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Rice immediately adapts the
dynamics of photosynthates
translocation to roots in
response to changes in soil
water environment
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Eiji Yoshida3, Hideaki Tashima3, Taiga Yamaya3,
Noriyuki Kuya2, Shota Teramoto2 and Yusaku Uga2
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Technology (QST), Takasaki, Japan, 2Institute of Crop Science, National Agriculture and Food
Research Organization (NARO), Tsukuba, Japan, 3Institute for Quantum Medical Science, National
Institutes for Quantum Science and Technology (QST), Chiba, Japan
Rice is susceptible to abiotic stresses such as drought stress. To enhance drought

resistance, elucidating the mechanisms by which rice plants adapt to intermittent

drought stress that may occur in the field is an important requirement. Roots are

directly exposed to changes in the soil water condition, and their responses to

these environmental changes are driven by photosynthates. To visualize the

distribution of photosynthates in the root system of rice plants under drought

stress and recovery from drought stress, we combined X-ray computed

tomography (CT) with open type positron emission tomography (OpenPET) and

positron-emitting tracer imaging system (PETIS) with 11C tracer. The short half-life

of 11C (20.39 min) allowed us to perform multiple experiments using the same

plant, and thus photosynthate translocation was visualized as the same plant was

subjected to drought stress and then re-irrigation for recovery. The results

revealed that when soil is drier, 11C-photosynthates mainly translocated to the

seminal roots, likely to promote elongation of the root with the aim of accessing

water stored in the lower soil layers. The photosynthates translocation to seminal

roots immediately stopped after rewatering then increased significantly in crown

roots. We suggest that when rice plant experiencing drought is re-irrigated from

the bottom of pot, the destination of 11C-photosynthates translocation

immediately switches from seminal root to crown roots. We reveal that rice

roots are responsive to changes in soil water conditions and that rice plants

differentially adapts the dynamics of photosynthates translocation to crown roots

and seminal roots depending on soil conditions.

KEYWORDS

photosynthate translocation, carbon 11, positron emission tomography, X-ray
computational tomograph, positron-emitting tracer imaging system, rice root,
intermittent drought stress, root system architecture (RSA)
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Introduction
Among the major cereal crops, rice is consumed by more

than half of the world’s population, and thus it is important to

improve the yield and stable production of rice for food security

(Ahmadi et al., 2014). Rice is predominantly produced in

irrigated and rainfed lowland paddy systems and consumes

more water than other cereals (Maclean et al., 2013).

Therefore, rice plants are susceptible to drought stress, which

is increasing in incidence and severity worldwide (Kim et al.,

2020), adversely affecting rice production (Barnabas et al., 2008).

Increasing global temperatures associated with global warming

are expected to worsen the drought-related decline in rice yields

in future (Lobell and Gourdji, 2012). It is important to

understand the response of rice plants to drought stress and,

furthermore, to implement breeding programs that lead to

yield improvements.

Roots are essential for plants to take up water and nutrients

from the soil, affecting plant performance and productivity

(Gregory, 2006). Roots are directly exposed to changes in soil

condition, and thus they are key organs for elucidating the

physiological response of plants to abiotic stress such as drought.

Roots can adapt to drought stress as well as efficiently acquire

nutrients and water by changing their root system architecture

(RSA) and physiological function such as exudation of carbon

into the soil, and nutrient uptake using energy (Davies and

Bacon, 2003). These changes in RSA and physiological function

are driven by photosynthates synthesized in leaves (Li et al.,

2010; Hachiya et al., 2014; Yin et al., 2020). To understand in

detail the anti-stress strategies of plants under drought stress, it

is necessary to investigate the translocation of photosynthates to

the roots in addition to changes in RSA.

Three-dimensional (3D) analysis is important to accurately

assess the structure and function of roots, which develop

intricately in the soil. For the 3D analysis of RSA, magnetic

resonance imaging (Jahnke et al., 2009; Metzner et al., 2014),

neutron imaging (Tumlinson et al., 2007; Leitner et al., 2014),

and X-ray computed tomography (CT) (Jenneson et al., 2003;

Zhu et al., 2011; Flavel et al., 2012) have recently been used.

