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Tissue culture coupled with a
gas exchange system offers new
perspectives on phenotyping
the developmental biology of
Solanum lycopersicum L. cv.
‘MicroTom’

Marco Pepe*, Telesphore R. J. G. Marie,
Evangelos D. Leonardos, Mohsen Hesami, Naheed Rana,
Andrew Maxwell Phineas Jones and Bernard Grodzinski

Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
Solanum lycopersicum L. cv. ‘Microtom’ (MicroTom) is amodel organismwith a

relatively rapid life cycle, and wide library of genetic mutants available to study

different aspects of plant development. Despite its small stature, conventional

MicroTom research often requires expensive growth cabinets and/or expansive

greenhouse space, limiting the number of experimental and control

replications needed for experiments, and can render plants susceptible to

pests and disease. Thus, alternative experimental approaches must be devised

to reduce the footprint of experimental units and limit the occurrence

problematic confounding variables. Here, tissue culture is presented as a

powerful option for MicroTom research that can quell the complications

associated with conventional MicroTom research methods. A previously

established, non-invasive, analytical tissue culture system is used to compare

in vitro and conventionally produced MicroTom by assessing photosynthesis,

respiration, diurnal carbon gain, and fruit pigments. To our knowledge, this is

the first publication that measures in vitro MicroTom fruit pigments and

compares diurnal photosynthetic/respiration responses to abiotic factors

between in vitro and ex vitro MicroTom. Comparable trends would validate

tissue culture as a new benchmark method in MicroTom research, as it is like

Arabidopsis, allowing replicable, statistically valid, high throughput genotyping

and selective phenotyping experiments. Combining the model plant MicroTom

with advanced tissue culture methods makes it possible to study bonsai-style

MicroTom responses to light, temperature, and atmospheric stimuli in the

absence of confounding abiotic stress factors that would otherwise be

unachievable using conventional methods.
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Introduction

Solanum lycopersicum L. cv. ‘Microtom’ (MicroTom) is a

miniature, herbaceous tomato cultivar, with a relatively rapid life

cycle from seed germination to seed set. Like Arabidopsis,

MicroTom is a model organism with a well annotated genome

and extensive mutant seedbank for studying plant-pathogen

interactions (Takahashi et al., 2005) as well as genetic (Dan

et al., 2006), molecular (Park et al., 2007), and physiological

(Vitale et al., 2022) aspects of vegetative growth, flowering, and

fruiting stages of the plant’s life cycle. Despite the miniature

growth form of this cultivar, MicroTom experiments often rely

on conventional cultivation methods that require expansive bench

space and/or expensive growth cabinets to create replicated

environments. These requirements limit the number of

practically achievable experimental units, compromising

experimental design and statistical analysis. Additionally, using

conventional controlled systems runs the risk of exposing plants

to undesired pests and disease (Arie et al., 2007) that can

jeopardize successful rearing and study of sensitive mutants,

selected specimens, and bioengineered lines. These potential

limitations necessitate alternative investigational approaches that

reduce the footprint of experimental units needed to obtain

reliable data and curb the occurrence confounding variables.

Tissue culture offers an ideal option to manage the

complications associated with traditional MicroTom research

techniques. This approach allows plants to be produced in a

highly controlled axenic environment, in the absence of

confounding biotic and abiotic stress factors, while

maintaining specific light, temperature and atmospheric

stimuli to study complex plant dynamics with a high level of

control and replicability (Monthony et al., 2021; Pepe et al.,

2021; Pepe et al., 2022). By combining the model MicroTom

with tissue culture gas exchange techniques, it is possible to

comprehensively study bonsai-style MicroTom responses to

light, temperature, and atmospheric stimuli at every

developmental stage. Comparing photosynthetic and

respiratory responses and fruit pigment profiles of tissue

culture and conventionally grown MicroTom is a necessary

preliminary step in devising dynamic research methods to

overcome the associated setbacks of traditional systems.

Similar trends observed between in vitro and ex vitro

MicroTom would validate tissue culture as a new benchmark

method in MicroTom research for narrowing down

multifactorial treatment combinations before scaling up to

commercial experiments.

