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Universal detection of curved
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environments using aerial
images and improved
YOLOv4 model
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Accurate and rapid identification of the effective number of panicles per unit

area is crucial for the assessment of rice yield. As part of agricultural

development, manual observation of effective panicles in the paddy field is

being replaced by unmanned aerial vehicle (UAV) imaging combined with

target detection modeling. However, UAV images of panicles of curved

hybrid Indica rice in complex field environments are characterized by

overlapping, blocking, and dense distribution, imposing challenges on rice

panicle detection models. This paper proposes a universal curved panicle

detection method by combining UAV images of different types of hybrid

Indica rice panicles (leaf-above-spike, spike-above-leaf, and middle type)

from four ecological sites using an improved You Only Look Once version 4

(YOLOv4) model. MobileNetv2 is used as the backbone feature extraction

network based on a lightweight model in addition to a focal loss and

convolutional block attention module for improved detection of curved rice

panicles of different varieties. Moreover, soft non-maximum suppression is

used to address rice panicle occlusion in the dataset. This model yields a single

image detection rate of 44.46 FPS, and mean average precision, recall, and F1

values of 90.32%, 82.36%, and 0.89%, respectively. This represents an increase

of 6.2%, 0.12%, and 16.24% from those of the original YOLOv4 model,

respectively. The model exhibits superior performance in identifying different

strain types in mixed and independent datasets, indicating its feasibility as a
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general model for detection of different types of rice panicles in the

heading stage.
KEYWORDS

curved rice panicle, panicle recognition model, YOLOv4, MobileNetv2, UAV,
convolutional block attention module
1 Introduction

There is a great need to improve rice yield as rice (indica

hybrid rice (Oryza Satiua L.)) is the staple food of 60% of China’s

population (Zhou et al., 2016). Effective panicles per unit area is

a key determinant of rice yield and its accurate detection can

guide the development of cultivation techniques for high-yield

and high quality rice (Slafer et al., 2014). Currently, manual

selection statistics are used to predict effective rice panicles per

unit, which is labor-intensive, inefficient, and error-prone

(Madec et al., 2019; Zhao et al., 2019). Therefore, an efficient

and accurate method for automatic detection and counting of

rice panicles is necessary.

The application of rice panicle recognition technology in

agricultural production under field conditions is limited by the

accuracy of rice panicle recognition in complex environments

and the detection speed of the model. Deep learning and image

processing technology, which can quickly identify the number of

rice panicles per unit area, have been widely used in agriculture

in recent years (Fu et al., 2020). Rice panicle recognition is

primarily divided into image segmentation and target detection.

Xiong et al. (2017) proposed a rice panicle segmentation

algorithm (panicle-SEG) that can accurately segment rice

panicles in different varieties and complex environments. An

unsupervised Bayesian approach was used to segment the

unmanned aerial vehicle (UAV) rice panicle images of

different varieties and panicle types during the tasseling period

with a mean F1 score of 82.10%. However, this method was only

applied to upright panicles (Hayat et al., 2020). Zhou et al.

(2019) proposed an improved region-based fully convolutional

network (R-FCN) algorithm for UAV rice panicle image

recognition with an F-measure of 87.4%. However, this

method had limitations in training time and image

background. Additionally, only one type of rice panicle was

used for testing, which limited its application. Yang et al. (2020)

used the FPN-Mask (feature pyramid network mask) method to

segment rice panicles with an accuracy of 0.99; however, the

effect of rice panicle type on segmentation accuracy was not

considered. Shao et al. (2021) proposed a localization-based

FCN combined with a watershed algorithm for dense rice

panicle recognition and counting, with an accuracy of 89.88%.

The aforementioned study that uses image segmentation for the
02
actual panicle detection counts, as well as for investigating the

effect of spike type on panicle detection, has limitations.

Compared with the traditional image segmentation

techniques, the deeper features of rice panicles in the complex

field environment can be extracted by using deep learning target

detection. You only look once version 4 (YOLOv4) is a

representative deep learning model with high speed and

accuracy, which is widely used in agriculture, including crop

and fruit detection (Yang et al., 2021; Sozzi et al., 2022; Wang

et al., 2022a), disease identification (Roy et al., 2022), and

lightweight model deployment (Li et al., 2022). However, it is

rarely applied to panicle recognition. Compared with two-stage

models, such as faster regions with convolutional neural network

(Faster-RCNN), the YOLOv4 target detection model offers

enhanced detection accuracy while reducing model size, which

makes it suitable for future mobile deployment. A feature

pyramid-based rice panicle detection method was proposed

based on the images Nanjing 46 rice varieties in small-scale

complex field environments. This method achieved a recall rate

and accuracy rate of 90.82% and a accuracy rate of 99.05%,

respectively (Jiang et al., 2020). This indicates the algorithm’s

ability to recognize small-sized rice panicles for local occlusion.

