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Wheat spike detection has important research significance for production

estimation and crop field management. With the development of deep

learning-based algorithms, researchers tend to solve the detection task by

convolutional neural networks (CNNs). However, traditional CNNs equip with

the inductive bias of locality and scale-invariance, which makes it hard to

extract global and long-range dependency. In this paper, we propose a

Transformer-based network named Multi-Window Swin Transformer (MW-

Swin Transformer). Technically, MW-Swin Transformer introduces the ability of

feature pyramid network to extract multi-scale features and inherits the

characteristic of Swin Transformer that performs self-attention mechanism

by window strategy. Moreover, bounding box regression is a crucial step in

detection. We propose a Wheat Intersection over Union loss by incorporating

the Euclidean distance, area overlapping, and aspect ratio, thereby leading to

better detection accuracy. We merge the proposed network and regression

loss into a popular detection architecture, fully convolutional one-stage object

detection, and name the unified model WheatFormer. Finally, we construct a

wheat spike detection dataset (WSD-2022) to evaluate the performance of the

proposed methods. The experimental results show that the proposed network

outperforms those state-of-the-art algorithms with 0.459 mAP (mean average

precision) and 0.918 AP50. It has been proved that our Transformer-based

method is effective to handle wheat spike detection under complex

field conditions.
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1 Introduction

Wheat is one of the most important food crops in the world,

with an annual production of 730 million tons in around 215

million ha (Catherine et al., 2014). As the global yield supports

approximately 30% of the world population, wheat production

estimation has become a focus of agricultural research. It could

provide key indicators for agricultural decision-making and field

management. Since wheat spike is a major factor that reflects the

grain number per unit area, it is significant to accurately detect

the wheat spike for estimating crop yield.

Traditional field yield estimation methods are time-

consuming, inefficient, and poorly representative, so they are

not suitable for current large-scale yield forecasting tasks. With

the development of computer vision, many researchers have

conducted research through machine learning techniques. Fang

et al. (2020) proposed to estimate the wheat tiller density based

on terrestrial laser scanning data. Fernandez-Gallego et al.

(2019) used zenithal/nadir thermal images to count the

number of wheat spikes. Jin et al. (2017) adopted unmanned

aerial vehicles (UAVs) to obtain high-resolution imagery for

estimating wheat plant density. In these traditional machine

learning studies, image texture, geometry, and color intensity are

primarily used to discriminate spikes. However, the process is

partly manually designed to define the range and threshold in

the model. They are not robust enough for different situations

with dense distribution, complex structural environments, and

severe occlusion in the field (Zhang et al., 2020a). Convolutional

neural networks (CNNs) have been introduced into the research

of wheat spike detection in recent studies. Khoroshevsky et al.

(2021) suggested that a network incorporates multiple targets in

a single deep model, and the results show that the method is

effective as a yield estimator. Misra et al. (2020) combined digital

image analysis with CNN techniques to identify and count wheat

spikes. CNNs are effective to extract local information, but they

lack the ability to extract long-range features from global

information. Due to the field environment of wheat being

complex, i .e . , dense distribution, complex structural

environment, and severe occlusion, it is hard for CNNs to

perform well.

The evolution of Transformer (Vaswani et al., 2017) in

natural language processing (NLP) provides an alternative

path, and many researchers have subsequently transferred the

NLP models to computer vision models. Compared with

conventional CNN backbones, Transformers always produce

global receptive fields rather than local receptive fields, which

is more suitable for detecting objects in complex backgrounds.

The Transformer architecture avoids repetition and instead

relies entirely on the attention mechanism to map the global

dependencies between inputs and outputs. The significant

success in the natural language processing domain motivates

researchers to investigate the application in classification

(Dosovitskiy et al., 2021) and dense prediction tasks
Frontiers in Plant Science 02
(Bochkovskiy et al., 2020; Carion et al., 2020; Xizhou et al.,

2020). There are two main challenges in transferring the NLP

Transformer to the visual domain Transformer. Firstly, unlike

the word tokens that are the basic elements of a linguistic

Transformer, the vision elements can be very different from

the NLP in scale. Another is that Transformer has high

computational and memory costs for prediction tasks.