However, these methods require considerable time to scan and

reconstruct the roots. Moreover, subsequent segmentation of the

root is labor intensive. Recently, Teramoto et al. (2020)

developed a system that combines high-speed scanning with

semi-automated root tracing, thus enabling 3D structural

analysis of plant roots with high throughput. To analyze

photosynthate translocation dynamics in plants, we developed

an imaging technique to visualize and quantify the distribution

of 11C-labeled photosynthates in plants noninvasively with a

spatial resolution of approximately 2 mm by combining (i) a

positron-emitting tracer imaging system (PETIS) (Kawachi

et al., 2011) and (ii) a small prototype of open-type geometry

of positron emission tomography (OpenPET) (Yamaya et al.,
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2011). 11C is a short-lived radioisotope (RI) tracer that emits

positrons, with a half-life of 20.39 min. A key advantage of short-

lived RI tracers is that in vivo measurements can be performed

repeatedly using the same plant (Minchin and Thorpe, 2003).

We previously completed the PETIS-based investigations on the

spatiotemporal distribution of photosynthates in leguminous

plants (Kawachi et al., 2011; Yin et al., 2020), Cannabis sativa

(Kawachi et al., 2006), eggplant (Kikuchi et al., 2008), tomato

(Yamazaki et al., 2015; Tsukamoto et al., 2020), and strawberry

(Hidaka et al., 2019; Miyoshi et al., 2021a), and OpenPET-based

investigations in strawberry fruits (Kurita et al., 2020) and rice

roots (Miyoshi et al., 2021b). By combining the high-throughput

RSA analysis system developed by Teramoto et al. (2020) with RI

imaging system for photosynthates translocation, it would be

possible to make detailed analysis of RSA and dynamics of

photosynthates translocation to roots in the soil.

Recently, Miyoshi et al., 2021b combined the high-

throughput X-ray CT system with the OpenPET to allow rapid

acquisition of RSA that developed 3D in the soil and detailed

analysis of photosynthate translocation dynamics to rice roots

without destroying the plants. Using this system, it was revealed

that the activity of photosynthates translocation varied along the

individual rice root. The aim of this study is to evaluate the

dynamics of photosynthate translocation to rice roots grown in a

pot replicating the intermittent drought stresses that can occur

in the field, i.e., drought stress and recovery from drought stress

due to water influx by using this newly constructed.
Materials and methods

Plant material and growth conditions

We used Dro1-NIL with intermediate RSA, which is a rice

near-isogenic line developed by introducing the functional allele

of DRO1 gene involved in root depth from Kinandang Patong

(Uga et al., 2013). The medium root depth of the DRO1-NIL line

selected was suitable for pot imaging by Open-PET. Rice seeds

were immersed in water with a fungicide for 24 h at 15°C and

pre-germinated in water at 30°C for 2 days. Then, each seed was

sown in a plastic pot (diameter of 97 mm, height of 140 mm)

filled with Profile® Greens Grade™ (PROFILE Products,

Buffalo, Illinois, USA) (Adams et al., 2014) as a soil-like plant

growth substrate. Profile is calcined clay, used as a soil suitable

for root imaging by X-ray CT because it maintains a constant

RSA under both dry and well-watered conditions, and it also

retains sufficient water and nutrients for plant growth (Teramoto

et al., 2020). The rice plant was grown in a custom-made growth

chamber (Nippon Medical & Chemical Instruments, Tennoji-ku,

Osaka, Japan) under a photoperiod of 14 h of light and 10 h of

dark, with a relative humidity (RH) of 50% during the day and RH

of 60% at night (Numajiri et al., 2021). The temperature in the
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growth chamber was set to increase gradually from 25 to 30°C at

the start of the day and to decrease gradually to 25°C toward the

end of the day. At night, the temperature was maintained at 25°C.

The diurnal temperature program was as follows: zeitgeber time

(ZT) 0, 25°C; ZT2, 26°C; ZT3, 27°C; ZT4, 28°C; ZT5, 29°C; ZT6,

30°C; ZT12, 29°C; ZT13, 28°C; ZT14, 27°C; ZT15, 26°C; and

ZT16, 25°C. The light condition in the growth chamber varied

from 250 to 500 mmol m-2 s-1 during the day, following a previous

report (Teramoto et al., 2020). The diurnal light intensity program

was as follows: ZT0, PPFD of 250 mmol m−2 s−1; ZT1, PPFD of 500

mmolm−2 s−1; ZT13, PPFD of 250 mmol m−2 s−1; and ZT14, PPFD

of 0 mmolm−2 s−1.