However, the algorithm was not developed considering UAV and

is limited for large-scale applications. The improved Faster-

RCNN algorithm was proposed and used to identify rice

panicles in potted conditions, and the mAP of this algorithm

achieved 80.3% (Zhang et al., 2021). However, this method is

designed to detect rice panicles under pot conditions and cannot

be directly applied to complex field environments. A multi-scale

hybrid window rice panicle detection method was proposed to

detect panicles of Nanjing 46 rice varieties at the maturity stage

and afforded better robustness for high-density rice panicle

counting (Xu et al., 2020). However, when the number of rice

panicles in the images increased to 71–80, the recognition

accuracy decreased to 86.9%. Zhang et al. (2022a) improved

Faster-RCNN to identify multi-growth period rice panicles and

the mAP reached 92.47%. However, there were difficulties in

actual field testing for mobile applications. Wang et al. (2022b)

proposed a new method to remove repeated detections

and achieved an accuracy of 92.77%. The methods, however,

need to be optimized for UAV images and different

density identification.
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Although UAV photography considerably improves the

efficiency of image acquisition (Oktay et al., 2018; Zhang et al.,

2022b), the shape of panicles, occlusion, overlap, background

changes, and reduced image quality due to the high density of

rice panicles, light intensity, as well as differences in varieties can

pose additional difficulties for the model in recognizing rice

panicles (Zhao et al., 2021). In particular, the presence of sword

leaf shading and scattered rice panicle overlap reduces accuracy

of rice panicle detection. Therefore, improving the recognition of

different spike types using a model in complex environments

remains a challenge. Most of the current research focuses on the

improvement of algorithm accuracy and the upright spike type

of Japonica rice (Jiang et al., 2020; Xu et al., 2020). Few studies

(Zhang et al., 2021) have focused on identifying different

varieties and curved panicle types of hybrid Indica rice using

UAV images in large-scale complex environments.

To address these challenges, this study establishes a universal

model for curved rice panicle identification considering different

Indica hybrid rice varieties from multiple regions in the Sichuan

province. Images of multiple varieties of rice panicles were acquired

using UAV from different ecological points. The model was trained

to detect rice panicles based on the improved YOLOv4 model.

MobileNetv2 was introduced to replace CSPDarkNet53 as the

backbone YOLOv4 feature extraction module to make the model

lightweight. Moreover, the convolutional block attention module

(CBAM) attention mechanism and focal loss function were

introduced for accurate recognition of rice panicle images in a

mixed dataset. Finally, soft non-maximum suppression (soft-NMS)

was utilized to address the dense shading of similar samples. The

enhanced detection performance of this model enables its use as a

general detection counting model for different varieties, ecological

regions, and types of curved rice panicles in complex environments,
Frontiers in Plant Science 03
making it a useful tool for rice yield prediction and identification of

rice panicles.
2 Materials and methods

2.1 Experimental materials

The images of rice panicles were collected in the demonstration

areas of high-yield rice production at four different ecological sites

in the Sichuan province: Dayi County, Shehong City, Nanbu

County, and Chongzhou City (Figure 1A). Sichuan is located in a

subtropical monsoon climate zone. The location and pattern of the

image collection are shown in Figure 1A. Different types of rice

panicles—spike-above leaf, leaf-above spike, and middle types—

were used as testing materials. The rice varieties and classification of

types for each testing location are listed in Table 1. The UAV images

of the three types of materials are shown in Figures 1B-D,

respectively. Cultivation management measures of different rice

varieties in different ecological sites are shown in Table S1.
2.2 UAV image acquisition

A UAV (DJI PHANTOM 4 RTK) was used to collect large-

scale images of rice panicles under complex field environments.