Here, a previously established, non-invasive, analytical tissue

culture system (Pepe et al., 2022) was used to compare in vitro

and cabinet -produced MicroTom, both grown under their

respective normal conditions and practices, by assessing

photosynthesis and respiration at two different light intensities

(acclimated and doubled) for a diurnal 48-hr period.
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Additionally, tissue culture produced MicroTom fruit

pigments are measured for the first time. Ultimately, the

preliminary data presented involving MicroTom fruit

pigments and comparing in vitro and ex vitro MicroTom

metabolism paves the way for an alternate system to easily

assess plant development, from seed germination to

fruit production.

Whole plant(let) gas exchange is a
powerful phenotyping platform

The majority of plant dry weight is comprised of carbon,

hydrogen, and oxygen, much of which is assimilated from the

atmosphere. By assessing CO2 exchange rates throughout daytime

photosynthetic and nighttime respiratory periods, growth

dynamics of biological plant systems can be assessed (Dutton

et al., 1988; Leonardos and Grodzinski, 2016). These techniques

can also be used to evaluate in vitro plants, since the tissue culture

micro-environment confers significant influence over plantlet

growth and development (Walli et al., 2019). Comparing gas

exchange between tissue culture plantlets (Figures 1A, B) and

cabinet grown plants (Figures 1C, D) in response to experimental

conditions allows for modeling similar photosynthesis and

respiration trends, validating the in vitro MicroTom system as a

parallel or alternative experimental platform.

Gas exchange data shows similar trends between in vitro and

ex vitro specimens, with net carbon exchange rates (NCER)

remaining steady throughout differential light and dark periods.

Positive NCER, representing net photosynthesis (Pn), increased

in response to higher light intensities and showed a higher

negative NCER, representing dark respiration (Rd), during

dark periods in response to the previous photoperiod’s light

intensity increase (Figures 1E, F).
Similar trends in photosynthetic
responses to a doubling of light
intensity

Pn of growth cabinet plants were 4.04 times higher than

tissue culture counterparts at their respective acclimated light

intensities of 200 µmol m-2 s-1 and 50 µmol m-2 s-1

photosynthetic photon flux density (PPFD), which also differ

by a factor of 4 (Figures 1E, F). When light intensities were

doubled to 100 µmol m-2 s-1 in vitro and 400 µmol m-2 s-1 ex

vitro, Pn increase was 3.54 times different between counterpart

plants (Figures 1E, F). Cultured plant Pn increased by a factor of

roughly 1.91 (Figure 1E), while growth cabinet plant Pn

increased roughly by a factor of 1.58 (Figure 1F). These are

similar trends, and the discrepancies may be attributed to

different physiological differences such as differing light
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intensity acclimation, which can be elucidated with future

light curves.

Throughout their development, growth cabinet plants would

have been exposed to [CO2] in a similar range to that tested

during experimentation, whereas [CO2] in “sealed” tissue culture

vessels regularly fluctuate and are largely dictated by CO2

evolution during darkness and CO2 assimilation during light

periods (Morini and Melai, 2005), leading to low [CO2] during

the photoperiod. This would perhaps allow the experimental

[CO2] of 400 ppm to act as augmented [CO2] for in vitro plants

relative to what they would normally experience. Thus, this

experiment should be repeated with in ventilated culture vessels

or using forced air CO2 supplementation.

Additionally, the slight relative difference in Pn could be due

to differences in mutual canopy shading, which can reduce the

amount of light available to leaves in different layers of the

canopy (Song et al., 2016). Larger and more developed canopies

of ex vitro plants compared to in vitro plantlets (Figures 1A, C)

may have restricted leaf interception and absorbance of light,

decreasing optimal use of available irradiance. Although the

aforementioned factors may have contributed to moderate
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differences in relative Pn between tissue culture and cabinet

grown MicroTom, the response patterns were similar overall. Pn

of both treatments still increased at similar rates when irradiance

was doubled, with rates remaining steady throughout each light

treatment. These Pn responses indicate the power of the tissue

culture MicroTom system to model light influence that would

remain relevant for conventional production practices.
Similar trends in dark respiration
with notable differences

