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Low-temperature stress (LTS) drastically affects vegetative and reproductive

growth in fruit crops leading to a gross reduction in the yield and loss in product

quality. Among the fruit crops, temperate fruits, during the period of evolution,

have developed the mechanism of tolerance, i.e., adaptive capability to chilling

and freezing when exposed to LTS. However, tropical and sub-tropical fruit

crops are most vulnerable to LTS. As a result, fruit crops respond to LTS by

inducing the expression of LTS related genes, which is for climatic

acclimatization. The activation of the stress-responsive gene leads to

changes in physiological and biochemical mechanisms such as

photosynthesis, chlorophyll biosynthesis, respiration, membrane composition

changes, alteration in protein synthesis, increased antioxidant activity, altered

levels of metabolites, and signaling pathways that enhance their tolerance/

resistance and alleviate the damage caused due to LTS and chilling injury. The

gene induction mechanism has been investigated extensively in the model

crop Arabidopsis and several winter kinds of cereal. The ICE1 (inducer of C-

repeat binding factor expression 1) and the CBF (C-repeat binding factor)

transcriptional cascade are involved in transcriptional control. The functions of

various CBFs and aquaporin genes were well studied in crop plants and their

role in multiple stresses including cold stresses is deciphered. In addition, tissue

nutrients and plant growth regulators like ABA, ethylene, jasmonic acid etc.,

also play a significant role in alleviating the LTS and chilling injury in fruit crops.
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However, these physiological, biochemical and molecular understanding of

LTS tolerance/resistance are restricted to few of the temperate and tropical

fruit crops. Therefore, a better understanding of cold tolerance’s underlying

physio-biochemical and molecular components in fruit crops is required under

open and simulated LTS. The understanding of LTS tolerance/resistance

mechanism will lay the foundation for tailoring the novel fruit genotypes for

successful crop production under erratic weather conditions.
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Introduction

Plants are sessile and experience several abiotic stresses

episode in their life due to harsh climatic conditions. These

circumstances triggered several molecular changes in the plants,

which led to a variety of responses of physiology and

biochemistry of the plant cells, which determine the fitness of

the plant in the environment. Temperature is one of the decisive

and essential abiotic factors regulating plant’s ontogeny. The

process for how Plants sense temperature is elusive. However,

several candidate thermos-sensors proteins are known that

respond to the membrane changes and other cellular changes
02
triggered by low temperature, leading to downstream events of

change in the pattern of gene expressions and plant’s responses

(Ding and Yang, 2022). Low temperature (LT) influences plant

growth and development by causing various morpho-

physiological and biochemical changes (Nishiyama, 1976;

Medina et al., 2011) (Figure 1). LT has an impact on many

processes, including, photosynthesis, cell division, membrane

stability, absorption and transport of water and nutrients, yield,

and ultimately species survival. Plants experience low

temperature stress (LTS) in two ways: (i) Chilling stress: when

plants are exposed to LT below 10–15°C for a certain period,

causing injury without formation of ice crystals within the plant
FIGURE 1

Low-temperature stress responses in plant system.
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cells; (ii) Freezing stress: when plants are exposed to sub-zero °C

low temperatures, inducing ice crystallization of cellular content,

resulting in cell dehydration and freezing injury (Beck et al.,

2007; Zhu et al., 2007). Two processes lead to freezing injury: (i)

vitrification, which results from the fast freezing of cellular

substance, and (ii) supercooling, which results in the

formation of ice crystals from intra or extracellular content.

An overview of the optimum temperature range for vegetative

and reproductive growth for some tropical and subtropical fruit

species is given in Table 1. Eco-physiological and biophysical

studies on tropical and subtropical fruit species are crucial for

understanding how LTS affects fruit crops and how it might be

managed. (Barlow et al., 1974). Tropical and subtropical fruit

species exhibit distinct damaging symptoms when exposed to LT

below 10–15°C for a certain period, resulting in drastic yield

reduction or even death over prolonged exposure (Chen and

Patterson, 1985; Herner, 1990; Alonso et al., 1997). The ability to

withstand mild non-freezing temperature stress has evolved over

thousands of years in temperate fruits such as apple, pear, peach,

plum, strawberry, etc. The coping mechanism used by temperate

fruits to adjust to cold conditions comprises alterations in a

number of physio-morphological and biochemical parameters as

well as the expression of stress-associated genes (Medina

et al., 2011).

Temperate fruit crops undergo dormancy during the winter

to avoid the detrimental consequences of LTS. Different physio-

biochemical changes are brought on by LTS exposure in tolerant

and sensitive genotypes. The extent of changes decides the

genotype’s tolerance and ability to acclimate to the cold stress

(Barlow et al., 1974; Martin and Douglas, 1979). The aim of this

review is to understand physio-morphological, biochemical, and

molecular processes connected to LTS in fruit crops as well as

the role of phytohormones and other signaling molecules in
Frontiers in Plant Science 03
reducing low-temperature damage. A better understanding of

the physiological mechanisms underlying LTS tolerance in fruit

crops will relate to improved crop damage management and

breeding strategies to combat LTS.
Physiological responses

LTS significantly affects the vegetative and reproductive

growth of tropical and subtropical fruits (Alonso et al., 1997),

thereby supressing their yield. For instance, if the temperature

falls <4°C in the winter for over three hours, the papaya plants

may die due to the leakage of white (oozing out milky) latex from

the stem of frost-damaged plants (Ram, 2005). Frost or

unexpected temperature fluctuations during late winter cause

severe damage to fruit crop foliage, crown, flowers, and fruits

resulting in a limited yield of low-quality papaya fruit, which

ripens unevenly (Singh et al., 2010). Moreover, under chilling

temperatures and humid conditions, a hermaphrodite flower of

papaya may revert to femaleness (carpelloidy of stamens),

resulting in deformed fruits (Awada, 1958; Storey, 1969; Ram,

2005; Lin et al., 2016). In coffee plants, temperatures <16°C

suppress vegetative growth, limiting net photosynthesis,

resulting in irregular maturity and poor yields (Bauer et al.,

1985). However, the reduction in vegetative growth was not due

to the decrease in leaf water potential but it was attributed to

more prolonged exposure to LT (<16°C exposure) (Barros et al.,

1997). However, during LTS acclimation, relative water content

(RWC) of the leaves in guava was associated with decrease in

vegetative growth. The non-acclimated guava leaves had three to

four time’s higher anthocyanin accumulation than the latter

cold-acclimated guava leaves (Hao et al., 2009). Similarly,

Pradhan et al. (2017) reported that under the LT regimes,
TABLE 1 Optimum temperature ranges for the growth of some tropical and subtropical fruit species.