Under actual field production conditions, rice panicles are easily

blocked by leaves. Therefore, to reduce the detection error of rice

panicles, images were acquired seven days after the full heading

stage in early August 2021. Another set of images were collected

at maturity stage in mid-September to ascertain the suitable

period for the detection of different types of rice panicles. Clear
B C D

A

FIGURE 1

Experimental site and photos of different types of rice panicles. Experimental site of Dayi County (A-D) represent spike above leaf, leaf above
spikes, and middle type, respectively.
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and cloudless weather conditions were selected for image

collection (9:00–11:00 am, 3:00–5:00 pm). The manual flight

mode was used with a flight level of 3 m and gimbal tilt angle of

90°. The collected rice panicle images were uniformly 5742 ×

3648 pixels in size. In addition, we set up an independent dataset

(Jingyou781) in the experiment to verify the model. The

independent validation set Jingyou 781 was collected from the

experimental field with different panicle fertilizers (Table S2) in

Dayi County. The collection time and other factors were kept

consistent for all images. The remaining camera settings were:

ISO-Automatic, Aperture- f/2.2, Focal length-5.74mm.
2.3 Data annotation

The field environment had a significant influence on the

detection of the panicles. Data associated with multiple varieties

of genotypes and ecological points were included in the panicle

image dataset. The accurate identification of rice panicles was

hindered by the inconsistent and scattered positioning of the

panicles. The leaf-above type panicles were particularly difficult to

identify as the panicles are naturally hidden beneath the leaves. The
Frontiers in Plant Science 04
image and processing flow chart are shown in Figure 2A. To reduce

the cost of data processing annotation and model training time, the

original rice panicle images were cropped randomly to 10 images of

608 × 608 pixels using MATLAB (2018b, The MathWorks, USA).

Then, for the pre-processed images, the open-source software

LabelImg was used for rice panicle labeling (GitHub - tzutalin/

labelImg, 2022). For overlapping rice panicles, only the exposed

parts were marked. The annotation category label is rice panicle

(Figure 2B), and the annotation information was saved in the form

of a Pascal VOC dataset. Finally, the dataset was amplified by up-

and-down, adding noise, emboss filter and sharpening, as shown in

Figure 2C. There were 10,285 images after image enhancement,

including 8,330 images in the training set, 926 images in the

validation set, and 1,029 images in the test set.
2.4 Rapid detection method for curved
rice panicles

2.4.1 YOLOv4 model
Based on the initial YOLO family of networks, YOLOV4 was

optimized to varying degrees in terms of model training,
TABLE 1 Experimental rice varieties and their classifications.

Study area Leaf above spike Spike above leaf Middle type

Dayi County Shen9you28
Chuankangyousimiao
Chuanyou6709
Quanyou822

Jingliangyou534 Chuankangyou2115
Yixiangyou2115

Nanbu County Tianyouhuazhan
JingliangYou534

Chongzhou City Yixiangyou2115

Shehong City Chuanzhongyou3877 Jingliangyou534 Chuankangyou2115
B C

A

b c d ea

FIGURE 2

Data pre-processing process. (A) Image pre-processing process. (B) Example of data labeling. (C) Panicle image enhancement (a-e) Original
image; flip up and down; image sharpening; Gaussian noise; e: Emboss filter.
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activation functions, loss functions and backbone networks. As a

two-stage representative network, Faster-RCNN is characterized

by low recognition error rate and high accuracy (Ren et al.,

2016). Compared to the Faster-RCNN two-stage algorithm,

YOLOv4 has a better balance of speed and accuracy, a

significant improvement in detection speed, and is widely used

in agriculture (Bochkovskiy et al., 2020). The YOLOv4 model

primarily consists of the CSPDarknet53 backbone feature

extraction network, spatial pyramid pooling (SPPNET), path

aggregation network (PANET), and YOLO-Head modules,

which generate the coordinates, width, and height, of the

candidate frames and final rice panicle prediction frame.

CSPDarknet53 comprises several residual modules, which are

composed of CSP-X and CBM modules stacked on top of each

other. Furthermore, SPPNET can significantly improve the size

of the receptive field and extract the most salient contextual

features (He et al., 2015). In addition, PANet improves the

bottom-up strategy to construct feature pyramids, which can

achieve improved feature extraction for targets of different scales

and sizes.

2.4.2 Improvement of the YOLOv4 model
YOLOv4 stacks multiple residual modules in the backbone

extraction network CSP-Darknet53, resulting in numerous

model parameters. This limits the further application of the

rice panicle recognition model in agriculture. We aimed to

further improve the detection accuracy and speed of this

research method for curved rice panicles, with the complexity
Frontiers in Plant Science 05
of the mixed datasets of UAV images of different ecological

zones, varieties, and rice panicle types in the complex field

environment. To this end, we propose the lightweight

MobileNetV2 as the backbone feature extraction network. The

CBAM is added to the image feature fusion stage, and soft-NMS

is used to handle dataset occlusion as some of the curved

panicles overlap and block each other approximately 7 days

after the full heading stage. Further, focal loss was used to

optimize the category loss function of the original YOLOv4

model. The model architecture of the improved rice panicle

detection network is depicted in Figure 3.

