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The mutualistic relationship between mycorrhizal fungi and plant roots is a

widespread terrestrial symbiosis. The symbiosis enables plants to better adapt

to adverse soil conditions, enhances plant tolerance to abiotic and biotic

stresses, and improves plant establishment and growth. Thus, mycorrhizal

fungi are considered biostimulants. Among the four most common types of

mycorrhizae, arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) have been

more intensively studied than ericoid mycorrhiza (ErM) and orchidaceous

mycorrhiza (OrM). ErM fungi can form symbiotic relationships with plants in

the family Ericaceae. Economically important plants in this family include

blueberry, bilberry, cranberry, and rhododendron. ErM fungi are versatile as

they are both saprotrophic and biotrophic. Increasing reports have shown that

they can degrade soil organic matter, resulting in the bioavailability of nutrients

for plants and microbes. ErM fungi can synthesize hormones to improve fungal

establishment and plant root initiation and growth. ErM colonization enables

plants to effective acquisition of mineral nutrients. Colonized plants are able to

tolerate different abiotic stresses, including drought, heavy metals, and soil

salinity as well as biotic stresses, such as pathogen infections. This article is

intended to briefly introduce ErM fungi and document their beneficial effects

on ericaceous plants. It is anticipated that the exploration of this special group

of fungi will further improve our understanding of their value of symbiosis to

ericaceous plants and ultimately result in the application of valuable species or

strains for improving the establishment and growth of ericaceous plants.
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biostimulants, blueberry, ericaceous plants, ericoid mycorrhiza, Oidiodendron maius,
rhododendron
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Introduction

Plant biostimulants are referred to as natural-occurring or

synthetic substances, which when applied to soil, seeds, and/or

plants, can promote plant growth. There are several definitions

for plant biostimulants. du Jardin (2015) defined “a plant

biostimulant is any substance or microorganism applied to

plants with the aim to enhance nutrition efficiency, abiotic

stress tolerance and/or crop quality traits, regardless of its

nutrient content”. Yakhin et al. (2017) proposed that a

biostimulant is “a formulated product of biological origin that

improves plant productivity as a consequence of the novel or

emergent properties of the complex of constituents, and not as a

sole consequence of the presence of known essential plant

nutrients, plant growth regulators, or plant protective

compounds.” Under the new regulation of the European

Union (EU, 2019), “a plant biostimulant shall be an EU

fertilizing product, the function of which is to stimulate plant

nutrition processes independently of the product’s nutrient

content with the sole aim of improving one or more of the

following characteristics of the plant or the plant rhizosphere: (1)

nutrient use efficiency, (2) tolerance to abiotic stress, (3) quality

traits, or (4) availability of confined nutrients in the soil or

rhizosphere”. To be more explicit, plant biostimulants are

products that can improve plant growth.

Biostimulants are derived from a wide range of biological

and inorganic materials (Calvo et al., 2014) and have been

classified into seven categories (du Jardin, 2015): (1) humic

and fulvic acids or humic substances, which are a group of

heterogeneous, highly acidic compounds resulting from the

decomposition of soil animal, microbial, and plant residues;

(2) protein hydrolysate and other nitrogen (N)-containing

compounds, referring to a mixture of amino acids and

peptides obtained through enzymatic and chemical hydrolyses

of animal wastes and plant residues; (3) seaweed extracts and

botanicals, which are derived from seaweed or plants with

biostimulant activities; (4) chitosan and other biopolymers,

this includes biodegradable and biocompatible poly- and

oligomers produced from natural produces; (5) inorganic

compounds, mainly referring to beneficial elements, such as

silicon, titanium, sodium, selenium, iodine, and aluminum (Al);

(6) beneficial fungi, which include those either associated,

endophytic or symbiotic with plants that possess biostimulant

activities; and (7) beneficial bacteria, also referring to associated,

endophytic, or symbiotic bacteria promoting plant growth.

Based on the above classifications, biostimulants could be

broadly divided into non-microbial and microbial plant

biostimulants (Rouphael and Colla, 2020). It was estimated

that biostimulant products could grow to $2 billion in sales in

2018 (Calvo et al., 2014). More than 700 scientific papers on

biostimulants had been published from 2009 to 2019 (Rouphael

and Colla, 2020), indicating an increasing awareness of their

importance to crop production.
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Beneficial fungi include Trichoderma species, mycorrhizal