Figure 1A shows the timing and duration of different soil

water conditions. For the first 14 days after sowing (DAS),

Kimura B hydroponic solution (365.0 mM (NH4)2SO4, 91.0
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mM K2SO4, 547.0 mM MgSO4, 183.0 mM KNO3, 365.0 mM Ca

(NO3)2, 182.0 mM KH2PO4, 4 mg/L FeC6H5O7/nH2O, pH 5.5)

(Yoshida, 1976) was supplied to the plastic pot to a height of

4 cm from the bottom of the pot. The water level of 4 cm allowed

water to be evenly distributed in soil and was an optimized

balance to prevent soil being either flooded or dry. This optimal

soil water content level is referred to as “control water content”

(CW). After 14 DAS, hydroponic solution was withdrawn for

soil to dry until 28 DAS. During this period, plants showed

symptoms of response to drought, i.e., leaf rolling and slower

growth. This drier soil water content is referred to as “low water

content” (LW). CW plants at 28 DAS had significantly higher

shoot and root biomass compared to LW plants at the same stage

(Supplementary Figure S1). CW plants at 23 DAS with similar

root and shoot biomass compared to LW plants 28 DAS were
A

B

FIGURE 1

(A) Timing and duration of soil water conditions with rice plants grown under control water content (CW) and low water content (LW). The black
thick line and black dotted line indicate the cultivation period with water level of 4 cm and 0 cm, respectively. The timing of X-ray CT,
OpenPET/PETIS imaging and photosynthesis rate measurements are also shown. (B) Photograph of 11CO2 gas feeding chamber. Time course of
water level during first, second, and third OpenPET/PETIS imaging are also shown. RW and HW indicate “recover water content” and “high water
content”, respectively. Zero min indicates the start of the lighting period in the growth chamber.
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chosen as control plants to allow for comparison of

photosynthates translocation in similar root biomass.
X-ray CT system

The underground part of rice plant was scanned using the X-

ray CT system inspeXio SMX-225CT FPD HR (Shimadzu

Corporation, Nakagyo-ku, Kyoto, Japan), as previously

reported (Teramoto et al., 2020), on the day before OpenPET

or PETIS experiments. Tube voltages of 225 kV and tube

currents of 500 mA were used. The X-ray source was

positioned at a distance of 366 mm from the test plant and

800 mm from the detector. To harden the X-ray beams, 1.0 mm

copper filter was used. Each CT scan took 10 min. The matrix size

and voxel size of the reconstructed images were 1024 × 1024 × 788

and 0.18 mm × 0.18 mm × 0.18 mm, respectively. The root

segments in the X-ray CT images were visualized using a

combination of median filtering and edge detection algorithms,

in accordance with the RSAvis3D method (Teramoto et al., 2020).

Furthermore, the RSA was vectorized using a tracking algorithm,

and the center of gravity of the root voxels was used to determine

the tracking direction in accordance with the RSAtrace3Dmethod

(Teramoto et al., 2021).
11CO2 tracer production

11CO2 was produced by the
14N(p,a)11C reaction induced by

bombarding pure nitrogen gas with 10MeV protons from an

AVF cyclotron located at Takasaki Ion Accelerators for

Advanced Radiation Application (TIARA), QST, Japan

(Ishioka et al., 1999). The irradiated gas containing nitrogen

gas and 11CO2 was passed through a stainless steel trap (11CO2

trap) immersed in liquid nitrogen, and only the 11CO2 gas was

collected as dry ice in the trap. In this study, approximately 35

MBq of 11CO2 was collected and transferred to the OpenPET

and PETIS imaging experiments.
OpenPET and PETIS imaging

Figure 1B shows the protocol of OpenPET/PETIS imaging.

All the leaves of the rice plant were inserted into an acrylic box

(gas feeding chamber) with an inside dimension of 20 mm

length, 30 mm width, and 300 mm height. The gas feeding

chamber was sealed at the petiole with resin clay (Tak Model

Bloc; Tak Systems Corporation, Osaka, Japan) to prevent leakage

of the fed 11CO2. An air pump was connected to the inlet of the

chamber and ambient air was pumped into the chamber at a

constant rate of 500 mL min-1. A 11CO2 trap was connected in

the middle of the air flow path between the air pump and the gas

feeding chamber. 11CO2 was pushed out of the 11CO2 trap into
Frontiers in Plant Science 04
the chamber to feed leaves. After 5 min of 11CO2 feeding, the
11CO2 trap was disconnected from the air flow path. 11CO2

passed through the chamber within 1 min. The unassimilated
11CO2 by the leaves was collected in soda lime (Soda lime No. 1;