Sl. No. Fruit crop Optimum temperature (°C) Reference (s)

01 Grapevine (Vitis vinifera) 10-35°C White et al. (2006)

02 Banana (Musa spp.) 20-35°C Viktorova (1983)

03 Guava (Psidium guajava) 23-28°C Verheij and Coronel (1992)

04 Mango (Mangifera indica) 24-27°C Davanport (2009)

05 Logan (Dimocarpus longan) 20-25°C Verheij and Coronel (1992)

06 Rambutan (Nephelium lappaceum) 25-32°C Verheij and Coronel (1992)

07 Jackfruit (Artocarpus heterophyllus) 16-28°C Haq (2006)

08 Litchi (Litchi chinensis) 25-35°C Tindall (1994)

09 Durian (Durio zibethinus) 24-30°C Verheij and Coronel (1992)

10 Langsat (Lansium domesticum L.) 25-35°C UDPSM (2002)

11 Pomelo (Citrus maxima L.) 23-30°C Verheij and Coronel (1992)

12 Cashew nut (Anacardium occidentale) 20-35°C Joubert and Thomas (1965)

13 Coconut (Cocos nucifera) 20-32°C Louis and Annappan (1980)

14 Mangosteen (Garcinia mangostana L.) 25-35°C Osman and Milan (2006)

15 Citrus (Citrus spp.) 23-27°C Verheij and Coronel (1992)
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RWC and fresh leaf weight in papaya decreased, while dry

leaf weight reflected the opposite trend. Pradhan et al. (2018)

found that the percent change in plant height in control papaya

plants was more substantial than its LT-treated counterpart. The

decrease in plant growth was due to the reduced photosynthetic

rate under LT. In addition, chilling stress in plant roots can alter

their metabolic heat rates as detected by micro calorimetry

(Criddle et al., 1988), cause cortical destruction and reduce

root elongation (Harrington and Kihara, 1960).
Cellular changes

Several studies have found that cell membrane networks are

the primary sites of freezing injury in plants (Levitt, 1980;

Steponkus, 1984), and that freeze-induced membrane damage

is caused primarily by the acute dehydration caused by freezing

(Steponkus, 1984; Steponkus, 1993). The extracellular fluids of

the apoplastic space contain a lower solute concentration than

the intracellular fluid and thus have a higher freezing point;

therefore, ice formation is initiated first in the apoplastic space

(Jan and Andrabi, 2009). Since ice has a lower water potential

than liquid, extracellular ice has a lower water potential than

inside the cell, resulting in dehydration. LTS causes some cellular

function abnormalities, and membrane damage and the LTS

injury is evaluated through electrolyte leakage, changes in

membrane lipid composition, and malondialdehyde (MDA)

production. Cell dehydration leads to lipid peroxidation and

an increase in MDA content, as well as damage to cell membrane

fluidity, thus disrupting membrane selectivity, resulting in the

permeability of unwanted nutrient elements and ions, leading

to ion leakage and disrupting cellular ionic homeostasis

(Mahajan and Tuteja, 2005; Yadav, 2010; Shin et al., 2018).

The membrane stability index (MSI) of papaya genotypes

exposed to LT regimes decreased (Pradhan et al., 2019) while

the membrane injury index (MII) increased (Pradhan et al.,

2017). Cold stress reduced the MSI gradually, indicating a loss of

cell membrane integrity. Campos et al. (2003) reported that

electrolyte leakage and lipid degradation influence cold

sensitivity in Coffea sp. leaves.

Numerous studies have noted that chilling stress

significantly reduces the photosynthetic efficiency of sensitive

plants (Yang et al., 2005; Fariduddin et al., 2011). The disruption

of the thylakoid ETS pathway and carbon reduction cycle

significantly altered photosynthesis under LTS. Furthermore,

stomatal control of CO2 supply may be primarily responsible for

decreasing the net photosynthetic rate (Allen and Ort, 2001).

Limiting stomatal conductance may be attributed to loss of

turgor of guard cells due to LTS induced dehydration. The

ultrastructure of chloroplasts has changed after a prolonged

cooling period, and thus ability to intercept light energy may be

lost (Yang et al., 2005). Potassium (K) and calcium (Ca) were

two essential nutrients in improving plant chilling tolerance.
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Several studies have revealed that electrolyte leakage is primarily

related to K+ efflux from plant cells, mediated by plasma

membrane cation conductance. When K+ levels are low,

photo-oxidative damage caused by chilling or frost is

worsened. This makes plant growth and yield decrease.

High cellular potassium levels can protect against oxidative

damage caused by cooling or frost (Waraich et al., 2012).

Furthermore, several studies have shown that applying a

higher concentration of K+ could reduce LTS-induced damage

in crops such as potatoes (Grewal and Singh, 1980), carnations

(Kafkafi, 1990), and vegetable seedlings (Hakerlerler et al., 1997).

Pradhan et al. (2018) also reported a high level of K+ content

with a decline in stomatal conductance and transpiration rate,

which would help to maintain plant water status. Recently,

Maurya et al. (2020) also noted an increase in leaf K+ content

in papaya seedlings grown under LTS. Similarly, Ca also

influences both development and responses to environmental

challenges like cold stress by regulating various physiological

processes in plants at the tissue, cellular, and molecular levels

(Waraich et al., 2011). Plant genotypes that are LTS tolerant can

maintain their high leaf water potential by closing their stomata

and limiting water loss during transpiration (Wilkinson et al.,

2001). However, Yadav (2010) reported that dehydration occurs

under exposure to LTS due to low water uptake due to

stomata closure.

Furthermore, Ca also modulates the stress responses during

cold injury, healing, and adaptation to cold stress (Palta, 1990).

LTS activates Ca2+channels, resulting in the accumulation of Ca2

+ in the cytosol and the induction of phospholipid signaling. The

vacuole is the intracellular source of Ca2+, and which triggers

stomatal closure with increasing Ca2+ levels in the cell, a

distinguishing feature of plants grown at or exposed to LTS.

According to some studies, Ca2+ (released from internal guard

cell stores or the apoplast) regulates ABA-induced stomatal

closure (Wilkinson et al., 2001). Ca2+ is required for LTS

recovery because it activates the plasma membrane enzyme

ATPase, which is needed to pump nutrients lost during the

cell injury back into the cell (Palta, 1990). Calcium also acts as

calmodulin under LTS conditions, regulating plant metabolic

activity and promoting plant development (Waraich et al.,

2012). Compared with different Carica papaya genotypes,

Pradhan et al. (2018) found the highest Ca2+accumulation in

the leaf and roots of a cold-tolerant wild relative of papaya,

V. cundinamarcensis.
Chlorophyll

The most critical component of the photosystem is

chlorophyll. LTS represses chlorophyll bio-synthesis and

accumulation in actively growing leaves (Glaszmann et al.,

1990). For example, the chlorophyll content of papaya

seedlings at a 20°/10°C (day/night) temperature regime was
frontiersin.org
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8.16% lower than the control plants at 28°/18°C (day/night).