Bounding box regression is a key operation to locate the

target object in detection tasks. The loss function is to calculate

the difference between the regression result and the true value

and finally minimize the regression error. The ln−norm loss

function is widely adopted in bounding box regression, while the

common ln−norm loss (e.g. l1−norm or l2−norm ) is used for

measuring the distance between bounding boxes. However,

according to the research of Yu et al. (Yu et al., 2016;

Rezatofighi et al, 2019), it is not tailored to the Intersection

over Union (IoU) metric. IoU loss (Yu et al., 2016) and

generalized IoU (GIoU) loss (Rezatofighi et al., 2019) have

recently been suggested to improve the IoU metric. IoU loss

can be effective only when the bounding boxes overlap, but it is

useless for non-overlapping cases. GIoU adds a penalty term that

the predicted bounding box will move to the target box without

overlapping. Nevertheless, GIoU empirically has a lower

convergence speed, and it will degrade to IoU loss for

enclosing boxes (Zheng et al., 2020). Therefore, it is important

to design an effective loss function for bounding box regression.

In this work, we aim to explore a Transformer-based

network for wheat spike detection. To the best of our

knowledge, this is the first attempt using Transformer in the

wheat detection field. Inspired by the novel architecture of Swin

Transformer (Liu et al., 2021) and exploring to overcome the

above-mentioned limitations, we propose a Transformer-based

network named MW-Swin Transformer. It has the following

advantages: Firstly, compared with the conventional

Transformer, the proposed Transformer occupies the

hierarchical architecture that is essential for downstream tasks.

Secondly, compared with Swin Transformer, we inherit the

excellent network and design of a multi-window Transformer

block to extract target features with different scales. Thirdly, our

method has three variants according to the number of stacked

layers, which is flexible to fit the actual requirements.

Furthermore, we propose a WIoU loss for bounding box

regression. Specifically, we add a penalty term on IoU loss,

considering the overlap area, Euclidean distance, and aspect

ratio. The three geometric indicators are important, e.g., the

Euclidean distance is used to minimize the distance of central

points in two bounding boxes, and the consistency of aspect

ratios is also bringing about an impact on IoU loss. We

incorporate the proposed methods into the FCOS and name

the new model WheatFormer, as illustrated in Figure 1.

WheatFormer contains two major parts: the multi-window

Swin (MW-Swin) Transformer and the wheat detector. The

input image is split into non-overlapping patches, and each
frontiersin.org
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patch is regarded as a token and fed into the MW-Swin

Transformer backbone to learn long-range features from

global information. Then, the extracted feature maps are fed

into the one-stage detector to locate the wheat spike. Finally, we

construct a wheat spike detection dataset named WSD-2022 to

evaluate the performance of the proposed WheatFormer. The

dataset contains 6,404 images from two data sources, the first

was from the Global Wheat Head Detection (GWHD) dataset

(David et al., 2021) and the second was collected in the field

environment by our collaborators. The major contributions of

our work are as follows:
Fron
● We propose the MW-Swin Transformer with multiple

windows for different scale objects, which inherits from

the shifted windows in Swin Transformer. This strategy

brings a much lower latency than those previous

Transformer models, leading to strong performance

due to the global receptive field.

● A WIoU loss function is proposed for bounding box

regression, considering three important geometric

indicators. WIoU helps the network achieve a better

performance than normal IoU loss and other improved

IoU loss functions.

● We build the WSD-2022 dataset for detecting wheat

spikes. This dataset contains wheat spike images from

different regions and different developmental stages.

Our work provides a richer benchmark dataset for

wheat spike detection tasks.
tiers in Plant Science 03
2 Related work

2.1 CNN-based methods in wheat
spike detection

CNNs have been widely used in computer vision tasks, such

as image classification (Huang et al., 2017), object detection (Ren

et al., 2017), and semantic segmentation (He et al., 2017), which

have achieved excellent achievements. Differently from

tradi t ional machine learning methods , CNNs can

automatically abstract features without manual intervention.

Sadeghi-Tehran et al. (2019) proposed a low-computational-

cost system to automatically detect the number of wheat spikes,

which used simple linear iterative clustering with CNN. Hasan

et al. (2018) introduced a robust R-CNN model for the accurate

detection, counting, and analysis of wheat ears for yield

estimation. Wang et al. (2019) provided a method based on a

fully convolutional network and Harris corner detection, solving

the problem of counting wheat ears in field conditions. Madec

et al. (2019) used Faster R-CNN to provide accurate ear density

using RGB images taken from the UAV. Pound et al. (2017)

investigated a deep learning method capable of accurately

localizing wheat ears and spikelets. Gong et al. (2020)

proposed a novel object method of wheat head detection based

on dual SPP networks to enhance the speed and accuracy of

detection. Yang et al. (2021) combined the convolutional neural

network and attention mechanism technology to propose a

CBAM-YOLOv4 wheat ear detection and counting method.
FIGURE 1

The main architecture of WheatFormer.
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2.2 Object detection

Object detection methods can be divided into two groups:

with two stages and with one-stage. For two-stage detectors, the

first stage is to produce lots of high-quality region proposals by a

proposal generator, and the second stage is classifying and

refining the proposals by region-wise subnetworks. R-CNN

(Girshick et al., 2014) and Fast R-CNN (Girshick, 2015) are

the typical networks of two-stage detectors, which combined the

region proposals and CNN for object detection. Faster R-CNN

(Ren et al., 2017) was proposed to speed up Fast R-CNN and

promote detection accuracy by using region proposal network.