2.4.3 Improvement of the YOLOv4 backbone
The YOLOv4 network has better detection accuracy and

detection speed (Li et al., 2021). Although the YOLOv4

backbone network CSPDarknet53 can effectively extract depth

feature information, the limitation of the number of parameters

and computational resources leads to difficulties in applying it in

practical agricultural production. Therefore, we improved the

original YOLOv4 model to make it more embeddable into

mobile devices in the future.

In this study, MobileNetv2 was used to replace

CSPDarkNet53, which is the backbone feature extraction

network of the YOLOv4 model. MobileNetv2, a lightweight

feature extraction network, is an improved version of

MobileNet, which uses the depthwise convolution module of

MobileNetv1 and prevents the destruction of the RELU6

function when applied to the features of a low-dimensional
FIGURE 3

Improved YOLOv4 model structure. The dashed boxes represent improvements to the module. SPP and CBAM represent the SPPNET and
attention mechanism modules respectively, Conv represents the convolution operation.
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rice panicle. The linear bottleneck structure is introduced instead

of RELU6 and then combined with the inverse residual module

to form the MobileNetv2 network. The inverse residual structure

is proposed by combining the depth-separable convolution,

linear bottleneck structure, and residual network to enhance

the accuracy of the algorithm. The inverse residual and overall

structures of MobileNetv2 are shown in Figures 4A, B,

respectively. The left part of Figure 4A represents the

backbone, and the right green part represents the residual

structure, which connects the input to the output directly. The

inverse residual structure lifts the low dimension of the input by

a 1×1 convolution, and a depthwise convolution is used to

extract the features. Finally, a 1×1 convolution is used for

dimensionality reduction. Figure 4B shows the overall

MobileNetV2 network structure; Conv2D represents the

convolution operation, bottleneck represents the inverse

residual module, and Avgpool is the global pooling operation.
2.4.4 Attention module
The attention mechanism is divided into spatial, channel,

and mixed spatial and channel attention mechanisms. In this

study, CBAM (Woo et al., 2018) is the combined channel and

spatial attention mechanism, which was inserted into the

feature-enhanced network module in the YOLOv4 model.

CBAM is an efficient module with negligible computational

overhead and is given an intermediate feature mapping layer

as input. The CBAM attention mechanism was used to assign

more weight to the rice panicle’s feature region in the image

through the spatial and channel learning of rice panicle features

and focuses on the extraction of important features of rice
Frontiers in Plant Science 06
panicles during training. It also suppressed distracting factors

such as rice leaves and water reflection in the field to improve the

accuracy of the model. The channel and spatial attention

mechanism expressions of CBAM are given in the following

equations:

Mc Fð Þ = s MLP AvgPool Fð Þð Þ + MLP MaxPool Fð Þð Þð Þ

= s W1 W0 Fc
avg 

� �� �
+W1 W0 Fc

max ð Þð Þ� �
; (1)

Ms Fð Þ = s f 7�7 Fs
avg ; F

s
max

� �� �� �
; (2)

where MLP is a multilayer perceptron with a hidden layer, s
is the sigmoid operation and the convolution kernel size is 7 × 7.

 Fc
avg  and   F

c
max  represent average-pooled features and max-

pooled features. W0 ∈ RC/r×C, W1 ∈ RC/r×C/r indicates the

weight of MLP.

2.4.5 Soft-NMS
This study focused on different types of bent rice panicles,

which exhibit different degrees of shading. Owing to the density

of the rice plants in the images, the overlapping of leaves or

panicles causes an obstruction which reduces the detection

accuracy of the model. NMS typically misses certain rice

panicles because of overlapping and is not suitable for rice

panicle detection using UAV images. By contrast, Soft-NMS

can significantly improve the recognition rate of the model in the

presence of occlusion (Bodla et al., 2017). Therefore, Soft-NMS

was introduced in the YOLOv4 model instead of NMS. Soft-

NMS accounts for both the score and degree of overlap as

follows:
BA

FIGURE 4

Inverse residual structure (A) and structure of MobileNetv2 (B).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1021398
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2022.1021398
si =
si,                                                       Iou M, bið Þ < Nt

si 1 − Iou M, bið Þð Þ,                     Iou M, bið Þ ≥ Nt

(
(3)

where si is the final score, i is the subscript, M is the box with

the highest score in the prediction box set, bi is the box in the

prediction box set B, and Nt is the intersection-over-union (IoU)

threshold of M and bi.

