a novel QTL.

There is an indication from the SNP effect that minor QTL are

also present on alternative copies of this chromosome in the

sugarcane genome. This QTL region has not to our knowledge

been previously reported. Singh et al. (2016) used association

mapping to identify putative red rot responsive sugarcane QTLs

homologous to regions of chromosome 2 and 7 in sorghum.

These effects appeared smaller than those identified in our study,

although resolution of these was also limited by small population

size. Sathyabhama et al. (2015) identified differentially expressed

EST clusters in red rot resistant sugarcane variety Co 93009 with

sequences that were homologous to regions of sorghum

chromosomes 1, 3, 4, 7, 8, and 9.

Many of the genes co-located with SNPs linked to the

proposed QTL in this study (and listed in Table 2) encode

proteins involved in plant response to pathogens. These include

jasmonate induced proteins, pleiotropic drug resistance proteins

(a general defence protein) (Sasabe et al., 2002), pectin lyase fold/

virulence factor domain containing proteins, DUF630/DUF632
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domains containing bZIP transcription factors (involved in

pathogen response) (Alves et al., 2013), auxin signalling F-box

2 proteins (Navarro et al., 2006), and NB-ARC domain-

containing disease resistance proteins. We have corroborated

the expression of some co-located genes at the transcript and

protein level. A significant SNP (AX 117962959) which was

found on a DNA binding protein gene, and its peptide was

present in the proteome developed during C. falcatum sugarcane

interaction. An RNA binding/nucleic acid binding/zinc ion

binding protein was associated with red rot resistance and

found in this proteome (Kumar et al., 2020). Another

significant SNP (AX 117891751) was located in Auxin

signalling F-box 2 gene. A previous study showed differential

expression of a F-box domain containing protein in a subtractive

library (Sathyabhama et al., 2015) and in the proteome (Kumar

et al., 2020). Prathima et al. (2013) also found its expression

through differential display (DD-RT-PCR) in a resistant variety

after pathogen inoculation. Specific expression of a set of

chitinases was demonstrated in a resistant variety as well as in

a susceptible variety tolerating red rot development due to plant

growth-promoting rhizobacteria (PGPR) mediated induced

systemic resistance (Viswanathan et al., 2003; Viswanathan

et al., 2009). Subsequently, Rahul et al. (2016) demonstrated

that sugarcane chitinase genes were upregulated in sugarcane

cells when they are challenged with C. falcatum elicitors, and

some success has been achieved in supressing red rot symptoms

in sugarcane by transgenic overexpression of chitinases (Tariq

et al., 2018) or by application of biocontrol agents that produce

chitinases (Joshi et al., 2019). Further investigation of this region

of the sugarcane genome may provide greater insights into the

mechanisms underlying genetic control of red rot resistance

in sugarcane.

Significant SNPs were identified in a cytochrome P450 gene

which showed up regulation in a resistant variety (Prathima

et al., 2013). The SNPs (AX118019715, AX117191093,

AX117891837) are located at genes which showed specific

expression in a resistant variety (Co 93009) after pathogen

inoculation in proteomic studies (Kumar et al., 2020). The

SNP (AX117133021) was co-located on a disease resistance

gene and specific expression of disease resistant protein RPM1

and RPS5 was established in a resistant sugarcane variety Co

93009 (Viswanathan et al., 2016). For SNP (AX117874758),

increased expression of its co-located gene has been found in a

resistant variety (Sathyabhama et al., 2015). Using differential

display (DD)-RT-PCR), LRR family protein expression was

found to increase in resistant variety (Co 93009) after

pathogen inoculation and in sugarcane suspension cultures

treated with C. falcatum elicitors (Prathima et al., 2013; Rahul

et al., 2016). The SNP co-located to the gene NADH ubiquinone

oxidoreductase (SNP ID AX117133579) was also identified in a

resistant variety in a gene expression study (Rahul et al., 2016).

The 14.6 Mb region homologous to the sorghum genome in

Figure 3 also contains genes which have orthologues reportedly
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transcriptionally regulated in response to stress when tested in

the model plant Arabidopsis thaliana. This includes a number of

genes associated with fungal pathogen defence including a

c lus te r o f ch i t inase A genes (Sob ic .005G177100 ,

Sobic.005G177400, Sobic.005G177500, Sobic.005G177600)

whose orthologues are transcriptionally activated in response

to abiotic stress in Arabidopsis (Berardini et al., 2015).

Interestingly, the single most significant SNP in our study

(AX117209536, p = 8.00E-10) was also the closest SNP to this

cluster, located just 13 kb away.

At this stage the ancestral origin of the major QTL identified

in this study is not known. Markers with LD ≥0.8 are considered

to be in strong LD and Figure 4 shows clusters of markers in

strong LD which probably correspond to ancestral haplotypes

segregating as large blocks in the population of sugarcane

cultivars screened. This cluster appears to correspond to a

homolog of sorghum chromosome 5. It is known from other

mapping studies and cytogenetic analysis there are from 10-12

homologous copies of every chromosome in sugarcane (Aitken

et al., 2005; Piperidis and D’Hont, 2020). Wei et al. (2007)

detected LD in a collection of sugarcane cultivars and identified

haplotype blocks that contained from 2 to 10 markers although

high significance levels were needed to reduce spurious

associations. They identified significant LD between markers

up to 40 cM apart but the majority of LD occurred between 0

and 30 cM. In this study, when four of the markers associated

with red rot were also mapped to a single linkage group aligned

to sorghum chromosome 5 of a genetic map of variety Q208,

they covered 33.7 cM (K Aitken pers comm.). This is consistent

with the LD previously identified in sugarcane and its breeding

history which has a strong foundation bottleneck (Wei

et al., 2007).

Results for cane yield and CCS on the same materials in

this study provided an interesting benchmark for the results

for red rot resistance. The number of markers observed for

association with red rot resistance was much higher, and P

values lower, than for cane yield and CCS, consistent with

larger additive marker effects for red rot resistance. The

genomic prediction accuracies for TCH and CCS in the

population reported here were low (< 0.25) because of the

relatively small number of clones observed (307). These

accuracies are lower than those found with a larger number

of clones (about 2500) measured in prior work (with

accuracies of >0.35) (Deomano et al., 2020). However, a

significantly higher number of markers were observed as

being significantly associated with both cane yield and CCS

than expected by random chance, indicating that markers are

explaining a proportion of variation observed and indicative

of the value of the extra data collected. It is likely that greater

accuracy and resolution of smaller marker effects linked to red

rot resistance could be attained with a larger population than

the 305 clones used in the current study.
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