Other two-stage detectors mainly include Mask R-CNN (He

et al., 2020), Libra R-CNN (Pang et al., 2019), and Cascade R-

CNN (Cai and Vasconcelos, 2018). However, two-stage

detectors show a weakness in detection efficiency (Redmon

et al., 2016). For one-stage detectors, they drop the process of

generation region proposals, treating the object detection task as

a single shot problem, such as the YOLO series networks: YOLO

(Redmon et al., 2016), YOLOv3 (Redmon and Farhadi, 2018),

and YOLOv4 (Bochkovskiy et al., 2020). Tian et al. (2019)

proposed a fully convolutional one-stage object detector. This

method avoided the complex computation by eliminating the

predefined set of region proposals. SSD (Fu et al., 2017)

introduced additional context into the popular general

object detection.
2.3 Vision Transformer

The Transformer is proposed by Vaswani et al. (2017),

which is widely used in NLP tasks. Recently, the pioneering

work of vision Transformer ViT (Dosovitskiy et al., 2021)

demonstrated that the pure Transformer-based model can also

achieve competitive performance in vision tasks. Based on the

success of ViT, many studies have on designing more advanced

Transformer base networks been published, including image

processing (Wan et al., 2021), classification (Wang et al., 2021),

object detection (Carion et al., 2020), and semantic segmentation

(Zheng et al., 2021). However, the normal ViT-based models are

not compatible with many downstream tasks due to the high

computational cost. To alleviate the limitations, an efficient and

effective hierarchical Transformer named Swin Transformer

(Liu et al., 2021) was proposed as a unified vision backbone.

Swin Transformer designed the shifted windows mechanism,

achieving state-of-the-art performance in many downstream

tasks. We introduce Swin Transformer due to its excellent

characteristics, and the hierarchical architecture is designed to

reduce the complex computation by progressively decreasing the

shape of feature maps.
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3 Materials and methods

3.1 Dataset

We built a wheat spike detection dataset named WSD-2022,

containing a total of 6,404 images, of which 978 images we

collected ourselves in the field environment. We conducted

wheat image collection in four locations, including Dangtu

County, Ma’anshan; Feidong County, Hefei; Guizhi District,

Chizhou; and Susong County, Anqing. The images were

collected from April 18 to May 10, 2021 from the flowering

stage to the milk stage of maturity. We collected the wheat spikes

of varieties with different colors, shapes, and densities, thus

increasing the diversity of the data. We shot the images using

different types of cameras at different shooting angles and

distances to collect image data under different lighting

conditions to enhance the robustness of the model. About 80%

of the images were captured at a resolution of over 3,000*4000

pixels. The captured images need to label each wheat spike, and we

use LabelImg software to annotate the bounding boxes around the

wheat spikes. Each wheat spike is labeled with a bounding box, the

annotation is represented as a vector (x,y,w,h) where (x,y) are the

coordinates of the upper left and (w,h) are the width/height of the

bounding box. Figure 2 shows some examples of WSD-2022. Due

to the different shooting angles, different lighting conditions,

different wheat growth periods, different wheat distribution

densities, and different wheat spike sizes, we can find the

diversity and complexity of the dataset. We randomly split the

WSD-2022 into training and validation subsets at a ratio of 8:2.

The details of the two subsets are summarized in Table 1.
3.2 MW-Swin Transformer

3.2.1 Overall architecture
This section describes the design of MW-Swin Transformer.

The pyramid structure was introduced based on the Transformer

model to generate hierarchical feature maps for downstream tasks.

The overall architecture of MW-Swin Transformer is similar to

CNN networks. As shown in (Figure 1). For an input image with

size of H*W*3 , we follow Swin Transformer to split the image

into patches at first (we treat each patch as a “token”); the patch

size is 4*4. By such approach, the feature dimension of each patch

becomes 4*4*3 = 48. Then, a linear embedding layer is employed

to project the feature dimension to arbitrary dimension (set as C ).