2.4.6 Improvement of the loss function
The loss functions, including the complete intersection over

union (CIOU), classification, and confidence losses, were used in

the YOLOv4 model. CIOU loss also considers the overlap area,

centroid distance, and aspect ratio of the bounding box

regression. The original loss function was the crossover loss

function, which was calculated as follows:

LCIoU = 1 − IoU +
r2 b, bgtð Þ

c2
+ av; (4)

RCIoU =
r2 b, bgtð Þ

c2
+ av; (5)

v =
4
p2

arctan
wgt

hgt
− arctan

w
h

� �2

; (6)

a =
v

1 − IoUð Þ + v
 ; (7)

where r2(b,bgt) represents the Euclidean distance between the

center points of the predicted and real boxes, respectively; c

represents the diagonal distance that can contain both the

prediction box and true box minimum closure region; v

represents the aspect ratio parameters; and a represents the

positive trade off parameters. Further, w and h denote the width

and height of the prediction box, respectively, and wgt and hgt

denote the width and height of the real box, respectively.

In the curved rice panicle data set, the model ignored

samples that are difficult to classify when there are overlaps

and rice panicle occlusions in the image. Hence, the appropriate

loss function must be selected to balance the contribution of

positive and negative samples to the total loss. Therefore, by

improving the loss function, the model network can focus more

on the samples that are difficult to classify. The focal loss

equation is expressed as follows:

Lfl =
−(1 − p̂ )g log p̂ð Þ   if  y = 1 

−p̂ g log 1 − p̂ð Þ     otherwise

(
(8)

Here, p̂ represents the probability of correctly classifying a

rice panicle. The classification loss function of the original

YOLOv4 model is optimized using the focal loss without

increasing the computational overhead of the model. Note that

1 − p̂ approaches 1 as p̂ decreases, indicating that the overall loss

has a negligible effect on accuracy. Thus, replacing the category
Frontiers in Plant Science 07
loss function with the focal loss function enables the model to

focus on rice panicles with overlapping occlusion in the image.

2.4.7 Model training
Processing was performed using an AMD 5900X CPU, 32GB

memory, Windows 10, RTX3060 GPU, 12G video memory, the

operating environment was PyTorch 1.7.1, Python 3.7, CUDA

11.0. The model training is based on the transfer learning

technique to speed up the model convergence. The k-means

clustering algorithm was used to generate the anchor

coordinates of (25, 21), (32, 43), (54, 28), (63, 49), (42, 73),

(101, 51), (70, 97), (135, 81), and (111, 136). Mosaic data

augmentation, label smoothing, cosine smoothing, cosine

annealing decay, and other training techniques were used in

the training process to improve model accuracy. The other

training parameters are shown in Table 2. The training loss of

the improved model is shown in Figure 5A. The model training

loss decreases and converges as the number of iterations

increases. The model converges by the 300th epoch, and the

model loss value is 0.124. The influence of label smoothing

training techniques on model loss is compared in Figure 5A.

Using label smoothing techniques improves the generalization

ability of the model. Figure 5B shows the P-R plots of the

improved model; the area enclosed under the curve represents

the AP value of the model.

2.4.8 Evaluation metrics
In this study, precision (P), recall (R), mean average

precision (mAP), F1-score, detection speed, and detection time

of the model were calculated to objectively evaluate the detection

effect of this model for curved rice panicles in a complex field

environment. In the experiment, IOU greater than 0.5 was

defined as a positive sample. By definition, P, R, mAP, and the

F1-score can be expressed as

P %ð Þ = TP

TP + FP
� 100; (9)

R %ð Þ = TP

TP + FN
� 100; (10)
TABLE 2 Network training hyperparameters.

Parameters Set value

Optimizer SGD

Momentum 0.9

Initial learning rate 1×10-2

Label smoothing 0.01

Epoch 300

Decay weights 5×10-4
fro
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F1 = 2� PR
P + R

; (11)

 mAP =
Z 1

0
P Rð ÞdR; (12)

where TP, FP, TN, and FN represent true positive, false positive,

true negative, and false negative, respectively, based on the true and

predicted classes of the target object. mAP is the average of AP

across the total number of classes, which indicates the detection

performance of the model for rice panicles; higher mAP values

represent better models. The model detection speed is evaluated by

frames per second (FPS) transmission, and the larger the attained

FPS, the better the model fluency and the faster the detection speed.

In addition, quantitative model count accuracy metrics

including root-mean-square error (RMSE) and R2 were used.