fungi, yeasts, endophytes, and avirulent/hypovirulent strains of

some pathogens (Ghorbanpour et al., 2018). Mycorrhizal fungi

are a heterogeneous group of taxa that can establish symbiotic

relationships with roots of most terrestrial plants, promoting

plant acquisition of nutrients in exchange for carbon sources

derived from photosynthesis (Addy et al., 2005; Bonfante and

Genre, 2010; Leopold, 2016). Mycorrhizas are traditionally

grouped into arbuscular mycorrhiza (AM), ericoid mycorrhiza

(ErM), ectomycorrhiza (EcM), and orchidaceous mycorrhiza

(OrM) (Pandey et al., 2019; Miyauchi et al., 2020). AMs are

considered the most widespread symbiotic association as 80-

90% of terrestrial plants can be colonized by this group of fungi

(Gianinazzi et al., 2010). The beneficial effects of AMs on plants

are known to be most noticeable when symbiotic relationships

are established at the earliest stage of plant growth (Niemi et al.,

2004). AM fungi have been reported as biostimulants (Xavier

and Boyetchko, 2002; Rouphael et al., 2015), natural

biofertilizers (Berruti et al., 2016), and plant growth regulators

(Begum et al., 2019). However, ErM fungi as biostimulants have

not been reported. An ErM is referred to as a symbiotic complex

of plant roots and fungal components. ErM fungi represent a

unique group of fungi that can symbolize with plants in the

family Ericaceae or heather family and play vital roles for plants

in adapting harsh growing environments (Read, 1996); however,

ErM has been the least studied, and the least understood

mycorrhizal symbiosis (Vohnıḱ, 2020).

This article is intended to briefly introduce ErM fungi and

review available literature related to ErM fungi in

biosynthesizing bioactive compounds, promoting plant growth,

and improving plant tolerance and resilience to abiotic and

biotic stresses. Our review indicates that ErM fungi are valuable

biostimulants that can synthesize bioactive compounds,

including plant growth regulators, promote seed germination

and rooting of cuttings, improve plant tolerance to heavy metals,

drought, and soil salinity, and resistance to plant diseases, and

enhance the growth of ericaceous plants (Figure 1).
Ericoid mycorrhizal fungi

Ericoid mycorrhizal fungi largely belong to Ascomyceta and

Basidiomycota (Perotto et al., 2018; Fehrer et al., 2019; Vohnıḱ,

2020). The most important ErM fungi in Ascomyceta include

the Hyaloscypha hepaticicola aggregate, formerly known as the

Rhizoscyphus ericae aggregate or Hymenoscyphus ericae

aggregate (Fehrer et al., 2019), which include H. hepaticicola,

possibly Hyaloscypha variabilis (syn. Meliniomyces variabilis) as

well as Oidiodendon maius and Leohumicola spp (Vohnıḱ,

2020). H. hepaticicola was actually the first experimentally

confirmed ErM species (Pearson and Read, 1973). O. maius

was initially isolated by Barron (1962) from peat soils collected

in Canada and subsequently from ericaceous plant roots in
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Japan (Tokumasu, 1973). Later, O. maius was identified from

other plant roots and decayed organic materials, peat, and acidic

soils (Rice and Currah, 2005; Rice and Currah, 2006).

Leohumicola species are another group of ErM fungi, which

have a remarkable tolerance to high temperatures (Adeoyo et al.,

2018; Adeoyo et al., 2019).

The basidiomycetous ErM fungi are composed of sebacinoid

fungi fromSerendipitaceae (Vohnıḱ et al., 2016) and non-sebacinoid

fungi (Koları̌ḱ and Vohnıḱ, 2018) as well as those from the Kurtia

argillacea species complex (syn. Hyphodontia argillaceum,

Hyphoderma argillaceum) (Vohnıḱ, 2020). With increasing

exploitation of ErM fungi worldwide, more ericoid mycorrhizal

fungi have been reported. For instance, two ascomycetous genera:

Cairneyella (Midgley et al., 2016) and Gamarada (Midgley et al.,

2018) were found to be ErM fungi in Australia.

Ericoid mycorrhizal fungi are able to colonize roots of

ericaceous plants. The fungi initially grow on the surface of

hair roots, establishing loose hyphal networks. Hyphae then

penetrate cortical cell walls to form intracellular densely packed

individual cells, which is known as coils (Vohnıḱ et al., 2012).

Thus, ericoid mycorrhiza has structurally well-defined
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endomycorrhiza that are distinctly different from the other

mycorrhizae due to the formation of fine compact intracellular

hyphal coils in the rhizodermal cells of hair roots. The coil is the

site for transferring nutrients absorbed by ErM fungi from the

soil to root cells and carbohydrates fixed by plant photosynthesis

to fungi. The hyphal sheaths or mantles around healthy hair

roots are somewhat similar to those occurring in some EcM

(Vohnıḱ, 2020). It was observed that both cell-to-cell (between

neighboring rhizodermal cells) and single cell (from soil to

individual rhizodermal cells) hyphal colonization happened in

the rhizodermis of ErM-colonized hair roots (Massicotte et al.,

2005; Vohnıḱ, 2020).