To produce hierarchical feature representation, the model

architecture consists of four stages; a patch merging layer is

added after each stage for down-sampling (reduce the number

of tokens, which is similar to the pooling layer in CNN).

In the first stage, we divide the input image into HW/42

patches, with a size of 4*4*3 for each of them. Through the linear
frontiersin.org
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embedding layer, we feed the flattened patches to MW-Swin

Transformer blocks (the number of blocks is represented by N ),

and the output is reshaped to a feature map with a size of H/

4*W/4*C1 (represented as F1 ). The patch merging layer down-

sampled each feature map Fi,i={1,2,3,4} with strides [4, 8, 16, 32]

with respect to the size of the input image. The output
Frontiers in Plant Science 05
dimensions of Fi is set to Ci,i={1,2,3,4} . Therefore, the output

resolution of each stage is H/4*W/4*C1 , H/8*W/8*C2 , H/16*W/

16*C3 , and H/32*W/32*C4 , respectively. With the hierarchical

structure, our model possesses the progressive shrinking strategy

that adjusts the output scale of each stage so that we can easily

apply the model to downstream tasks.
3.2.2 MW-Swin Transformer block
Transformer obtains the powerful ability of long-range

context modeling, but the computation complexity of

conventional Transformer is quadratic to feature map size. For

dense prediction tasks with high-resolution images as input,

using conventional Transformer is expensive. Therefore, Swin

Transformer is proposed to perform self-attention by non-
TABLE 1 Number of images in the WSD-2022 dataset.

WSD-2022 Train Validation Total

Ours 782 196 978

GWHD 4,309 1,117 5,426

Total 5,091 1,313 6,404
FIGURE 2

Samples of the WSD-2022 dataset. The first and second rows of the figure show the images that we acquired, while the third and fourth rows of
the figure come from GWHD.
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overlapping local windows and shifted windows. However, the

window size of Swin Transformer is fixed, which is not

conducive to detecting objects of different sizes. To enlarge the

receptive field and obtain global self-attention more flexibly, we

propose the MW-Swin Transformer; the architecture is similar

to the feature pyramid network, using different-sized windows to

detect objects across a large range of scales.

As shown in Figure 3, two consecutive MW-Swin

Transformer blocks are presented. Each block contains two

LayerNorm (Bosilj et al. 2020) layers, a multi-head self-

attention (MSA), and a multilayer perceptron (MLP). The

multi-window MSA (MW-MSA) and the shifted multi-

window MSA (SMW-MSA) are adopted in the consecutive

Transformer blocks, respectively. With the MW-MSA module

and the SMW-MSA module, consecutive MW-Swin

Transformer blocks can be represented as:

�zl = MW − SMA(LN(zl−1)) + zl−1

�zl = SR(�zl)

zl = MLP(LN(�zl)) + �zl (1)

�zl+1 = SMW − SMA(LN(zl)) + zl

�zl+1 = SR(�zl+1)
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zl+1 = MLP(LN(�zl+1)) + �zl+1

where �zl and zl represent the outputs of (S)MW-SMAmodule

and the MLP for the block, respectively. MW-MSA equals Concat

(W−MSA(zl−1)1,W−MSA(zl−1)2,W−MSA(zl−1)3) , where W−MSA

(•)i,i=1,2,3 indicates the ith window with size X , and we set X=

[7,9,11] in experiments. SR(•) denotes the spatial reduction

module to reduce the spatial scale of �zl , which reduces the

memory and computational cost. Similar to the conventional

Transformer (Dosovitskiy et al., 2021; Liu et al., 2021), the

attention operation can be computed as follows:

Attention(Q,K ,V) = Softmax (
QKTffiffiffi

d
p + B)V (2)

where Q,K,V represent the query, key, and value matrices;

the other parameters are in accordance with Swin Transformer.

Compared with the previous MSA in vision Transformers,

the MW-MSA controls the computation area in multi-window

as a unit. It reduces the complexity and computational cost,

enhancing the ability to detect multi-scale features. MW-Swin

Transformer block can serve as a plug-and-play block to replace

the raw Transformer block in Swin Transformer, with only

minor modifications to the vanilla structure.