Cold-tolerant genotypes may accumulate higher chlorophyll

content under LTS than cold-sensitive lines (Pradhan et al.,

2019). An alternative measure for determining the freezing

tolerance and accessing freezing damage and cold acclimation

responses of leaves is chlorophyll fluorescence (Ehlert and

Hincha, 2008). The chlorophyll fluorescence technique has

been employed in various other crops to assess the extent of

photodamage at LT, including Arabidopsis (Ehlert and Hincha,

2008), soybean (Tambussi et al., 2004), maize (Aroca et al.,

2001), etc. Regardless of the plant species investigated, Maxwell

and Johnson (2000) found that the value of chlorophyll

fluorescence (Fv/Fm) in healthy leaves was close to 0.80. The

lower value of chlorophyll fluorescence (Fv/Fm) indicates

photoinhibition of PS II reaction canters, disrupted due to

LTS. Smillie (1979) observed that the quantum efficiency (QE)

of the PS II center (Fv/Fm) in papaya was 0.42 in the winter

season, having a temperature range of 6°/17°C (min./max.) and

0.72 in the summer, in a temperature range of 18°/26°C (min./

max.), indicating that LT likely lowered the PSII activity.

Perturbance of photosynthetic machinery in Strawberry, also

reflected by chlorophyll fluorescence ((Fv/Fm) and LTS

significantly reduced the chlorophyll fluorescence (Fv/Fm)

value (Zareei et al., 2021). Pradhan et al. (2019) also found

reduction in Fv/Fm during LTS. The treated plants expressed a

significantly lower Fv/Fm value than the control. The lowest

observed values were 0.438 and 0.584 in the temperature regime

of 20°/10°C (day/night), followed by 22°/12°C (day/night),

respectively. In contrast, the control plants (28°/18°C day/

night) exhibited the highest (0.736) value of Fv/Fm. Classified

mango cultivars based on LTS and Fv/Fm responses. An Fv/Fm

ratio of less than 0.5 is denoted as chilling sensitive, while those

with an Fv/Fm value greater than 0.6 are considered as chilling

tolerant cultivars.
Photosynthesis

With the lowering of temperature, the rate of metabolic

processes slows steadily and eventually stops under extreme

stress (Taiz and Zeiger, 2002). LT affects different dimensions of

photosynthesis in fruit crops. Cellular photosynthesis under LTS

is substantially inhibited or reduced due to the disruption of all

major components, including the thylakoid electron transport

system and carbon reduction cycle. After a long cooling period,

the chloroplast ultrastructure has altered, and the capacity to

efficiently trap light energy may be lost by the thylakoids

membranes (Yang et al., 2005). LTS thermodynamically

reduces enzymatic activities, such as Calvin cycle enzymes and

ROS (Reactive Oxygen Species) scavenging enzyme activities. LT

causes a photostatic imbalance in thylakoid membranes, leading

to an over-reduction of the electron transport chain and ROS

generation at PSII and PSI (Soitamo et al., 2008; Ruelland et al.,
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2009; Yun et al., 2010). Papaya plants exposed to an LT regime of

20°/10°C (day/night) exhibited a 57.96% reduction in the

photosynthesis rate compared to the control plants. This

reduction was genotype-dependent and decided their degree of

tolerance. The chilling susceptible Red Lady papaya had a drastic

reduction (82.10%) compared to the other genotypes (Pradhan

et al., 2018). Similarly, Grau and Halloy (1997) also reported a

15% reduction in the photosynthesis rate of papaya plants

exposed to the LT regime (15°/5°C; day/night; 4 days) as

compared to the control (25°/15°C; day/night). LTS also

contributes to ROS generation by reducing the leaf gas

exchange in fruit crops due to decreased stomatal

conductance. The genotypes that can withstand LTS can keep

their leaf water potential high by closing their stomata and

avoiding water loss through transpiration. (Wilkinson et al.,

2001). In mango, reported that LTS was attributed to a rise in

stomatal resistance of net CO2 assimilation rate and a decrease in

Rubisco activity, chlorophyll concentrations, etc., with increased

activity of the chlorophyll-degrading enzyme chlorophyllase.

Similarly, among various papaya genotypes, the cold-tolerant

wild relative V. cundinamarcensis exhibited a lower

transpiration rate than other susceptible genotypes (Pradhan

et al., 2018). Grau and Halloy (1997) also reported that the

reduction in stomatal conductance under cold stress was up to

25-30% compared to the control in papaya.
Biochemical responses

The biochemistry of various cellular components and

reactions changed during LTS to help the plant acclimatize to

the cold. LTS induced changes range from changes in membrane

lipids composition to cellular metabolites, disruption in the

equilibrium of gel to liquid-crystalline phase, synthesis of

diverse cryoprotective molecules viz. soluble sugars (raffinose,

saccharose, stachyose, trehalose), sugar alcohols (inositol, ribitol,

sorbitol) and low-molecular-weight nitrogenous compounds

(glycine betaine, proline) (Janska et al., 2009).
Cell membrane

Phospholipids are the fundamental components of the

plasma membrane, and their composition and properties give

membrane fluidity and selectivity. The cell membrane is the first

place affected by LTS damage, which results in alterations in the

plasma membrane’s lipid composition. Compared to non-

acclimated plants, the amount of unsaturated fatty acids in the

cellular membranes of acclimated plants increases, minimizing

injury caused by threshold temperature (Theocharis et al., 2012).

These modifications protect the plasma membrane and

chloroplast envelope from LTS injury (Matteucci et al., 2011).

However, in susceptible genotypes, the proportion of saturated
frontiersin.org
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fatty acids in the phosphatidyl glycerol (PG) backbone of the

chloroplast membrane was higher under the LTS. (Yokoi

et al., 1998).

The ROS produced under LTS due to photostatic imbalance

induced lipid peroxidation in the cell, damaging the cell

membrane’s structural and dynamic features, and hence

responsible for the non-functionality of the membrane by

modifying the fluidity, ion leakage, and producing

malondialdehyde (MDA). For example, lipid order in a

phospholipid bilayer of a cell membrane diminishes when

lipid peroxidation products are added. Pore formation might

occur if all phospholipids are oxidized. Reactive species such as

reactive oxygen and nitrogen species (RONS) will be able to

cause oxidative damage to intracellular macromolecules like

DNA and proteins, too (Alonso et al., 1997; Van der Paal

et al., 2016). Coffee seedlings, while exposed for six days at the

different treatments of temperatures (10°, 15°, 20°, and 25°C), a

higher amount of MDA is generated under low temperatures

(10°C), leading to higher electrolyte leakage from the root tip.