Interestingly, a recent study showed that ErM fungi,

specifically those in the genus Hyaloscypha can colonize not

only roots, but also stems, leaves, and flowers of Vaccinium

myrtillus (Daghino et al., 2022). The colonization of the above-

ground organs is explained by the evolutionary closeness

between the genus Hyaloscypha and non-mycorrhizal fungal

endophytes based on the genomic similarity. However, it is

unknown at present what role Hyaloscypha plays in the aerial

plant organs of ericaceous plants.
FIGURE 1

A schematic illustration of ericoid mycorrhizal fungi in establishment of the symbiotic relationship with an ericaceous plant (blueberry) and
production bioactive compounds, which result in the improved seed germination and rooting of cuttings, and the symbiosis also enhances plant
tolerance to different abiotic stresses and resistance to pathogen infections and promotes plant growth.
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Ericaceous plants and their
growing conditions

The family Ericaceae has about 4,500 species across 125

genera, which are either herbs, dwarf shrubs, shrubs, or trees that

are distributed in tundra, heathland, and understory of boreal

forests in the Northern Hemisphere (Luteyn, 2002; Grelet et al.,

2009). Economically important ericaceous plants include

Rhododendron L., blueberry (Vaccinium sect. Cyanococcus

Rydb. spp.), bilberry (Vaccinium myrtillus L.), cranberry

(Vaccinium subg. Oxycoccus (Hill) A. Gray spp.), and

huckleberry (Vaccinium parvifolium sm.). Plants in the genus

Rododendron are popular ornamental plants. There are more

than 28,000 cultivars of Rhododendron (12,989 azaleas, 14,298

rhododendron, and 108 azaleodendrons hybrids) in the

International Rhododendron Registry held by the Royal

Hort icul tura l Society (Les l ie , 2002) . Addit ional ly ,

rhododendron plants are important ethnopharmacological and

toxicological plants (Popescu and Kopp, 2013; Wei et al., 2018).

On the other hand, the berries, such as blueberry and cranberry

have high nutraceutical and pharmaceutical value and are

considered super fruit (Whyte and Williams, 2015; Vendrame

et al., 2016). Blueberry varieties include lowbush, southern

highbush, northern highbush, half-high, and rabbiteye. Among

them, the production of highbush varieties increased

substantially from 58,400 ha in 2007 to 110,800 ha in 2014.

North America accounted for more than 50% of the production

area, representing about 60% of highbush blueberry production

in the world in 2014 (Qiu et al., 2018).

Ericaceous plants have some unique characteristics: (1)

Roots are fibrous, very fine multicellular roots ranging from

100 to 750 mm in diameter, and cortical cells never form root

hairs. Instead, roots of ericaceous plants are known as hair roots

(Watkinson, 2016). Roots are mainly distributed in the upper

5 cm of soil depth, representing more than 50% of new roots
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produced during a growing season (Atucha et al., 2020). Root

growth of cranberry exhibited a unimodal curve with one

significant flush at bloom and a peak at the end of fruit

maturation. (2) They are able to grow in soils low in pH (4 to

5) and poor in nutrient availability. Under such a pH range,

nitrification could be largely negligible due to its detrimental

effect on the nitrifying bacteria (Paul and Clark, 1989). It was

proposed that ericaceous plants grown in the low pH soil might

lose their ability to take up nitrate (NO3
-). (3) Roots are

colonized by mycorrhizal fungi, mainly ErM fungi (Xiao and

Berch, 1992; Usuki et al., 2003; Vohnıḱ et al., 2007; Tian et al.,

2011). Root cortex and epidermis could be fully filled with

mycorrhizal hyphal coils (Atucha et al., 2020). The

colonization plays a critical role for ericaceous plants to absorb

nutrients including NO3
-. Cranberry roots inoculated with

R. ericae were able to absorb NO3
- under a low pH regime

(Kosola et al., 2007). Accumulating evidence has indicated

that the symbiosis established between roots and ErM fungi is

essential for ericaceous plants to absorb nutrients and to survive

and grow in the harsh environment (Read, 1996; Cairney and

Meharg, 2003; Zhang et al., 2009; Perotto et al., 2012).
Ericoid mycorrhizal fungi
promote seed germination
and rooting of cuttings

Ericoid mycorrhizal fungi have been shown to improve seed

germination and rooting of microcuttings or stem cuttings of

ericaceous plants (Table 1). Seeds of ericaceous plants are small

with an average length of 1.5 mm and a mean width of 0.5 mm,

and they generally have a poor germination rate due to the

limited supply of nutrition from the endosperm. In a mesocosm

study conducted for determining if novel ErM communities

could assist or hamper the shift of northward species of
TABLE 1 Ericoid mycorrhizal fungi improve seed germination and rooting of cuttings.