3.2.3 Architecture variants
We named the base model WheatFormer-B, which is a

trade-off between efficiency and accuracy. Considering higher
FIGURE 3

MW-Swin Transformer block.
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efficiency needs in some cases, we have introduced a small

version named WheatFormer-S. On the other hand, when

accuracy needs to be considered more, we have introduced a

large version named WheatFormer-L. The architectures of our

base model and variants are listed in Table 2.
3.3 Wheat detector

3.3.1 One-stage object detector
FCOS is a one-stage anchor-free object detection algorithm

(Tian et al., 2019) with higher accuracy and faster speed

compared with the representative model Faster R-CNN (Ren

et al., 2017) and other two-stage detectors. FCOS mainly consists

of three parts: a feature extraction backbone, a feature pyramid

network (FPN), and a detection head. The backbone extracts

multi-level features of the input image. Then, low-level spatial

information and high-level semantic information are fed into

FPN, generating multi-scale feature maps. In previous research,

low-level information can obtain more detailed texture

information, which leads to more efficient detection. High-

level information gets more semantic information and is more

suitable for classification. FCOS is a pixel-based detector, which

means that each pixel on the feature map is used for regression.

First, each pixel map back to the original input image, and a pixel

considers a positive sample if its location falls within any

ground-truth box with the correct class label. Otherwise, it is a

negative sample. As for regression, FCOS uses a vector t*=(l*,t*,
r*,b*) , where l*,t*,r*,b* denote the distances from the location

(x,y) to the four sides of the bounding box, as shown in Figure 4.

The target regression process can be formulated as follows:

l* = x − x0
(i)

t* = y − y0
(i)

r* = x1
(i) − x

b* = y1
(i) − y

(3)

where (x0
(i),y0

(i)) and represent coordinates of the left-top

and right-bottom corners of the bounding box.

3.3.2 WIoU loss
The training loss function of the proposed WheatFormer

mainly obtains three branch loss functions:
Frontiers in Plant Science 07
LWheatFormer =
1

Npos
Lcls +

l1
Npos

Lcenter−ness +
l2
Npos

Lreg (4)

where Lcls and Lcenter−ness represent the classification and

center-ness loss function which are designed in FCOS. Npos

denotes the number of positive pixels. l1 and l2 are balance

weights to adjust the proportions of three branch loss functions.

The parameters follow the settings in Tian et al. (2019). FCOS

uses IoU loss to calculate the regression loss, which can be

formulated as follows:

Lreg =ox,y∈(Rp∪Rn)(1 − IoU( Prx,y ,Gtx,y)) (5)

where Rp represents the positive sample region and Rn

denotes the negative sample region. Gti,j indicates the ground

truth localization of the pixel (x,y) , while Pri,j denotes the

predicted target of (x,y) .

The IoU loss regresses all bound variables as a whole for

joint regression and directly enforces the maximum overlap

between the prediction bounding box and the ground truth. The

IoU loss leads to faster convergence and more accurate

localization compared with the ln−norm loss used in previous

studies. However, the IoU loss cannot provide moving gradients

for non-overlapping cases, i.e., IoU loss is only valid when the

bounding boxes overlap. Based on previous researches and the

IoU loss, we consider three important geometric metrics, which

are the overlap region, Euclidean distance, and aspect ratio of

bounding boxes. In summary, we add a penalty term to the IoU

loss, named WIoU loss. The new loss function directly

minimizes the Euclidean distance between the predicted box

and the ground truth. At the same time, we take into account the

effect of the consistency of aspect ratios. The WIoU loss function

is defined as follows:

Lreg =ox,y∈(Rp∪Rn)(1 − IoU( Prx,y ,Gtx,y) + y ║Prx,y ,Gtx,y ║2 )

y = 4
p2 ( arctan

wGt
x,y

hGtx,y
− arctan wPr

x,y

hPrx,y
)2

(6)

where y measures the consistency of the aspect ratio and

plays the role of regularization for the distance between the

predicted bounding box and the target bounding box. wGt and

hGt represent the width and height of the ground truth. wPr and

hPr represent the width and height of the predicted bounding

box. The optimization of WIoU loss is the same as the IoU loss.
TABLE 2 Detailed settings of WheatFormer variants.

Models C1,C2,C3,C4 N1,N2,N3,N4 #Head #Expansion #Params (MB)

WheatFormer-S [96, 192, 384, 768] [2, 2, 2, 2] 32 a=4 42.4

WheatFormer-B [96, 192, 384, 768] [2, 2, 6, 2] 32 a=4 60.1

WheatFormer-L [96, 192, 384, 768] [2, 2, 18, 2] 32 a=4 100.6
Ci , channel number of the hidden layers in each stage; Ni , layer numbers in each stage; #Head, query dimension of each head; #Expansion, expansion layer of each multilayer perceptron;
#Params, amount of model parameters.
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4 Experiments and discussion AP