The lower the RMSE, and the larger the R2 value, the better is the

model performance. They are expressed as follows:

R2 = 1 −o
n
i=1 ti − cið Þ2

on
i=1 ti −�tið Þ2 (13)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n
i=1 ti − cið Þ2

r
(14)

Statistical accuracy = 1 −
Predict − True

True
� 100%

				
				 : (15)
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3 Results

3.1 Ablation study

The results of the ablation experiments showed the

effectiveness of the improved model, as shown in Table 3. The

model achieved a mAP of 82.92%, only by replacing

the MobileNetv2 backbone feature extraction network. Using

the CBAM attention mechanism module to join in the feature

fusion stage, the model mAP reached 83.10%. Then, using Soft-

NMS to replace NMS resulted in a mAP of 87.02%. Finally, focal

loss is used to replace the category loss function in the YOLOv4

loss function to improve the detection effect of the model for

identifying samples with overlapping rice panicles, increasing

the mAP to 90.32%.
3.2 Detection effect of improved models

Compared to the MobileNetv2-YOLOv4 model, the mAP of

MobileNetv2-YOLOv4-DepthwiseConv decreased by 4.79%

when the model training parameters were kept consistent, as

can be observed in Table 4. Compared with Our method and the

YOLOv4 model, the mAP of Our-method-Depthwise-Conv, a

feature enhancement module using depthwise convolution,

decreased by 9.56% and 3.36%, respectively. Furthermore, the
TABLE 3 Ablation study.

MobileNetv2 CBAM Soft-NMS Focal loss mAP (%)

✓ 82.92

✓ ✓ 83.10

✓ ✓ ✓ 87.02

✓ ✓ ✓ ✓ 90.32
fro
The symbol "✓" means adding an improvement strategy.
BA

FIGURE 5

(A) Training loss curve and (B) P-R curve of panicle detection for the proposed method.
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detection time of Our-method-Depthwise-Conv only increased

by 0.016s compared to Our Method. These results showed that

although the detection speed of Our Method was slightly

reduced, the detection accuracy was significantly improved.

The rice panicle dataset is a hybrid dataset of UAV images,

composed of different varieties, panicle types, and ecological

points in a complex environment in a large field. The rice panicle

detection model mAP in this study reached 90.32% of our

method compared with the YOLOv4 model and Faster-RCNN

(Table 5). Our improved model in this paper has the highest

mAP, F1, and recall, which increased by 6.2%, 0.12, 16.24%

respectively, as compared to the original YOLOv4 model. With

respect to the Faster-RCNN model, our improved model

increased the same values by 45.68%, 0.50, 29.24%,

respectively. The test time of our model was the lowest, which

decreased by 0.0036–0.0655 s, compared with the other models.

The above results indicate that our improved model performs

better than previous models in terms of detection accuracy with

slightly decreased but comparable speed for the identification of

curved rice panicles in a complex field environment.
3.3 Recognition effect of different types
of rice panicles

As shown in Figure 6, the independent dataset of Jingyou781

varieties was used for model validation (Figure 6A). The

YOLOv4 model showed misrecognition in the presence of

occlusion, and our method performs better in the independent

dataset. The leaf-above spike type, scattered spike type, and small

target panicles were all missed in the original YOLOv4

algorithm, while our method did not misidentify the small

scattered panicle type in the image (Figure 6B). The spike-

above leaf type showed more scattered panicle types, leading

to false recognition in both the YOLOv4 model and our method

(Figure 6C). For the middle type rice panicle (Figure 6D),
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YOLOv4 misrecognized the small target panicle owing to the

different extraction time in the actual field environment;

however, the recognition of our improved algorithm showed

excellent performance.
3.4 Accuracy validation of
model counting

The improved model yielded better detection performance

for the three types of curved rice panicles (Table 6). One

hundred images of each type from the training set were

randomly selected, and the model was used to identify and

compare the images with that of the actual labeled frames.

Results showed that for the middle, spike-above leaf, and leaf-

above spike types of panicles, the R2 value was 0.84, 0.89, and

0.92 respectively, and the RMSE was 2.56, 1.95, and 4.39,

respectively. The larger RMSE of the leaf-above spike type is

because of the presence of more panicles obscured by leaves in

the image, resulting in more rice panicles being missed. The

manual labeling of the three types of rice panicles in the 100

images found 1589, 1961, and 3510 panicles, respectively.