Under completely controlled conditions. Pradhan et al. (2019)

evaluate the effects of five LT regimes on five Carica papaya

genotypes and one distantly related cold-tolerant plant, V.

cundinamarcensis, They observed lower MDA content in the

cold-tolerant papaya genotype and V. cundinamarcensis than in

the other C. papaya genotypes. The higher rate of oxidation of

membrane lipids in susceptible genotypes was linked to a higher

amount of MDA, which caused damage to the membrane.
LTS related proteins

LTS affects a variety of metabolites and metabolic processes,

including lipoproteins. Cryoprotection, which is the change of

lipid biosynthetic enzymes during LTS (Miura and Furumoto,

2013), keeps the plasma membrane, chloroplastic envelope, and

other cellular membranes safe and stable. Plant cells synthesize

the specific proteins under the LTS, primarily hydrophilic in

nature. Cold-regulated proteins (CORs), Low-Temperature

Induced (LTI), Late Embryogenesis Abundant (LEA),

Responsive to Abscisic acid (RAB), Early Responsive to

Dehydration (ERD), Cold Induced (KIN), heat-shock proteins

(HSPs), etc. are examples of such protein families. Dehydrins are

the most common LEA proteins during cold acclimation and

stabilize cell membranes against FI (Bies-Etheve et al., 2008; Sun

et al., 2013). Hao et al. (2009) performed the leaf protein analyses

after cold acclimation in guava and observed the accumulation

of dehydrin protein in FI tolerant guava variety (Lucknow-49).

Several freeze-induced membrane injuries have been associated

with ice nucleation in the apoplast initiated by freezing. It has

also been reported that denaturation of proteins occurs in plants

under LT, potentially resulting in cellular damage (Guy et al.,

1985). For instance, Pradhan et al. (2017) noted a 35.51% higher

total soluble protein content in the cold-treated papaya leaves
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than in the non-treated plants. The cold-tolerant wild relative, V.

cundinamarcensis, reported the highest increase (79.06%), while

the lowest was in the cold susceptible variety, Pusa

Nanha (8.78%).
Antioxidant

Low temperature induced membrane injuries also accelerate

generation of reactive oxygen species (ROS), and enhanced

antioxidants activities plays key role in cold acclimation. (Arora,

2018). Antioxidant enzymes influence plant abiotic stress

tolerance as they play a crucial role in balancing the ROS

concentration within the cell. The antioxidant defense system of

plants is comprised of non-enzymatic antioxidants such as

glutathione, vitamin C (ascorbic acid), phenolic compounds,

flavonoids, carotenoids, a-tocopherol, the osmolyte proline, and

antioxidant enzymes such as CAT (catalase), PPO (polyphenol-

oxidase), SOD (superoxide dismutase), POD (peroxidase), GR

(glutathione reductase), DHAR (dehydro ascorbate reductase),

MDHAR (monodehydro ascorbate reductase), and APOX

(ascorbate peroxidase) (Cao et al., 2009; Kumar and Yadav,

2009; Zhang et al., 2009 and Ding and Wang, 2018). Geng et al.

(2019) reported that overexpression of antioxidant enzymes such

as CAT, POX, and SOD under cold stress dramatically lowers the

ROS levels in Citrus grandis. Lee and Lee (2000) also reported

increasing antioxidant enzyme activity in cucumbers under

chilling stress. The LT induces CAT and SOD, which act as

antioxidant system and are integral parts of the plant’s defensive

responses under LTS (Figure 2). It is evident that V.

cundinamarcensis, a cold-tolerant wild relative of papaya, also

expressed higher SOD, GPX, APX, and GR (Pradhan et al., 2017).

However, SOD and APX activities increased in cultivated papaya

regardless of genotype under LT conditions (Maurya et al., 2020).

In strawberries, the increased levels of H2O2 and MDA are

associated with decreased activity of SOD, POD, and CAT

under LTS (Xu et al., 2020).

Non enzymatic antioxidants also play a crucial role in ROS

balancing during abiotic stresses, including LTS (Ahmad et al.,

2010). For instance, higher lycopene containing peels of grapes

show better ROS scavenging, and higher chilling tolerance,

without significant effect of enzymatic antioxidants activities

(Lado et al., 2016). Though, Rooy et al. (2017) also observed cold

tolerance of grapevines was associated with both, carotenoids as

well as enzymatic antioxidants activities. In cold sensitive,

mandarin, chilling injury was associated with low carotenoid

content (Rey et al., 2020). However, effective antioxidant defense

against ROS, is dependent upon the coordinate action of

enzymatic and non-enzymatic antioxidants (Kerchev and Van

Breusegem, 2022). For instance, activities of GR, DHAR,

MDHAR and APX regulate glutathione-ascorbic acid (GSH/

AA) cycle (Foyer and Noctor, 2011) and thus exogenous

application of compounds which boosts the plants
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antioxidants defense, ameliorate the chilling injury in fruits

(Zhang et al., 2021).
Cryoprotectant

Accumulation of compatible osmolytes or osmoprotectants

in the cytoplasm is a typical response under various abiotic

stresses, where dehydration is involved, including LTS. For

instance, plants exposed to chilling stress accumulated more

fructans and had better freezing tolerance (Livingston et al.,

2009). They safeguard the structure of proteins and enzymes;

help to maintain the osmotic gradient between the cell’s

surroundings and the cytoplasm (Kempf and Bremer, 1998;

Fedotova, 2019). Under cold stress, the organic osmolytes like

sugars, proline, glycine betaine, amino acids, etc., change the

cell’s osmotic potential. This change narrows the water potential

gradient between the apoplastic region of ice generation and the

cytoplasm. As a result, the pace at which water moves away from

the cell slows down, and the cell membrane becomes more

stable, making it more resistant to LTS stress (Elbein et al., 2003).

The role of osmoprotectants in ameliorating LTS is well known

in fruit crops. Red Delicious apple’s cortical tissues and buds’

cold hardiness were associated with the concentration of total

sugars, sorbitol, and RFO (raffinose family oligosaccharides)

(Stushnoff et al., 1993). Another compatible solute, trehalose

(a-D-glucopyranosyl-1, 1-a-D- glucopyranoside), a non-

reducing disaccharide, is found in many organisms, including
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bacteria, fungi, insects, and plants. One of the crucial functions

of trehalose is to maintain biological membranes and proteins

through H-bonding during dehydration due to FI (Donnamaria

et al., 1994; Goddijn and Van Dun, 1999; Elbein et al., 2003).

Plants exposed to chilling stress accumulated more fructans and

had better freezing tolerance (Livingston et al., 2009).