4.1 Experimental settings

All the experiments were performed using the Pytorch deep

learning frame, and the operation system was Ubuntu 18.04 with

CUDA10.1. We use a piece of NVIDIA TITAN RTX GPU, Intel

Core i9-9900k CPU with 128GB RAM. Furthermore, we train

our model with the AdamW (Loshchilov and Hutter, 2017)

optimizer for 24 epochs. The initial learning rate is 1e−4 , and
Frontiers in Plant Science 08
the weight decay is 0.05. The settings of comparison networks

follow the original settings.
4.2 Evaluation metrics

In our experiments, we use the evaluation metrics as the

metric definition of the COCO dataset. Average precision ( AP ) is

the area surrounded by the precision-recall curve. The definition

of AP is defined as Formula 7. AP@50 ( AP50 ) means the value
FIGURE 4

Regression method of FCOS. l*, t*, r*, and b* represent the distances from the pixel to the left, top, right, and bottom, respectively, of the
bounding box.
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when IoU is equal to 0.5, AP@75 ( AP75 ) is the AP value when the

IoU equals 0.75, and the mean AP ( mAP ) is the threshold of the

IoU from 0.5 to 0.95 ( AP@[0.5:0.05:0.95] ) with a step size of 0.05.

precision = TP
TP+FP

recall = TP
TP+FN

AP =
Z 1

0
precision(recall)d(recall)

(7)

where TP (true positive), FP (false positive), and FN (false

negative) represent the number of correctly detected wheat

spikes, false detected wheat spikes, and missing detected wheat

spikes. At the same time, we use APs , APm , APl defined in the

COCO dataset in our experiments, which represent the detection

accuracy for different target sizes. Considering that the wheat

spike in the dataset occupies a larger proportion of the image, we

only apply APm (for medium targets) and APl (for large targets)

as the evaluation metric. In the field of object detection, AP

metric is widely adopted for evaluating the comprehensive

detection performance of the model.
4.3 Model performance

The experiments in this section aim to demonstrate the

effectiveness of the proposed method in terms of detection

performance. We compared seven state-of-the-art algorithms,

including Faster R-CNN (Madec et al., 2019), Mask R-CNN (He

et al., 2020), FCOS (Tian et al., 2019), ATSS (Zhang et al.,

2020b), SSD (Fu et al., 2017), Centernet (Zhou et al., 2019), and

YOLOv3 (Redmon and Farhadi, 2018). Faster R-CNN and Mask

R-CNN are two-stage networks, and the rest are one-stage

networks. The experimental results are listed in Table 3, and
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we can find that the proposed WheatFormer outperforms the

other models. To be specific, compared with the two-stage CNN-

based models, WheatFormer achieves about 10–20% higher in

AP50 and 8–15% improvement in. Compared with the one-stage

CNN models, our model increases the AP50 and mAP by 1.2–

11.5 and 2.2–9.5%, respectively. In terms of Swin Transformer-

based models, the detection performance is generally better than

the CNN-based models. The FCOS-based Swin Transformer

achieves a mAP of 0.452, while our model increases mAP by

0.7% and AP50 by 3.2%. The Mask R-CNN based on Swin

Transformer achieves the AP50 of 0.914, which is comparable to

that of WheatFormer, but our model gets a higher mAP of 3.3%.

Considering the model parameters, our model achieves a larger

size than most CNN models but is similar to Swin Transformer-

based models. We show some comparison examples in Figure 5

and the detection results of WheatFormer in Figure 6. Figure 5

shows that Faster R-CNN has too many overlapping prediction

boxes, and YOLOv3 obtains too many missing boxes. At the

same time, WheatFormer obtains a higher accuracy than the

comparison models in classification. In Figure 6, we can find that

WheatFormer has excellent detection performance at different

shooting angles, different light conditions, different wheat

growth periods, different wheat distribution densities, and

different wheat spikes sizes. WheatFormer can accurately

identify most wheat spikes even at high density and high

occlusion. This intuitively illustrates the excellent performance

of WheatFormer.
4.4 Ablation experiments

As mentioned, the major drawbacks of CNN models are the

consistently produced local receptive fields, which are unsuitable
TABLE 3 Detection results on WSD-2022.