Wako Pure Chemical Industries, Ltd., Osaka, Japan) in an acrylic

tube connected to the outlet of the chamber. The radioactivity of

the soda lime was quantified with a curie meter 10 min after
11CO2 feeding to estimate the amount of 11C fixed by the plant in

each imaging experiment. Then, the plastic pot was set in the

middle of field of view (FOV) (diameter 110 mm, length

145 mm) of the vertically placed OpenPET. The OpenPET has

been demonstrated to visualize and assess the dynamics of

photosynthates translocation to rice roots which develop 3D

throughout the FOV without loss of spatial resolution (Miyoshi

et al., 2021b). The OpenPET measurements, lasting 170 min,

then started, and 11C distribution images were acquired. The

environmental conditions around the plant were set to 500 μmol m-

2 s-1 of light intensity and 30°C of air temperature during imaging

experiments. OpenPET data were reconstructed every 5 min using

the ordered subset expectation maximization (OS–EM) method.

Thematrix size of the reconstructed image was 76 × 76 × 84 and the

voxel size was 1.5 × 1.5 × 1.5 mm. The reconstructed OpenPET

images were corrected for the radioactive decay of 11C

(half-life = 20.39 min).

Partitioning of 11C-labeled photosynthates in rice roots

under LW and CW were imaged by OpenPET. Furthermore,

the translocation of photosynthates to rice roots in response to

changes in the soil water condition from irrigation under LW

was examined. The OpenPET imaging was repeated three times

for each plant sample. After the first OpenPET imaging, the

plant sample was irrigated up to 4 cm from the bottom of the

pot. After 10 min of irrigation, 11CO2 was fed to the leaves and

OpenPET imaging was performed for the second time. After the

second OpenPET imaging, i.e., 4 hours after irrigation, 11CO2

was fed to the leaves and OpenPET imaging was carried out for

the third time. The first, second, and third OpenPET imaging

were defined as LW, “recover water content 0-3 h (RW 0-3 h)”

and “recover water content 4-7 h (RW 4-7 h)”, respectively

(Figure 1B). RW 0-3 h refers to imaging experiments conducted

from 10 min to 3 hours after the start of irrigation. By using

software RSAadjust3D (https://github.com/st707311g/

RSAadjust3D ) to adjust the position of PET and CT images,

the obtained OpenPET images were rescaled and coordinated

with RSA images obtained from RSAtrace3D. Then, the rescaled

and coordinated OpenPET images and RSA images were

superimposed using the open-source software OsiriX (Rosset

et al., 2004).

PETIS was installed in a plant growth chamber so that the

ambient environmental conditions could be controlled during

the experiments. Although PET imaging analysis is performed in

a three-dimensional plane, a wider area can be visualized by

using this system. In this study, the plastic pot with roots was

positioned in the PETIS FOV, which was 119.9 mm wide and
frontiersin.org
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187.0 mm high. All rice leaves were inserted into the gas feeding

chamber. Approximately 35 MBq of 11CO2 was administered to

the leaves, as in the OpenPET imaging protocol. PETIS imaging

started as soon as 11CO2 was injected, and PETIS images were

acquired every 10 s for 180 min.

PETIS imaging was used to analyze the partitioning pattern

of 11C-labeled photosynthates to roots in response to re-

irrigation under LW using the same protocol as the OpenPET

study. Furthermore, the translocation of photosynthates to roots

in response to changes in the soil water condition by flooding

rice plants near the soil surface under CW was analyzed. After

PETIS imaging of photosynthate translocation to roots under

CW, irrigation was applied from the bottom of the plastic pot to

the surface of the soil. After 10 min of flooding, 11CO2 was fed to

the leaves and PETIS imaging was performed for the second

time. After the second PETIS imaging, i.e., 4 hours after the

flooding, 11CO2 was fed to the leaves and PETIS imaging was

carried out for the third time. The first, second, and third PETIS

imaging were named CW, “high water content 0-3h (HW 0-

3 h)” and “high water content 4-7h (HW 4-7 h)” ,

respectively (Figure 1B).
OpenPET/PETIS image data analysis

The translocation of 11C to rice roots was analyzed by setting

the regions of interest (ROIs) around the seminal roots and

crown roots in the OpenPET images. Time-course analyses of
11C radioactivity within each ROI involved the generation of