Proline, a type of amino acid, is found abundantly in higher

plants and is known to accumulate in considerable amounts in

response to environmental challenges (Hayat et al., 2012;

Jogawat, 2019). Proline helps maintain osmotic balance and

helps in scavenging free radicals (Figure 2) and their crosstalk. It

also serves to preserve the integrity of subcellular structures (e.g.,

membranes and proteins), limits electrolyte leakage, and buffers

cellular redox potential during stress by bringing ROS

concentrations into normal ranges (Ozturk and Demir, 2002;

Hsu et al., 2003; Kishor et al., 2005). There is a significant

correlation between cold stress tolerance and increased proline

content in various plants (Swaaij et al., 1985; Dorffling et al.,

1990; Kaplan et al., 2007). Kushad and Yelenosky (1987)

observed the effect of proline and polyamines in LTS tolerance

in three citrus genotypes: sour orange (SO), Citrus aurantium L.,

‘Valencia’ (VAL), Citrus sinensis (L.) Osbeck, and rough lemon

(RL), Citrus jambhiri Lush. After three weeks of exposure to cold

hardening (temperature range: 15.6°/4.4°C day/night) and non-

hardening (temperature range: 32.2°/21.1°C day/night), Sour

orange had the highest proline content (7.9mg/g dry weight),

whereas the lowest content (4.2 and 3.9mg/g dry weight) was

found in VAL and RL, respectively. According to the authors,
FIGURE 2

Systematic representation of stress responses and stress regulator crosstalk for low-temperature tolerance in plants.
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there is a direct association between higher spermidine (Spd)

content and citrus cold hardiness. Pradhan et al. (2019) also

found a significant proline accumulation in papaya genotypes as

temperatures decrease.

Strawberry (Fragaria x ananassa Duch.) crown sugar

content was also positively correlated with cold tolerance

(Paquin et al., 1989). The amount of sucrose decreased, and

total sugar content in the crowns of Bounty and Redcoat

cultivars increased during cold hardening and peaking in

January, coinciding with maximum hardiness. The high

glucose levels, fructose, raffinose, and stachyose content are

attributed to cold hardiness in Chardonnay and Riesling grape

(Vitis vinifera) buds and cortical tissues (Hamman et al., 1996).

An endophytic gram-negative bacteria (Burkholderia

phytofirmans) altered carbohydrate metabolism in the

grapevine (V. vinifera) and helped to acclimatize to LTS

(Fernandez et al., 2012). Most sugars, such as mannose,

glucose, fructose, sucrose, galactinol, raffinose, and maltose,

were higher when grapevine was treated with B. phytofirmans

under LTS. Yooyongwech et al. (2009) found that the high-chill

peach cv. Kansuke Hakuto had a higher total soluble sugar

content in the bud cushion sample during December and

January (temperature about 2°C), but the low-chill peach cv.

Coral had a lower total soluble sugar content. Pradhan et al.

(2019) found that cold (20°/10°C; day/night) exposed papaya

plants had 117.10 percent higher total soluble sugars than

control plants. Polyamines, such as putrescine (Put),

spermidine spermidine: (Spd), and spermine (Spm), play a

significant role in the green mango (Mangifera indica L.

‘Kensington Pride’) LT tolerance during storage (Nair and

Singh, 2004). Similarly, membrane integrity and fluidity were

protected from LTS, in pomegranates due to higher polyamine

levels during storage (Mirdehghan et al., 2007). In addition,

experimental evidence suggests that polyamines also play a role

in protecting photosynthetic function (Figure 2). Polyamines

interact with proteins present in the thylakoid membranes,

particularly the light-harvesting complex II (LHCII) and the

PSII, through hydrogen bonding and stabilize the tertiary

structure of proteins under stress (Kotzabasis et al., 1993;

Hamdani et al., 2011). Glycine betaine is an ammonium

molecule synthesized in chloroplasts that accumulates under

stress conditions, including high salt levels and cold

temperatures (Sakamoto and Murata, 2002). In four weeks of

cold-acclimation treatment of strawberry (Fragaria x ananassa

Duch.), LTS tolerance was raised from -5.8° to -17°C with a two-

fold increase in endogenous glycine betaine levels in the leaves

(Rajashekar et al., 1999). Exogenous glycine betaine (2 mM) to

unhardened plants boosted cold leaf tolerance nearly two-fold

within 72 h. Furthermore, it promoted whole-plant freezing

survival and regeneration. Sirooeinejad et al. (2020) investigated

the level of freezing tolerance of four pomegranate (Punica

granatum L.) varieties, including ‘Alak Torsh ’ (AT),

‘Tabestaneh Torsh’ (TT), ‘Poostsefid Torsh’ (PT), and
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‘Poostsyah Shirin’ (PS), and its association with several

physiological events and antioxidant response during cold

acclimation and de-acclimation. The lethal temperature (LT50)

of pomegranate shoots was positively associated with MDA,

starch, and antioxidant enzyme activity but negatively related to

total phenolic content, proline, and soluble carbohydrates.

Similarly, Pradhan et al. (2019) also noted a significant

positive correlation of LT exposed papaya plantlet survival (%)

with relative water content (RWC), membrane stability index

(MSI), and chlorophyll fluorescence, while noting a significant

negative association with MDA, proline, and sugar contents.
Aquaporins

Aquaporins are membrane-bound water channels that

facilitate water flow with small solutes across the membrane

(Moshelion et al., 2015). Plant aquaporins are present in the

plasma membrane and other cellular membranes like the

tonoplast, endoplasmic reticulum, plastids, and membrane

compartments that interact with symbiotic organisms in some

species (Baiges et al., 2002; Maurel et al., 2015). Aquaporins are

classified into four clades: AQP1, AQP2, AQP3, and AQP4, of a

broad superfamily of major intrinsic proteins (MIPs). Various

reports show that aquaporins play a significant role in imparting

abiotic stress tolerance, including LTS tolerance (Yooyongwech

et al., 2009; Lee et al., 2012; Li et al., 2015; Wei et al., 2019) in

various crops. Several reports have suggested that aquaporins

play a significant role in the cold tolerance of temperate fruits

during winter dormancy. Yooyongwech et al. (2009) reported

that gamma tonoplast intrinsic protein (Pp-gTIP1) and plasma

membrane intrinsic protein (Pp-PIP1) play essential roles in

intra- and intercellular membrane transport, enhancing cold

resistance in the bud cushions of high-chill peach cultivars.

Among the tropical fruits, the role of aquaporins was studied

in cold tolerance in bananas. According to Sreedharan et al.