Method Backbone mAP AP50 AP75 APm APl #Params (MB)

Faster R-CNN ResNet50 0.301 0.709 0.215 0.284 0.339 39.4

Mask R-CNN 0.345 0.774 0.237 0.311 0.382 41.9

Faster R-CNN ResNet101 0.304 0.750 0.208 0.306 0.352 57.6

Mask R-CNN 0.366 0.812 0.246 0.331 0.394 60.1

FCOS ResNet50 0.368 0.825 0.250 0.355 0.409 30.6

ATSS 0.364 0.803 0.255 0.357 0.402 30.6

SSD SSDVGG 0.428 0.890 0.362 0.382 0.488 22.7

CenterNet ResNet18 0.414 0.876 0.318 0.345 0.487 13.8

YOLOv3 DarkNet53 0.437 0.906 0.381 0.387 0.497 58.7

Faster R-CNN Swin Transformer 0.397 0.881 0.276 0.352 0.450 65.6

Mask R-CNN 0.426 0.914 0.318 0.379 0.473 68.1

FCOS 0.452 0.886 0.402 0.415 0.523 43.8

WheatFormer MW-Swin Transformer 0.459 0.918 0.384 0.415 0.533 60.1
Faster R-CNN and Mask R-CNN are the representative models of two stages. FCOS, ATSS, SSD, CenterNet, and YOLOv3 are the representative models of one stage.
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for detecting objects in complex backgrounds. There are

relatively few studies on Transformers-based backbone applied

to wheat spike detection. We conduct ablation experiments to

represent the effectiveness of our proposed methods.

4.4.1 Effect of the MW-Swin Transformer
In this part, we describe the effectiveness of the proposed

MW-Swin Transformer. The results are listed in Table 4, which

contains three backbones: the CNN backbone, the Swin

Transformer backbone, and the MW-Swin Transformer

backbone. Obviously, the Swin Transformer backbone-based

models greatly improve the detection performance of the state-

of-the-art algorithms. For a detailed representative comparison

of different backbones, we show the precision–recall curve of

WheatFormer in Figure 7. Specifically, compared with the CNN

backbone and the Swin Transformer backbone, the

WheatFormer boosts the Loc, Sim, Oth, and BG to 0.964,

0.964, 0.964, and 0.990. It obtains 9.1% improvements on

mAP and 9.3% improvements on AP50 after replacing the

backbone with MW-Swin Transformer. This indicates that the
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proposed Transformer can effectively increase the detection

ability of the detectors.

4.4.2 Effect of the WIoU loss
The loss function plays an important role in the deep

learning training process. To further validate the performance

of the proposed WioU loss, we conduct experiments comparing

IoU, GioU, and CioU (Zheng et al., 2020). We present the

comparison results in Table 5. We can find that GioU, CioU, and

WioU make further detection improvements than the original

IoU loss for most cases—for instance, the WheatFormer with

WioU loss obtains 0.452 mAP , which is 2.9% higher than the

IoU-based model, 1% higher than the GioU-based model, and

2.4% higher than the CioU-based model. Therefore, we can

conclude that the WheatFormer can obtain better detection

performance when trained with WioU loss.

4.4.3 Performance of the variant models
As mentioned, we constructed three different variants of

WheatFormer, and the detection results are shown in Table 6.
FIGURE 5

Visualization of the comparative models. The left column represents the result of Faster R-CNN, the middle column represents the result of
YOLOv3, and the right column represents the result of WheatFormer.
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WheatFormer-S obtains 42.4 MB parameters, similar to the Swin

Transformer-based FCOS (43.8 MB), while WheatFormer

achieves 0.438 at mAP (1.4% lower than SSD) and 0.908 at

AP50 (2.2% higher than Swin Transformer-based FCOS).

WheatFormer-B obtains 60.1 MB parameters, the same as

Mask R-CNN. Nevertheless, our model achieves 0.459 at mAP

(9.3% higher than Mask R-CNN) and 0.918 at AP50 (10.6%

higher than Mask R-CNN), which significantly surpasses the

detection ability of Mask R-CNN. The large version obtains
Frontiers in Plant Science 11
parameters of 100.6 MB, showing a better performance than the

previous versions.
4.5 Limitations and future work

In this work, we conduct extensive experiments to evaluate the

effectiveness of the proposed methods. The experimental results

prove that the proposed methods can greatly improve the
FIGURE 6

Visualization of detected results by the WheatFormer. (A) Early maturity, 65 spikes per image, direct sunlight, and wheat ear group with 80°
viewing angle of photographing, (B) filling stage, 75 spikes per image, diffuse light conditions, and wheat ear group with 45° viewing angle of
photographing, (C) filling stage, 45 spikes per image, diffuse light conditions, and wheat ear group with 45° viewing angle of photographing, (D)
early maturity, 25 spikes per image, diffuse light conditions, and wheat ear group with 90° viewing angle of photographing, (E) poplar blossom,
23 spikes per image, direct sunlight, and wheat ear group with 45° viewing angle of photographing, (F) the milk stage of maturity, 30 spikes per
image, direct sunlight, and wheat ear group with 90° viewing angle of photographing, (G) poplar blossom, 27 spikes per image, direct sunlight,
and wheat ear group with 30° viewing angle of photographing, (H) the milk stage of maturity, 22 spikes per image, diffuse light conditions, and
wheat ear group with 90° viewing angle of photographing, and (I) the milk stage of maturity, 30 spikes per image, diffuse light conditions, and
wheat ear group with 90° viewing angle of photographing.
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A B C