Comparatively, our improved model recognized 1699, 1965,

and 3754 panicles, respectively. The original YOLOv4 model

recognized 1325, 1518, and 2505. Thus, the accuracy of our

method was 93.08%, 99.80%, and 93.05% for the three types of

rice spike counts, respectively. The accuracy of YOLOv4 for the

three types of rice spikes was 83.39%, 74.41%, and 71.37%,

respectively. The original YOLOv4 model performed the worst

in the leaf-above spike type count.
3.5 Model accuracy in different periods

The maturity stage of the rice crop when the images were

taken also had a significant impact on the accuracy of the
TABLE 4 Experimental results of rice panicle recognition with different target detection models.

Model mAP (%) Test time (s) FPS

MobileNetv2-YOLO 82.92 0.161 62.13

MobileNetv2-YOLO4-Depthwise Conv 78.73 0.0152 65.95

Our-method-Depthwise Conv 80.76 0.0209 47.92

Our method 90.32 0.0225 44.46
frontiersi
TABLE 5 Recognition effects of different advanced target detection models.

Model mAP (%) F1 Recall (%) Test time (s) FPS

YOLOv4 84.12 0.77 66.12 0.0261 38.32

Faster-RCNN 44.64 0.49 53.12 0.0880 11.31

Our method 90.32 0.89 82.36 0.0225 44.46
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FIGURE 6

Recognition effects of YOLOv4 model (left) and the improved algorithm in this study (right). (A) Independent dataset recognition; (B) leaf-above
spike type; (C) spike-above leaf type; (D) middle type. The yellow and purple boxes represent missed and false detection, respectively.
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models. This is due to the presence of more bent and dispersed

rice panicles, and the fact that both leaves and panicles turn

yellow at maturity. This also had an impact on manual labeling.

In this study, 514 images of different varieties of rice at different

ecological points were labeled at maturity. After data

enhancement for model training, the mAP of the model had

only 79.66% at maturity stage (Table 7). This result indicated

that data collection is more appropriate at 7 days after the full

heading stage for the identification and counting of rice panicles.

A comparison of 100 randomly selected marker images of the

three rice panicle types with the number predicted by the model

is shown in Figure 7. The model performed poorly in identifying

the three types at maturity, with R2 values of only 0.46, 0.38, and

0.31, for the middle, spike-above leaf, and leaf-above spike types

of panicles, respectively.
4 Discussion

Most rice panicle identification studies focus on upright

spikes and potted plants. Our study targeted the curved spike

type of Indica rice in the actual field production environment,

which significantly increased the difficulty of recognition.

Compared to the method of Zhang et al. (2021), our method’s

mAP was 10.02% greater, and the detection speed improved by

146.6 ms (Table S4). In a previous study, the addition of the

CBAM attention mechanism for YOLOv4 improved wheat

detection accuracy in the presence of occlusion (Yang et al.,

2021). Compared with the recognition of rice panicles using

UAV images based on improved R-FCN (Zhou et al., 2019), our

method improves the recognition accuracy of different varieties

by 3.52%. The mAP of our method improves by 45.68% and

6.2% compared to the Faster-RCNN and YOLOv4 models,

respectively (Ren et al. 2017). The above results indicate the

better performance of our improved model in the mixed dataset.

The weight ratio of fertilizer formulations are shown in Table S2.
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In addition, the results of the panicle count for different

fertilization treatments for the independent dataset

demonstrates the feasibility of our method to build a universal

model for the mixed dataset (Table S3). The mAP of the

proposed method achieves 90.32% while accounting for the

speed of detection (Table 4). This experiment shows that the

proposed method effectively addresses challenges associated

with different varieties, panicle types, and ecological regions to

achieve accurate rice panicle identification and counting.

The type of the rice panicle and the variety of the rice crop

influenced the accuracy of model detection (Xu et al., 2020). We

established a general method by collecting different varieties at

the same period, and the mAP value of the model was 90.32%

(Table 4). The results from the independent dataset counts in

Table S3 showed that it is feasible to develop a generic rice

panicle detection model for different varieties in the same period.

However, in the G-BLACK processing, because the heads of the

panicles are scattered, there were many repeated detections.

The photo environment also affects the image quality, and

thus affects the recognition accuracy of the rice panicles. Figure 8

shows the effect of this study’s improved algorithm on rice

panicle recognition under different complex environmental

disturbances. For example, there are inconsistent light

conditions when using a UAV for rice panicle image

acquisition. When the improved algorithm was used for the

recognition of rice panicles under strong light conditions, there

were no misrecognitions (Figure 8A). Due to the canopy

disturbance caused by the UAV rotor, the image is blurred

and model detection is affected, leading to the lack of recognition

of spikelets under the leaf shade in the proposed method

(Figure 8B). The proposed method is based on the existence of

dispersed rice panicle types in the image, which can easily cause

multiple recognition for dispersed spike types (Figure 8C).