(2013), transgenic banana plants that overexpressed a natural

plasma membrane aquaporin (MusaPIP1;2) showed remarkable

tolerance to cold stress. In addition, transgenic lines showed

lower MDA accumulation, higher proline content, RWC, and

increased photosynthetic efficiency (Fv/Fm) than controls under

exposure to cold stress. Moreover, these transgenic plants

exhibited lower damage to the cell membrane and

chloroplastic membrane under LTS. Cold-tolerance of banana

Dajiao, also associated with aquaporins viz. MaPIP1;1,

MaPIP1;2, MaPIP2;4, MaPIP2;6, MaTIP1;3, and membrane

bounds Peroxidase 52 and Peroxidase P7. These proteins are

the vital cellular adaptations that led to a reduction in lipid

peroxidation and maintained leaf cell water potential (WP)

(Figure 2) (He et al., 2018). Xu et al. (2020) reported that the

overexpression of MaPIP2-7, an aquaporin gene in bananas,

improved tolerance to various stresses, including cold, salt, and

drought. When compared to wild-type (WT) banana plants
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under stress, MaPIP2-7 transgenic plants had reduced levels of

MDA and ion leakage (IL) but higher levels of chlorophyll

content, proline, soluble sugar, and abscisic acid (ABA).

Furthermore, Xu et al. (2021) determined the function of the

aquaporin gene MaPIP1;1 and confirmed that overexpression

led to multiple stress tolerance in bananas, including drought

and cold. Recently, Lopez-Zaplana et al. (2022) elucidated that

aquaporins (PIP2;1, PIP2;5 and PIP2;6) decreases with the

magnitude of different abiotic stresses in melon.
Signaling and molecular responses

Phytohormones

Plant growth-regulating hormones such as abscisic acid

(ABA), ethylene, jasmonic acid, and salicylic acid (SA) play a

significant role during abiotic stresses, including cold, salinity,

drought, light, and heavy metal stresses and they acts as links

between stress regulator and responses at cellular, tissue and

organ level to external stimuli (Rachappanavar et al., 2022).

When Vitis vinifera cv. ‘Pinot Gris’ was sprayed with ABA @ 400

mg L-1 between veraison and three weeks post veraison, it

efficiently accelerated and induced deeper dormancy and

increased bud frost tolerance without influencing vine size,

yield, or fruit quality (Li et al., 2015). Postharvest foliar

treatments of ABA @ 5000 ppm to Merlot grapevines

promoted leaf abscission and boosted autumn bud cold

tolerance. However, ABA at a lower concentration of 1000

ppm encourages a delay in bud break in the spring season. It

has been noted that after ABA treatments, fruit yield and

elemental composition were less affected (Bowen et al., 2016).

Foliar application of ABA (500 mg· L-1) increased freeze

tolerance in grapefruit trees (Wang et al., 2020). In grapevine,

ethylene is released under low-temperature stress, which induces

the expression of ethylene-responsive factor (VaERF057) and

enhances cold tolerance (Sun et al., 2016). Ethylene plays a

crucial role in preventing chilling injury in nectarines (Zhou

et al., 2001). In Arabidopsis, cold stress reduces the amount of

active gibberellin (GA) content and the accumulation of

DELLAs, which are negative regulators of GA (Achard et al.,

2006; Achard et al., 2016). SA treatment (2 mM) is highly

effective in reducing the chilling injury effects, electrolyte

leakage, and ascorbic acid loss in the husk of pomegranates

(Sayyari et al., 2009). Furthermore, SA treatment alleviates

chilling injury in ‘Qingnai’ plum fruit during postharvest

storage (Luo et al., 2011). Exogenous application of methyl

jasmonate (MeJA) (10-4 M) reduced the chilling injury index

and ion leakage in Tommy Atkins mangos during storage at 7°C

(Gonzalez-Aguilar et al., 2000). Application of MeJA vapor for

20 h at 20°C to ‘Kent’ mango fruits has enhanced the shelf-life

under cold storage with a lower chilling injury score (Gonzalez-

Aguilar et al., 2001). Similar reports are also available for guava
Frontiers in Plant Science 09
(Gonzalez-Aguilar et al., 2004), loquat (Cao et al., 2009), and

pomegranate (Sayyari et al., 2011).
Molecular responses

The response of a plant to LTS is to limit or eliminate the

negative consequences of LT. It leads to biochemical and

physiological changes in the plant cells, like membrane

rigidification, lowering of enzyme kinetics, ROS generation,

metabolic disequilibrium, etc. Plant species’ responses to cold

stress vary, and the expression of several stress-associated genes

are redirected to alter their metabolism accordingly

(Chinnusamy et al., 2010; Guo et al., 2018). Plants can activate

a cascade of processes that produce changes in gene expression

(Zuther et al., 2019) and, as a result, promote biochemical and

physiological adaptations that improve their resistance to low

non-freezing temperatures. This process is known as cold

acclimatization. Plants follow the adaptive mechanism against

cold stress by changing the proteins at the translational level, the

composition of the cell membrane, and triggering the ROS

scavenging system. In addition, gene expression plays a crucial

role in these adaptive mechanisms. The molecular mechanisms

of cold stress tolerance and freezing tolerance have been studied

in detail in Arabidopsis and winter cereals. It has been shown

that temperate crops mainly acquire adaptive tolerance, whereas

tropical and subtropical crops are vulnerable to cold stress

(Chinnusamy et al., 2010). Many cold-regulated (COR) genes

require specific signal transduction pathway activation for

acclimatization under LTS (Thomashow, 1998) such as

membrane linked receptor proteins, and the most extensively

studied pathway: ICE-CBF-COR pathway (Zinta et al.,

2022). (Figure 3).

The list of various gene families/gene(s) responsible for LTS

tolerance in different fruit crops is listed in Table 2. The COR

genes in Arabidopsis plants are regulated by CRT/DRE binding

factors (CBF) at the transcription level to enhance the freezing

tolerance (Jaglo-Ottosen et al., 1998; Gilmour et al., 2000). CBF

related genes, namely, CBF1, CBF2, and CBF3, are rapidly and

transiently expressed in response to LT (Gilmour et al., 1998). In

the transgenic Arabidopsis plants, susceptible to cold stress, it

has been found that ectopic synthesis of CBF proteins leads to

constitutive expression of COR genes, resulting in enhanced

freezing tolerance (Jaglo-Ottosen et al., 1998; Gilmour et al.,

2000). The inducer of C-repeat binding factor (CBF) expression

1 (ICE1), part of the CBF transcriptional cascade, regulates

transcription (Zhu et al., 2007). In addition, the activation of

transcriptional cascades involving CBF is mediated by Ca2+

signaling (Figure 3). Under cold stress, the function of ICE1 is

to induce the constitutive expression of CBFs (Chinnusamy

et al., 2007). PIF4 (Phytochrome Interacting Factor 4) and

PIF7 (Phytochrome Interacting Factor 7) negatively regulate

CBFs during the long day. On the other hand, when days are
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short, PIF4 and PIF7 are turned off, which makes plants more

resistant to freezing. However, the actual mechanisms of

photoperiod-induced repression of CBFs, PIF4 and PIF7, are

still not very evident; therefore, it may not be the sole

mechanism engaged in acclimation processes (Fennell, 2014).