time-activity curves (TACs) from the signal intensities (counts

per second; cps) obtained using AMIDE (Loening and Gambhir,

2003) and Image J (version 1.50) (National Institutes of Health,

Bethesda, MD, USA; http://rsb.info.nih.gov/ij/ ). All cps values

were corrected for the radioactive decay of 11C and normalized

by the amount of 11C fixed by the plant in each imaging

experiment (i.e., cps/MBq).
Photosynthesis rate during imaging

Time-course changes in the photosynthesis rate under LW,

RW 0-3 h and RW 4-7 h during PETIS imaging were analyzed to

assess the process of recovery from drought stress of rice plant.

CO2 concentration sensors (GMP252, Vaisala Oyj, Helsinki,

Finland) were attached to the air flow paths at the inlet and

outlet of the gas feeding chamber, and the photosynthesis rate of

rice leaves in the chamber during PETIS imaging was calculated

using the following equation.

Pn =  
v

22:4
CO2½ �in− CO2½ �outð Þ

Here Pn is the net photosynthesis rate [mmol plant-1 s-1], v is

the airflow rate passing through the chamber [L s-1], [CO2]in is
Frontiers in Plant Science 05
the CO2 concentration of inflow air [mmol mol-1], [CO2]out is the

CO2 concentration of outflow air [mmol mol-1]. The constant

value of 22.4 corresponds the volume of 1 mol of air [L mol-1].
Results

Root system architecture in soil

X-ray CT imaging visualized the structure of seminal root

growing straight down from the shoot base of the rice plant and

crown roots extending diagonally downward from the base

(Figure 2). At 14 DAS, seminal roots were longer than crown

roots and extended near the bottom of the pot (Figure 2B). At 23

DAS and 28 DAS, the crown roots continued to elongate,

extending along the wall to the bottom of the pot while the

seminal roots slowed down to elongate under both CW and LW

(Figures 2C, D).
Photosynthesis rate of rice leaves during
imaging experiments

During PETIS imaging under LW, the photosynthesis rate of

rice leaves remained at approximately 3 μmol CO2 s
-1 (Figure 3).

During the second imaging under the RW 0-3 h, the

photosynthesis rate was approximately 3 μmol CO2 s-1

immediately after the start of PETIS imaging and increased to

6 μmol CO2 s
-1 by the end of imaging, 3h later. During the third

imaging under the RW 4-7 h, photosynthesis rate remained at

approximately 6 μmol CO2 s
-1.
Visualization of 11C-labeled
photosynthates translocation to roots

The OpenPET-CT imaging was used to visualize in three

dimensions the translocation of 11C-labeled photosynthates

from rice leaves to roots in the soil (Figure 4 and

Supplementary Figure S2). The obtained OpenPET-CT images

showed that 11C-photosynthate partitioning was quickly

responsive to changes in soil water conditions. 11C-

photosynthates actively translocated to the seminal roots and

crown root under LW (Figure 4B). However, under the RW 0-

3 h, 11C-photosynthates translocation to seminal root was barely

confirmed. Instead, they translocated to some crown roots

(Figure 4C). Under the RW 4-7 h condition, translocation of
11C-photosynthates to crown roots was enhanced (Figure 4D).

Under the CW, 11C-photosynthate translocation to the seminal

roots was barely observed, while the active translocation to

crown roots was observed (Figure 4F). 11C-photosynthates

were translocated unevenly to some crown roots, as observed

under the RW 0-3 h and RW 4-7 h.
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FIGURE 3

Time course of the photosynthesis rate of rice leaves during PETIS imaging. Zero hour indicates the start of the lighting period. The light pink
area indicates the first PETIS imaging under the low water content (LW), the light green area indicates the second PETIS imaging under the
recover water content 0-3 h (RW 0-3 h), and the light blue area indicates the third PETIS imaging under the recover water content 4-7 h (RW 4-
7 h). Irrigation started 4 h after the start of the light period.
A B

C D

FIGURE 2

X-ray images of the root system architecture (RSA) of rice plant grown in a plastic pot. (A) Images of rice plant grown in a plastic pot 23 days
after sowing (DAS) under control water content (CW). (B) RSA of rice plant 14 DAS based on 3D reconstructed image obtained from X-ray CT
image. The yellow-, white-colored lines indicate seminal and crown roots, respectively. The x, y, and z axes correspond to the axes shown in
(A). (C) RSA of the rice plant under the CW at 23 DAS. (D) RSA of the rice plant under the low water content (LW) at 28 DAS. This is the same
plant shown in (B).
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PETIS imaging showed similar changes in 11C-photosynthate

translocation in response to soil water conditions (Figure 5A).