Building a universal detection model for dispersed-type rice

panicles in a complex field environment is complex, as the

scattered state of the rice panicles at 7 days after full heading
TABLE 6 The accuracy of our method for identifying different types of panicles.

Type Seven days after the full heading stage Mature stage

R2 RMSE rRMSE R2 RMSE rRMSE

Middle type 0.84 2.56 0.1741 0.46 2.77 0.4567

Spike above leaf 0.89 1.95 0.0986 0.38 2.86 0.4321

Leaf above spike 0.92 4.39 0.1520 0.31 3.28 0.4097
fronti
TABLE 7 Influence of sampling period on model accuracy.

Stage mAP (%) F1 Recall (%) Number of training images Number of images after data enhancement

Seven days after the full heading
stage

90.32 0.89 82.36 2056 10280

Mature stage 79.66 0.75 62.05 514 2570
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has an impact on the integrity of the other rice panicles, resulting

in misidentification and misrecognition.

To further explore the possibility of generalizing the

improved model for image detection in a wide field of UAV

view (Figure 9), this study discussed the rice panicle images from

a UAV at a distance 3 m from the rice canopy. The UAV view

improvement algorithm did not achieve better results at

maturity because of the increase in dispersed spike types at

this stage (Figure 9C). The presence of scattered rice panicles in

the image leads to multiple model recognitions, which makes it

difficult to maintain the integrity of the rice panicles (Figure 9D).

Then, the improved model was employed to detect and evaluate

the collected image. The poor recognition of dispersed rice

panicles photographed by a UAV is mainly caused by the

following reasons: the obscuration of sword leaves (Figure 9D),

small rice panicles in the UAV image (Figure 9E), and multiple

dispersed rice panicles interacting with each other (Figure 9F).

For scattered rice panicles, the more accurate and easier

identification period should be selected by counting the

dynamic changes of rice panicles. Future research will focus

on establishing a specific recognition model that can be

combined with the collection of images during a specific

period of time in order to establish accurate detection of rice

panicles. To achieve large-scale application, lightweight and

universal models must be developed. In addition, we must
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establish a single model to detect the dispersed panicle type in

the curved panicle type to reduce misidentification by the model.

5 Conclusion

In this study, a universal rice panicle detection model was

developed using a mixed dataset to identify panicle images of

different Indica hybrid rice varieties grown in different ecological

regions in large-scale complex field environments. The improved

method outperformed the original YOLOv4 and Faster-RCNN

models in terms of detection performance and accuracy for the

leaf-above-spike type, spike-above-leaf type, and middle type. The

F1 scores improved by 0.12 and 0.40 from those of the two original

models, respectively. The detection accuracy of different models at 7

days after full heading stage was significantly higher than that at

maturity stage, and the RMSE of the spike-above-leaf type at 7 days

after full heading stage was also improved. Different rice varieties

were divided into different types for detection and analysis, and all

three types obtained improved identification results with ourmodel.

The current study illustrates the feasibility of establishing a general

rice panicle identification model for a certain period with a mixed

dataset of Indica hybrid rice. However, when there are more

dispersed panicles in the hybrid Indica rice, a separate rice

panicle detection model is needed to improve detection accuracy.

In future, we will focus on the detection of scattered spike count and
B C
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A

FIGURE 7

Accuracy of rice panicles identification in different data sets. (A–C) seven days after the full heading stage; (D–F) mature stage; (A, D) middle
type; (B, E) spikes above leaves type; (C, F) leaves above spikes type.
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FIGURE 8

Effect of different complex environments on the recognition of scattered panicle in a large field. (A) Image taken using strong exposure; (B) UAV
image of canopy disturbance; (C) Scattered panicle in complex environment.
Frontiers in Plant Science frontiersin.org13

https://doi.org/10.3389/fpls.2022.1021398
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2022.1021398
model deployment on mobile devices. The best prediction

identification date should be chosen based on dynamic analysis of

the three types to build identification models for the characteristics

of Indica hybrid rice with more scattered spike types in the future.
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FIGURE 9

Recognition results of UAV images using the large-scale dispersion spike model. (A) Recognition results of the original YOLOv4 model, and
(B) Recognition results of the improved algorithm (C) Improved algorithm recognition during maturity. (D–F) Large-scale UAV view prediction
frame analysis.
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