Despite this, the CBF/DREB1 dependent low-temperature

signaling network is the most crucial regulatory system

(Chinnusamy et al., 2007). Maurya et al. (2020) investigated

the similarity of the putative amino acid sequence of CBF1 of

Carica papaya through a BLAST search. They reported higher

similarities with Quercus suber (53%), Malus domestica (50%),

Durio zibethinus (49%), Theobroma cacao (49%), Ziziphus

jujube (48%) and Rosa chinensis (48%) (Table 3) .

Furthermore, the phylogenetic tree revealed the evolutionary

link between the CBFs of different plants (Figure 3). The

phylogenetic tree of CBFs was classified into three major

groups, and C. papaya CBF1/DREB belonged to group-II, as

presented in Figure 4. The comparison of amino acid sequence

and multiple sequence alignment of Carica papaya’s CBF1/

DREB protein and other plant species was shown in Figure 5.

Dhekney et al. (2007) found cold-inducible regions and CBF

sequences in C. papaya and Vasconcellea and reported sequence

homology with the Arabidopsis genome. Recently, Maurya et al.

(2020) studied the comparative expression profile of CBF1 and

CBF2 gene transcripts under LTS and observed that the CBF1

expression profiles was up-regulated while CBF2 was down-

regulated in six C. papaya genotypes (Red Lady, Pusa Nanha, P-
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7-2, P-7-9, P-7-14, and V. cundinamarcensis). In addition, they

noted that V. cundinamarcensis had the highest expression

profile of CBF1, followed by P-7-9, whereas the lowest level

was found in Red Lady. On the other hand, the CBF2 expression

profile followed the opposite pattern. According to Zhu et al.

(2007), high-temperature stress (HTS) had minimal influence on

the CpCBF2 expression profile, whereas LT inhibited it. The

induction of CBF1/DREB1B and CBF3/DREB1A is simultaneous

and before CBF2/DREB1C under cold stress (Medina et al.,

2011). Fursova et al. (2009) found that overexpression of ICE2

increased the expression profile of CBF1/DREB1B and improved

freezing tolerance in Arabidopsis. Takuhara et al. (2011) found

that the grapevine cold-induced transcription factors (VvCBF2,

VvCBF4, VvCBFL, VvZFPL) also enhance LT tolerance in

transgenic Arabidopsis plants. Transgenic strawberry leaves

over expressing wheat acidic dehydrin gene (Wcor410a)

improved their cold tolerance when exposed to 5°C (Houde

et al., 2004). In addition, Hara et al. (2004) reported that a

dehydrin gene, i.e.,CuCOR19, from Citrus unshiu, can operate as

a hydroxyl radical scavenger under LT and found more tolerance

to freezing when over expressed in Nicotiana tabacum (Hara

et al., 2003). Apart from this, they also reported a negative

association between the accumulation of CuCOR19 and

electrolyte ion leakage. The approximate size of peach’s

dehydrin gene (ppdhn1) is 50 kDa, which encodes PCA60

protein, consisting of 472 amino acids. In the deciduous

genotype, the protein accumulates earlier and is retained at
FIGURE 3

Signaling network for low-temperature stress acclimation in plants.
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TABLE 2 Various gene (s) responsible for LTS tolerance in different fruit crops.

Sl. No. Fruit crop Gene (s) Reference (s)

01 Grapevine (Vitis vinifera) VvCBF1, VvCBF2, VvCBF3, and VvCBF4 Xiao et al. (2008)

02 Apple (Malus x domestica) MdCBF1, MdCBF2, MdCBF3, MdCBF4 and MdCBF5 Feng et al. (2012)

03 Almond (Prunus dulcis) PdCBF1 and PdCBF2 Barros et al. (2012)

04 Strawberry (Fragaria × ananassa) FaCBF1 Owens et al. (2002)

05 Crab apple (Malus baccata) DREB1/CBF(Mb-DREB1) Yang et al. (2011)

06 Sour cherry (Prunus cerasus) PcCBF1 Owens et al. (2002)

07 Sweet cherry (Prunus avium) PaCBF Kitashiba et al. (2004)

08 Blueberry (Vaccinium corymbosum) BB-CBF Polashock et al. (2010)

09 Vitis riparia VrCBF4 and VrCBF1a Xiao et al. (2008)

10 Poncirus trifoliata COR11, COR19 Thomashow (2010)

11 Peach (Prunus persica) ppdhn1 Artlip et al. (1997)

12 Citrus unshiu Cu-COR19 Hara et al. (2004)

13 Banana (Musa spp.) MusaDHN-1 Upendra et al. (2011)

14 Apple (M. domestica) Dehydrin (MdDHN) Liang et al. (2012)

15 Grape (V. vinifera) Dehydrin (DHN) Yang et al. (2012).

16 Banana (Musa spp.) MaCslD4, MaCslA4/12, MaCslE2 Yuan et al. (2021)
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TABLE 3 Percent identity matrix of Carica papaya CBF1/DREB with other plants CBF/DREB factors (Table adapted from Maurya et al., 2020).

CBF1/DREB
Carica papaya

100.00

DREB 1B
Juglans regia

47.55 100.00

DREB 1F
Quercus suber

53.16 59.67 100.00

DREB 1F
Durio zibethinus

49.48 59.69 55.00 100.00

DREB 1F
Gossypium arboretum

46.45 60.10 61.83 67.51 100.00

DREB 1B
Ziziphus jujube

48.80 59.02 61.58 66.50 82.27 100.00

DREB 1B
Theobroma cacao

49.50 47.06 53.63 50.00 45.59 43.78 100.00

DREB 1B
Cinnamomum micranthum

45.93 47.37 51.89 49.48 46.95 46.67 66.82 100.00

DREB 1B
Ricinus communis

45.58 51.44 54.79 52.82 48.61 48.84 52.68 51.42 100.00

CBF6
Populus trichocarpa

47.09 51.00 52.91 51.05 53.02 53.70 44.72 43.27 50.00 100.00

CBF like
Vitis riaparia

45.60 51.91 58.60 51.18 56.52 54.89 43.24 45.79 50.54 53.59 100.00

CBF/DREB
Rosa chinensis

48.24 47.03 55.37 52.94 54.95 56.28 48.06 45.02 47.29 57.00 55.32 100.00

A)2/ERF
Artemisia annua

46.94 53.54 54.70 58.51 57.58 56.63 46.67 46.73 52.76 56.10 62.36 56.37 100.00

CRT binding factor 3 Solanum
tuberosum

46.63 55.88 54.59 52.36 56.87 56.87 44.66 45.50 49.53 53.49 62.23 53.85 62.44 100.00

AP2/ERF
Trema orientale

46.12 55.88 62.78 56.08 58.17 59.71 45.15 44.08 52.86 57.77 58.42 55.98 61.93 61.86 100.00

DREB 1D
Malus domestica

50.54 55.88 61.18 57.14 59.36 63.04 47.85 45.79 52.38 58.20 58.38 62.77 59.79 61.78 71.05 100.00
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higher levels for a longer time than in the evergreen genotype,

indicating that it plays a role in cold tolerance (Artlip et al.,

1997). Furthermore, the PCA60 protein acts as an anti-freeze

protein that modifies ice crystal growth in the cell and is present

in the cytosol and nucleus but absent in the vacuole when

investigated under the light electron microscope (Wisniewski

et al., 1999). LT tolerance is increased when MpRCI, a cold-

tolerance-related plasma membrane protein gene of the ‘Dajiao

banana cultivar, is overexpressed in transgenic tobacco. (Feng

et al., 2009).