FIGURE 7

Precision–recall (PR) curves of WheatFormer with different backbones. (A) WheatFormer with convolutional neural network backbone.
(B) WheatFormer with Swin Transformer backbone. (C) WheatFormer with MW-Swin Transformer backbone. C75: PR at threshold equals 0.75;
C50: PR at threshold equals 0.50; Loc: PR at threshold equals 0.1, and location errors ignored without duplicate detections; Sim: PR after
supercategory false positives are removed; Oth: PR after all class confusions are removed; BG: PR after all background false positive are
removed; FN: PR after all remaining errors are removed.
TABLE 5 Results of WheatFormer with different IoU loss functions.

Method IoU GioU CioU WioU mAP AP50 AP75

WheatFormer ✔ 0.423 0.894 0.322

✔ 0.442 0.896 0.374

✔ 0.428 0.900 0.326

✔ 0.459 0.918 0.384
Frontiers in Plant Science
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Bold values are the results of our experimental method.
The symbols "✔" means the method used in the model.
TABLE 6 Comparison of variant models.

Method mAP AP50 AP75 APm APl #Params (M)

WheatFormer-S 0.438 0.908 0.366 0.402 0.516 42.4

WheatFormer-B 0.459 0.918 0.384 0.415 0.533 60.1

WheatFormer-L 0.466 0.927 0.400 0.422 0.524 100.6
TABLE 4 Comparison of different backbones.

Method CNN backbone Swin Transformer MW-Swin Transformer AP50 AP75

Faster R-CNN ✔ 0.301 0.709 0.215

✔ 0.397 (9.6%↑) 0.881 (17.2%↑) 0.276 (6.1%↑)

✔ 0.417 (2%↑) 0.893 (1.2%↑) 0.315 (1.2%↑)

Mask R-CNN ✔ 0.345 mAP 0.774 0.237

✔ 0.426 (8.1%↑) 0.914 (14%↑) 0.318 (8.1%↑)

✔ 0.433 (0.7%↑) 0.909 (0.5%↓) 0.344 (2.6%↑)

Centernet ✔ 0.414 0.876 0.318

✔ 0.436 (2.2%↑) 0.913 (3.7%↑) 0.372 (5.4%↑)

✔ 0.448 (1.2%↑) 0.912 (0.1%↑) 0.365 (0.7%↓)

WheatFormer ✔ 0. 368 0.825 0. 250

✔ 0. 452 (8.4%↑) 0. 886 (6.1%↑) 0. 402 (15.2↑)

✔ 0. 459 (0.7%↑) 0. 918 (3.2%↑) 0. 384 (1.8%↓)
Bold values are the results of our experimental method.
The symbols “↑”means the increase values compared to the previous method, "↓" means the decrease values compared to the previous method, and "✔" means the method used in the model.
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detection performance of wheat spike detection. Although

WheatFormer has shown to be effective in wheat spike

detection tasks, there are still some limitations. It is worth

noting that the experiment is only perfomed on the WSD-2022

dataset with a limited number of images. Moreover, our method

attempts to improve the detection ability of the spike detector,

while the parameters of our base model are relatively large. In

future research, we will focus on solving the above-mentioned

problems. Firstly, we will collect more wheat spike images

containing more regions and more growth cycles to validate our

methods. Secondly, we will continue to design more lightweight

models to improve the capabilities for practical applications.
5 Conclusions

In this paper, we explore a Transformer-based network for

wheat spike detection within a newly constructed dataset. We are

the first to introduce the Transformer for wheat spike detection.

To extract global and long-range semantic information, we

design the MW-Swin Transformer as the backbone, and we

propose the WioU loss function to improve positioning

accuracy. Finally, we created a wheat spike dataset named

WSD-2022 to verify the effectiveness of our model. The

extensive experiments show that the method proposed in this

study can obtain an encouraging detection performance

compared with those state-of-the-art algorithms. We hope that

this research will provide novel insights into the development of

more advanced detection methods in the agricultural field.
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