Rd of both cabinet grown plants (Figure 1F) and tissue culture

plantlets (Figure 1E) were higher during the second dark period

following higher intensity light treatments compared to the first dark

period at the acclimated light intensity. This is indicated by

differences in Rd (Figures 1E, F), though difficult to see with the

cabinet grown plants due to scale bar values that span positive and

negative NCER for the whole 2 day period (Figure 1F). Additionally,

tissue culture plantlets showed an increase in Rd toward the end of

the second dark period (Figure 1E) and had proportionally higher
FIGURE 1

Comparing tissue culture and conventional whole-plant systems. Shown are (A) tissue culture MicroTom grown from seed; (B) in vitro
MicroTom connected to the non-invasive tissue culture gas exchange system using the methods presented by Pepe et al. (2022) and Leonardos
and Grodzinski (2014); (C) 8-week old MicroTom grown with potting soil in growth cabinets; (D) potted MicroTom in whole-plant gas-
exchange system (see Leonardos and Grodzinski, 2016) equipped with white-red LED fixtures (Lighting Science Group Company, RI, USA);
(E) tissue culture NCER and carbon gain; and (F) cabinet grown plant NCER and carbon gain. Error bars represent means and standard errors of
four replicates.
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Rd than those of cabinet grown plants (Figures 1E, F). The Rd of the

tissue culture plants were about 59% of the Pn on day 1 and about

40% on day 2. In comparison, the Rd of the growth cabinet plants

were 23% and 17% of Pn on day 1 and 2, respectively. These

observations are mainly due to differences in light intensities of the

two treatments, which delivered different Pn rates, but also can

impact subsequent Rd activity. The Rd rates of the cabinet plants

were higher than those of the tissue culture plants as shown in

Figures 1E, F. However, rather than expressing Rd on a leaf area

basis, a more appropriate way to express Rd and to represent sink

activity is to analyze the data on a dry weigh basis, which showed

that tissue culture plants had approximately 1.5 times higher Rd

than cabinet plants on either night (data not shown).
The question of media sucrose
effects on photosynthesis and
respiration

Another area that needs further research is the discernment of

supplemental sucrose effects on Pn and Rd. It is standard practice

to add sucrose to the tissue culture media (Gago et al., 2014).

While sucrose is important to maintain cultured plantlet growth

(Rocha et al., 2013), it has been reported to obstruct

photosynthesis (Rybczyński et al., 2007). However, previous

research has shown that CO2 is still a limiting factor if sucrose

is in the media under increasing light intensity, meaning that

sucrose does not inhibit additional CO2 uptake or it is minimal if it

does (Pepe et al., 2022).What’s different in the present study, is the

diurnal measurement of Pn and subsequent Rd and their

responses to a light intensity increase. Accumulation of

photosynthates in leaves occurs when photosynthesis exceed

sink capacity (Norikane et al., 2010) which was likely the case in

both of the in vitro and ex vitro plants. This can be amplified in

vitro by the presence of exogenous sucrose (Lembrechts et al.,

2017). Media sucrose directly impacts plant tissue carbohydrate

accumulation, which can result in augmented Rd throughout dark

periods (Kozai et al., 2005). Leaf carbohydrate sequestration from

media sucrose, along with the increased Pn of the previous high

irradiance period, may have mutually contributed to the

increasing Rd values of the in vitro plantlets especially toward

the end of the second dark cycle (Figure 1E). Another interesting

hypothesis is a possible circadian influenced increase in respiration

in the few hours preceding dawn, that may discriminate between

media derived sucrose and photosynthetic derived sucrose. This

hypothesis is suggested as there seems to be pre-dawn NCER

patterns when plants are grown under robust circadian entraining

LED recipes (Marie et al., 2022). Although there are differences in

sink activity and the presence of tissue culture media sucrose

might have contributed to moderate proportional differences in

Rd, informative trends are still observed among tissue cultured

and cabinet -grown specimens that open new research directions.
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Carbon gain and loss patterns for
non-destructive biomass
accumulation