Under the LW, translocation of 11C-photosynthates to the root

extending directly down from the base, i.e., the seminar root, was
Frontiers in Plant Science 07
active. Under the RW 0-3 h, translocation of 11C-photosynthates

to seminal roots did not occur, while translocation of 11C-

photosynthates to roots extending obliquely downward from the

base, i.e., crown roots, became active. Under the RW 4-7 h
A B

C

D

E F

FIGURE 4

Fused images obtained from OpenPET imaging experiments and X-ray CT. (A) Photograph of rice plants under drought condition before the
start of OpenPET imaging at 28 DAS. Fused images of the distribution of 11C-photosynthates obtained from OpenPET imaging and root system
architecture (RSA) of plants growing under in (A) obtained from X-ray CT under (B) low water content (LW), (C) recover water content 0-3 h
(RW 0-3 h), and (D) recover water content 4-7 h (RW 4-7 h), viewed from the top of the pot (xy plane), front of the pot (xz plane), and side of
the pot (yz plane). Images obtained from OpenPET imaging experiments under the control water content (CW) are also shown. (E) Photograph
of rice plants under CW at 23 DAS. (F) Fused images obtained from OpenPET and X-ray CT under the CW, viewed from the xy plane, xz plane,
and yz plane. The monochrome images show the RSA, and the color images show the distribution of 11C-photosynthates.
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condition, translocation of 11C-photosynthates to these crown

roots was enhanced. There was also increased 11C-photosynthates

translocation to the roots, which was not observed in RW 0-3 h.

Furthermore, PETIS imaging under the CW followed by plant

flooding confirmed that this change in soil water environment did

not significantly change the patterns of 11C-photosynthates

translocation to the roots (Figure 5B). Under the CW, 11C-

photosynthate translocation to some crown roots was active,

similar to results of OpenPET imaging. Under the HW 0-3 h

and HW 4-7 h, translocation to these crown roots was also active,

while no translocation to other roots was observed. The

experiments shown in Figure 5 were performed on different

plant and the same translocation trend was observed

(Supplementary Figure S3).
Quantitative analysis of 11C-
photosynthates translocation to roots

The TAC obtained from OpenPET imaging under the LW

revealed that 11C-photosynthates translocation to seminal and
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crown roots began approximately 110 min after 11CO2 was fed to

the leaves (Figure 6A). The translocation rate of 11C-

photosynthates was faster in seminal roots than in crown

roots. The normalized radioactivity of 11C-photosynthates at

the end of OpenPET imaging was approximately 2.4 cps/MBq in

the seminal roots and 0.9 cps/MBq in the crown roots

(Figure 6A). Under the RW 0-3 h, translocation to the seminal

roots was not confirmed in the TAC of Figure 6B. Translocation

to the crown roots started approximately 130 min after the

injection of 11CO2. The normalized radioactivity of 11C-

photosynthates translocated throughout the crown roots

during OpenPET imaging was approximately 0.9 cps/MBq

(Figure 6B). Under the RW 4-7 h, 11C-photosuntahte

translocation to crown roots was active. Translocation to the

seminal roots was again detected in the TAC of Figure 6C.

Translocation to the crown and seminal roots started

approximately 105 min and 125 min after the injection of
11CO2, respectively. The normalized radioactivity of 11C-

photosynthate in the seminal and crown roots at the end of

the OpenPET imaging was approximately 0.6 cps/MBq and 3.2

cps/MBq, respectively (Figure 6C). The total normalized 11C
A

B

FIGURE 5

Typical images obtained from PETIS imaging experiments under (A) low water content (LW), recover water content 0-3 h (RW 0-3 h), and
recover water content 4-7 h (RW 4-7 h). Photograph of rice plant before the start of PETIS imaging at 28 DAS is also shown. PETIS images
under (B) control water content (CW), high water content 0-3 h (HW 0-3 h), and high water content 4-7 h (HW 4-7 h). Photograph of rice plant
at 23 DAS is also shown. Fused images show the distribution of 11C-photosynthates obtained from PETIS imaging and the root system
architecture (RSA) obtained from X-ray CT under each treatment viewed from the front of the pot. The monochrome images show the RSA, and
the color images show the distribution of 11C-photosynthates.
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radioactivity of seminal and crown roots was similar in LW and

RW 4-7h (3.3 and 3.8 cps/MBq, respectively).
Discussion

Using the advantage provided by the short half-life of 11C

(20.39 min), which allowed repeated experiments to be

performed on the same plant, we visualized the translocation

of photosynthates to roots during recovery from drought stress
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in the same plant using 11C tracer with OpenPET and X-ray CT.