Overexpression of the MbDREB1 transcription factor

improved cold tolerance and other abiotic stresses in apples

(Yang et al., 2011). Additionally, Prunus persica CBF1 gene

overexpression significantly enhanced freezing tolerance in

transgenic apples (Wisniewski et al., 2011). Feng et al. (2012)

studied the adaptive responses to cold tolerance in apples and

discovered that the transcription factor MdCIbHLH1 plays an

important role in the LTS.

Bananas are highly susceptible to chilling stress (Chen et al.,

2020). Recently, Meng et al. (2020) reported that the

accumulation of fasciclin-like arabinogalactan protein (FLA) in

banana under low temperatures could improve chilling tolerance

by facilitating cold signal pathways, which increases the

biosynthesis of plant cell wall components. The results

provided background information on MaFLAs and suggested

their involvement in plant chilling tolerance and their potential

as candidate genes to be targeted when breeding for cold

tolerance. Yuan et al. (2021) reported that the Csl (Cellulose
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synthase-like) gene family imparts tolerance against LT in

bananas by synthesizing a special kind of hemicellulose, an

essential component of the cell wall, and strengthening the

stiffness of the cell wall. The expression of genes MaCslD4

(Musa acuminate Cellulose synthase-like gene), MaCslA4/12,

and MaCslE2 (member of the Csl gene family) were found to

be significantly higher in the tolerant variety than in the

susceptible banana variety under LTS (Yuan et al., 2021).

The commercially important diversity of citrus is available

for cultivation. However, it has been observed that most cold-

acclimated citrus cultivars can only sustain temperature

variations of -4° to -10°C. However, Poncirus trifoliata, a citrus

relative, is a genetic resource for cold-hardiness that can survive

at temperatures as low as -26°C (Yelenosky, 1985). Zhang et al.

(2005) studied the gene expression profile of P. trifoliata by

mRNA DDRT-PCR (differential display-reverse transcription)

and quantitative relative-RT-PCR in a cold acclimation

temperature regime. The up-regulated genes showed high

similarities at the amino acid level with genes with known

functions like water channel protein, betaine or proline

transporter, early light-induced protein, nitrate transporter,

aldo-ketoreductase, tetratricopeptide-repeat protein, F-box

protein, ribosomal (r) protein L15. These cold-acclimation

up-regulated genes of P. trifoliata are also regulated by

osmotic and photo-oxidative signals in other plants.

Anthocyanins, a water-soluble pigment available across the

plant kingdom, have a significant role in mitigating cold stress by

increasing their content in the cell and maintaining the osmotic
FIGURE 4

Phylogenetic tree of CBFs from different plants. Carica papaya CBF1 (XP_021908755.1), Juglans regia DREB 1B Like (XP_018812676.1), Quercus
suber DREB 1 F Like (XP_023913339.1), Durio zibethinus DREB 1B Like (XP_022744533.1), Gossypium arboretum DREB 1F Like (XP_017622119.1),
Ziziphus jujube DREB 1B Like (XP_015901948.1), Theobroma cacao DREB 1B Like (EOY08142.1), Cinnamomum micranthus DREB 1B Like
(RWR82367.1), Ricinus communis DREB 1B Like (EEF33807.1), Populus trichocarpa C-repeat binding factor 6 (ABO48367.1), Vitis riparia CBF-Like
transcription factor (ARD27023.1), Rosa chinensis putative CBF/DREB transcription factor (ABQ53132.1), Artemisia annua AP2/ERF domain-
containing protein (PWA50609), Solanum tuberosum CRT binding factor 3 (ACB45095.1), Trema arientale AP2/ERF domain-containing protein
(PON57830.1), Malus domestica DREB 1D (XP_028948628.1) (FIGURE adapted from Maurya et al., 2020).
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balance to improve the chilling tolerance (Chalker-Scott, 1999;

Hao et al., 2009). Lo Piero et al. (2005) reported an accumulation

of anthocyanin in red-orange juice vesicles under LTS. The

biosynthesis pathway of anthocyanin is complex and involves

several structural genes: PAL (phenylalanine ammonia-lyase),

CHS (chalcone synthase), DFR (dihydro flavonol 4-reductase),
Frontiers in Plant Science 13
and UFGT (UDP-glucose flavonoid glucosyltransferase), which

are strongly triggered during LTS.

According to Crifo et al. (2011), cold stress causes

transcriptome changes in blood oranges that trigger

enhancement of flavonoid biosynthesis, including the metabolic

pathways of anthocyanin biosynthesis. Similarly, in red-skinned
FIGURE 5

Alignment of the predicted amino acid sequences of the Carica papaya CBF1/DREB from with another plant CBFs/DERB. All the designated
sequences showed conserved domain of AP2, the characteristics of c-repeat binding factors. (FIGURE adapted from Maurya et al., 2020).
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grapes, cold stress promoted anthocyanin biosynthesis but did not

increase the accumulation of endogenous levels of abscisic acid

(Gao-Takai et al., 2019). Using an RNA-seq study of leaves from

the ‘Gala’ apple variety after exposure to LT (16°C), Song et al.

(2019) identified additional regulatory genes ROS1 in apple (M.

domestica) that may be involved in controlling LT-induced

anthocyanin production.
Conclusion

LTS unfavorably affects the fruit crop’s overall growth and

development because it affects almost all aspects of cellular

activity and, ultimately the quality production of the crop.

However, according to the current review, the method of

comprehending low-temperature damage have been

adequately tried by researchers on many field crops, while very

limited studies have been conducted on fruit crops. These

include primarily temperate fruit crops and some tropical

crops like bananas. Therefore, new avenues like the role and

use of aquaporin genes to alleviate the LTS need to be explored

in tropical and sub-tropical fruit crops. Furthermore, under

open and simulated low-temperature conditions, more detailed

research is required to elucidate the underlying physio-

biochemical and molecular mechanisms for LTS tolerance and

resistance in fruit crops. These strategies will immensely help in

genetic improvement and standardizing cultural practices for

successful cultivation of the fruit crops, particularly in the erratic

weather conditions of sub-tropical and tropical regions.
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