Carbon gain and losses reflect diurnal photosynthesis and

respiration in plants (Jiao et al., 1991), which is evident in the

data presented (Figures 1E, F), demonstrating the ability of either

system to measure biomass accumulation non-destructively. In

accordance with light intensity and Pn differing by a factor of 4.05

during the first illuminated period (Figures 1E, F), carbon gain

during this period also differed by a factor of 4.10 between

counterpart plants (Figures 1E, F). The relative differential

increase of carbon gain was approximately 3.40 times during the

high irradiance cycle (second light period between tissue culture

and cabinet plants) (Figures 1E, F). At the end of the experiment,

total carbon gain was 5.49 times higher in cabinet grown plants

than in tissue culture plants (Figures 1E, F), which is a another

reflection of the lower Pn and higher relative Rd of the tissue

culture plants. Carbon gain trends almost directly reflect NCER

trends, as they should, indicating that both tissue culture and whole

plant gas exchange systems are functioning properly. This also

shows that the tissue culture gas exchange system developed in our

laboratory is a highly accurate approach capable of quantifying

NCER and carbon gain of cultured plantlets.
MicroTom fruit pigments are normal
in tissue culture

A significant area of focus in the field of tomato production

is yield and fruit quality in response to light (Vitale et al., 2022).

Since major categories of secondary plant metabolites are

present in tomato fruit (Li et al., 2020), the rapid cycling

MicroTom is an ideal candidate to study fruit quality in

response to different abiotic factors. Although light quality can

significantly impact the nutritional value of growth chamber

produced MicroTom fruit by increasing antioxidant levels

(Vitale et al., 2022), it is unknown if the secondary metabolite

activities of in vitro MicroTom fruit mimic their ex vitro

counterparts. This represents an important area of focus for

fruit production and quality in response to light, and a research

area perfectly suited for the tissue culture approach. Accounts of

tissue culture fruiting are relatively rare (Bodhipadma and

Leung, 2003), but have been reported in several species. Fruit

production in vitro has only been evaluated in a limited selection

of plants such as Capsicum sp. (Tisserat and Galletta, 1995;

Bodhipadma and Leung, 2003), Pisum sativum L. (Franklin

et al., 2000), and non-MicroTom tomatoes (Sheeja and

Mandal, 2003; Mamidala and Swamy Nanna, 2009; Savitri and

Hardjo, 2019). However, only few in depth analyses of fruit

development have been conducted. To our knowledge, this work
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is the first to report metabolite/pigment profiles of tissue culture

produced MicroTom fruit (Figures 2A, B).

Results show that MicroTom can produce fruit in vitro

(Figure 2A), which is not observed in all plants. Lycopene

content of unripen fruit ranged from 1.67 – 12.49 µg g-1 dry

weight, ripening fruit from 642.99 – 1748.41 µg g-1 dry weight,

and fully ripe fruit from 1726.79 – 2029.67 µg g-1 dry weight

(Figure 2B). Lycopene values are within reasonably similar

ranges to those reported in previous tomato studies (Baranska

et al., 2006; Mendelová et al., 2013; Coyago-Cruz et al., 2018;

Aono et al., 2021). Total carotenoids of in vitro MicroTom fruit

ranged from 21.72 – 54.88 µg g-1 dry before ripening, 1027.38 –

2637.85 µg g-1 dry weight during ripening, and from 2478.29 –

2918.67 µg g-1 dry weight when fully ripe (Figure 2B). These

values are also in the ranges of those reported in previous tomato

studies (Suzuki et al., 2015; Coyago-Cruz et al., 2018; Aono et al.,

2021). Lycopene is considered the major of carotenoid produced

by red tomatoes (Palmitessa et al., 2021). Photo-selective

shading can increase lycopene content while reducing b-
carotene of field tomatoes (Ilić et al., 2012a; Ilić et al., 2012b)

Supplementation with red and blue light can also promote

tomato lycopene synthesis (Palmitessa et al., 2021). The in

vitro MicroTom produced with low intensity polychromatic

LEDs appear to follow these trends (Figures 2A, B). Ethylene

plays a central role in controlling fruit ripening and carotenoid

synthesis, by which ethylene insensitivity results in fruit with low

amounts of b-carotene and lycopene (Télef et al., 2006). On this

note, high concentrations of ethylene can accumulate in culture

vessels (Biddington, 1992), perhaps leading to increased

lycopene concentrations, a factor to consider for follow-up

experiments. Additionally, Télef et al. (2006) found that a

reduction in exogenous sucrose delayed the accumulation of

phytoene and lycopene, with no effect on b-carotene in ripening

in vitro tomato pericarp discs (Télef et al., 2006), yet another
Frontiers in Plant Science 05
aspect for future study. Despite in vitro production, fruit

ripening process appears to be largely normal (Figures 2A, B).