The OpenPET results were analyzed with reference to the RSA

obtained from X-ray CT, revealing that photosynthates were

unevenly translocated to some roots (Figure 4). This unevenness

may be caused by differences in the ability of each root to

demand photosynthate, i.e., sink strength (Chamont, 1993).

Under the LW, the photosynthates translocation to seminal

root was active, while under the RW, the destination of

photosynthates translocation immediately switched from

seminal root to crown roots. To the best of our knowledge,
A

B

C

FIGURE 6

Time course of 11C radioactivity in the seminal root (red line) and crown roots (blue line) of rice plant using OpenPET experiments shown in
Figure 4 under (A) low water content (LW), (B) recover water content 0-3 h (RW 0-3 h), and (C) recover water content 4-7 h (RW 4-7 h).
Regions of interest (ROIs) of the primary root and crown roots placed on OpenPET images are also shown. ROIs of crown roots does not
include the seminal root.
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this is the first study to discuss the response of each root to

drought stress and its recovery from drought by sorting roots by

structural characteristics, such as seminal root and crown roots.

We found that photosynthate translocation to seminal roots

extending from the base of the rice plant to the deep layers of soil

became active under drought stress. Although some crown roots

developed along the pot wall and reached the same depth as the

seminal roots (Figure 2D), photosynthate translocation to these

crown roots did not occur under drought stress. These results

imply that seminal roots and crown roots at different growth

stages have the different capacity to acquire and retain water,

even though the depth of each root is the same under drought

stress. When the roots were removed from the pot after

OpenPET/PETIS imaging was completed, more lateral roots

were found developing from the seminal roots than from the

crown roots (personal observation). It has been reported that the

plants adapt to heterogeneous water conditions by branching

their lateral roots at water contact points (Bao et al., 2014;

Robbins and Dinneny, 2018). Lateral roots contribute to

increased water absorption and facilitate the extraction of

nutrients essential for plant growth and development (Santos

Teixeira and ten Tusscher, 2019). For this reason, we suggest

that the seminal roots had a high-water absorption efficiency in

our pot condition under the LW. Further physiological

experiments are required to verify this implication, such as

observation of root forms with active photosynthate

translocation depending on the water condition in soil, or

cutting seminal roots and evaluate the translocation dynamics.

In rice plants that recovered from the LW by re-irrigation,

the sink strength of each root was changed. The 11C-

photosynthate translocation to crown roots were more active

than to seminal root (Figures 4B, C, 5A). In contrast, in rice

plants flooded to the soil surface following the CW, the sink of

photosynthates did not change (Figure 5B). These results

indicate that the switching of the photosynthate sink in the

roots of rice plants is triggered by a specific environmental

change, i.e., water added to dry soil. These results imply that,

under drought stress, photosynthates translocate to the lower

roots of rice plants to promote elongation and thus absorption of

water in the deeper roots layers of soil. When more water is

available, rice plants may switch the destination of

photosynthate translocation to the entire crown root, resulting

in absorption of more water and soluble nutrients from a wider

area of the soil. This switching of the photosynthate sink was

observed under RW 0-3 h (Figure 6B), suggesting that switching

is a rapid response to the addition of water. We suggest that rice

adapts to changes in the soil water conditions by switching the

roots to which photosynthates are partitioned. The phenomenon

of switching photosynthate translocation in a short period of

time without changing the source leaves, as in the present study,

has not been reported. To clarify the mechanism of the switch in

photosynthate translocation to the roots due to the soil water

conditions, it is required to analyze gene expression related to
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the translocation, such as sucrose transporters, expressed in the

roots and stem base of the rice plant, and to evaluate

translocation dynamics when water is only supplied to crown

roots, not seminal roots. Recently, it was reported that sucrose

transporters SWEET11 and SWEET12 were phosphorylated in

response to drought stress (Chen et al., 2022). The

phosphorylation enhanced sucrose transport activity which

results in elevated sucrose contents in root and improved root

growth under drought stress conditions (Chen et al., 2022).

These transporters might be involved in the regulation

mechanism of the switch in photosynthate translocation to

the roots.

After addition of water on dry soil, the photosynthesis rate of

rice leaves recovered immediately (Figure 3), whereas

translocation of photosynthates was not immediate and was

detected 120 min after irrigation (Figure 6B). To mitigate

drought stress, plants reduce transpiration and photosynthesis

rate by closing stomata (Yokoyama et al., 2021). The

photosynthesis rate of leaves under drought stress increased

simultaneously with irrigation, indicating that the plant

responded immediately to the soil water status by opening the

leaf stomata. When the photosynthesis rate was still increasing, 11C

radioactivity was observed in crown roots but not seminal roots,

suggesting that photosynthates translocation to seminal roots was

suppressed (Figure 6B). When photosynthesis rate reached a

constant value, the amount of photosynthates translocated to the

seminal root and crown roots increased (Figure 6C). Miyoshi et al.,

2021a and Nakai et al., 2022 suggested that under conditions in

which photosynthates are not sufficiently stored in the leaf, the

loading of photosynthates from the leaf to phloem is inhibited. The

obtained results from present study suggest that at the early

recovery from drought stress did not affect photosynthates

translocation to crown roots but suppressed translocation to

seminal roots, and subsequently, when leaf photosynthesis

stabilized at increased rates, the photosynthates translocation to

roots increased in general. In addition, total radioactivity of 11C-

photosynthates translocated to seminal and crown roots were

almost the same in LW and RW, even though the photosynthesis

rate in LW was about half that in RW, suggesting that sink strength

in the belowground part increases under drought conditions

compared to well-watered conditions.

In this study, under pot condition with drought stress,

photosynthate translocation to the seminal roots extending

deep into the soil became active (Figures 4B, 5A). Using the

rootbox-pinboard method (Kono et al., 1987), which allows two-

dimensional observation of RSA, it was suggested that rice

cultivars with high tolerance to soil water fluctuations, such as

drought stress after waterlogging conditions and subsequent re-

irrigation, efficiently utilized the photosynthates partitioned

from leaves depending on the soil water conditions (Suralta

and Yamauchi, 2008; Wang et al., 2009). It was also reported that

lateral root development was significantly enhanced in the

deeper layers under drought stress (Galamay et al., 1992). Root
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phenotypic plasticity was suggested to play an important role in

rice growth under changing soil changing soil water conditions

(Banoc et al., 2000), however, the mechanism by which the RSA

is altered by the soil water conditions remained unclear. This

study indicated that drought stress alters root development by

modifying the photosynthates translocation to roots, which was

not revealed by morphometric analysis using rootbox-pinboard

method. Henry et al. (2011) reported that a deep root system

enables rice plants growing in water-limited conditions to absorb

water from the soil. It was also reported that under drought

stress, allocation of photosynthates to the root is prioritized to

promote root growth to the deep layers of soil, which contains

sufficient water content, thus increasing the surface area of the

root for water absorption (Eapen et al., 2005; Ryser, 2006;

Hammond and White, 2008; Dietrich et al., 2017; Chen et al.,

2022). This study suggests that the changes in RSA reported by

previous studies are also triggered by changes in translocation

patterns in response to soil water conditions. It also indicates

that the differences among rice cultivars in root phenotypic

plasticity that adapts to changes in the soil water conditions in

the previous study (Banoc et al., 2000) may be due to differences

in the ability of photosynthates translocation to roots found in

this study.
Conclusions

We successful ly visual ized the translocation of

photosynthates in rice plants non-destructively as the plants

recovered from drought stress, using 11C tracers with OpenPET

and X-ray CT. We found that under drought stress,

photosynthates translocated to the seminal roots, and when

water was added to the dry soil, the photosynthate sink

immediately switched from the seminal root to the crown

roots. The results of this study indicates that a comprehensive

analysis of not only the aboveground parts of plants, but also the

underground parts is important to understand plant responses

to drought stress. The combined OpenPET/PETIS and X-ray CT

technique used in this study will be useful in elucidating the

mechanisms implemented by plants to adapt not only to drought

conditions but also to other environmental changes.
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