Since this was not a side-by-side, controlled comparison,

additional experiments must be completed to tackle any

differences in genetic backgrounds and analytical methods to

validate the similarities observed. Ultimately, these findings

represent the first accounts of in vitro MicroTom fruit

pigments and the featured similarities to ex vitro tomato fruit

show promising support for the presented perspective.
Parthenocarpic fruiting of MicroTom
in tissue culture

An additional observation relating to in vitro MicroTom

fruit (Figure 2A) is their lack of seeds. Harvested fruits produced

no seeds, bringing the fertility of these specimens into question.

The flowers were not intentionally pollinated, and there was no

wind movement in the vessels to promote pollination. Tomato

flowers can self-pollinate, and even without wind it is likely that

some pollen could have fallen on stigmas. However, even

immature seeds were absent. In the future, hand-pollination

could determine the viability of pollen and receptivity of stigma

in vitro. Nevertheless, different combinations of auxin,

cytokinins, and gibberellins can promote fertilization-

independent fruit induction in certain plants, like tomato

(Pandolfini, 2009). Auxin and gibberellins are central factors

affecting parthenocarpic tomato development (Gorguet et al.,

2005). It has been suggested that pollination and fertilization

-related signals can be induced with exogenous applications of

auxin, and up-stream initiation of auxin-induced fruiting can be

facilitated with gibberellin treatments (Pandolfini, 2009). In

practice, concurrent application of GA3 and 2,4-D to

greenhouse MicroTom allows development of parthenocarpic
FIGURE 2

Production and analysis of in vitro MicroTom fruit. Indicated are (A) example of in vitro MicroTom fruit production system, and (B) tissue culture
produced MicroTom metabolite profiles.
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fruit (Serrani et al., 2007). Although there were no exogenous

plant growth regulators used in the current work, different

environmental cues of in vitro systems can facilitate

redistribution of internal phytohormone concentrations (Pepe

et al., 2021), perhaps leading to seedless fruit development.

Alternatively, ethylene impacts auxin action in promoting

par thenocarpy , a l though a reduct ion in ethy lene

responsiveness generally results in parthenocarpic fruit (Lin

et al., 2008; Martıńez et al., 2013; Shinozaki et al., 2018). Thus,

ethylene was likely not a principal factor here, since ethylene

accumulation is a common occurrence in vitro (Biddington,

1992). Considering these factors, the availability of hormone-

insensitive MicroTom mutants, along with the simplicity at

which growth regulators can be added to tissue culture media

identifies in vitro production of MicroTom as an ideal platform

to study hormonal influences on fruit development.
Conclusion

The presented perspective is to merge the model organism,

MicroTom, with an in vitro system to create a powerful planform

for modeling plant growth and developmental in response to

highly controllable abiotic conditions, in the absence of

confounding variables. As a phenotyping tool, this marriage of

a model plant, in tissue culture, using gas-exchange techniques

makes it possible to narrow down composite treatments before

they are replicated on a larger scale using conventional systems.

While further validation studies are needed, similar trends among

in vitro and ex vitro MicroTom responses reported here endorse

the use of tissue culture to model abiotic conditioning and stress

responses. Additionally, the extensive gene bank of MicroTom

mutants available gives higher value to the tissue culture system

for creating more powerful genotyping and pathway mapping

experiments. Since this study focuses on directly comparing in

vitro methods to growth chamber methods, it was necessary to

include sucrose as a standard tissue culture media component.

Thus, these experiments must be repeated without exogenous

carbohydrates, to quantify potential differences between in vitro

and growth chamber methods. The similarities between in vitro

ex vitro fruit and discrepancies related seed development further

indicate the need for additional experiments of this nature. By

improving and employing in vitro MicroTom techniques, it is

possible to execute replicable, statistically valid, high throughput

genotyping and dynamic phenotyping experiments, with major

relevance for follow-up field and greenhouse studies.
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