Fungal species Host plant species Observed responses References

Hymenoscyphus ericae and Pezizella
ericae

Rhododendron minus and Rhododendron
chapmanii

Increased survival rates and subsequent growth Barnes and Johnson, 1986

Hymenoscyphus ericae Vaccinium corymbosum and Calluna
vulgaris

Increased plantlet growth Berta and Gianinazzi-
Pearson, 1986

Hymenoscyphus ericae Pieris floribunda Stimulated microcutting growth in vitro Starrett et al., 2001

Oidiodendron griseum and
Hymenoscyphus ericae

Leucothoe fontanesiana Increased root initiation and root growth of
cuttings

Scagel, 2005b

Oidiodendron maius Vaccinium virgatum Two strains differentially altered root morphology
cuttings

Baba et al., 2021a

Oidiodendron maius Vaccinium oldhamii Increased the length and branching of pioneer roots
of seedlings

Baba et al., 2021b

Oidiodendron maius Rhododendron fortunei Enhanced rooting and root growth of microcuttings Wei et al., 2020

Unspecified ericoid mycorrhizal fungi Rhododendron catawbiense and R.
maximum

Increased seed germination rates Mueller et al., 2022
frontiersin.org

https://doi.org/10.3389/fpls.2022.1027390
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wei et al. 10.3389/fpls.2022.1027390
Rhododendron, Mueller et al. (2022) reported that germination

rates of R. catawbiense and R. maximum after inoculation with

novel soils containing ErM fungi were significantly greater than

those of controls (without mycorrhizal fungi) or inoculated with

conspecific soils, 75.2% vs. 54.5% for R. catawbiense and 65.7%

vs. 54.4% for R. maximum. The increased germination rates were

attributed to the occurrence in ErM fungi, but the authors did

not provide the underlying mechanisms. In addition to seed

germination, ErM has been documented to promote seedling

growth of Rhododendron. An ErM fungus known as O. maius

Om19 inoculated in a peat-based substrate substantially

enhanced seedling growth of R. fortunei Lindl. because root

growth including root length, root numbers, root fresh weight as

well as shoot growth, including shoot overall height and shoot

fresh weight of Om19 colonized seedlings were doubled

compared to the uninoculated control seedlings (Wei et al.,

2016a). Additionally, overall fresh and dry weights of R. fortunei

seedlings inoculated with Om19 were 81% and 84% higher than

those of the control, respectively. Furthermore, genes related to

N uptake and metabolism were analyzed by qRT-PCR, and

results showed that the expression of an ammonium transporter

(AMT), two nitrate transporters (NRT1-1 and NRT1-2),

glutamate synthase (GOGAT), and glutamine synthetase (GS)

were highly upregulated in plants inoculated with Om19,

ranging from 2 to 9 folds greater than the uninoculated plants

(Wei et al., 2016a).

Ericoid mycorrhizal fungi can substantially improve rooting

of stem cuttings as well as microcuttings derived from tissue

culture (Eccher et al., 2010; Wei et al., 2020). Stem cuttings of

blueberry plants inoculated with ErM fungi rooted more

successfully and were followed by enhanced plant growth

(Scagel et al., 2005a; Scagel et al., 2005b). Root initiation and

root growth of dog hobble (Leucothoe fontanesiana) (Scagel,

2005b) and Vaccinium meridionale, a Colombian blueberry

(Ávila Dıáz-Granados et al., 2009) also increased with the

inoculation of ErM fungi. Recently, micropropagation, shoot

culture in particular, has been increasingly used for propagation

of important ericaceous plants, such as rhododendron,

cranberry, and blueberry (Fan et al., 2017; Wei et al., 2018).

An interesting phenomenon observed during the rooting of

microcuttings is that in vitro rooting is more difficult than ex

vitro rooting (Gorecka, 1979; Fan et al., 2017; Qiu et al., 2018;

Wei et al., 2018). To explore the underlying mechanisms behind

this phenomenon, Wei et al. (2020) developed an in vitro culture

system for R. fortunei and investigated the adventitious root

(AR) formation in microcuttings inoculated with or without

O. maiusOm19. Key phytohormones and precursors involved in

the pathway of indole-3-acetic acid (IAA) biosynthesis were

analyzed in Om19 mycelium. Om19 was able to synthesize

tryptophan (Trp), indole-3-pyruvate (IPA), and IAA, of which

Trp concentration was greater than 4,000 mg/kg. The

occurrence in Trp, IPA, and IAA indicated that Om19

biosynthesis of IAA is through the Trp-dependent pathway
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(Mano and Nemoto, 2012). Other hormones synthesized by

Om19 include brassinolides (BRs), jasmonic acid (JA), and

salicylic acid (SA). BRs were reported to positively impact the

symbiosis of either tomato or tobacco roots with an AM fungus

(von Sivers et al., 2019). JAs are known as a wound signal in AR

formation because wounding quickly induces JA accumulation

in plant tissues (Zhang et al., 2019). Increased JA concentrations

have been shown to promote AR formation in cuttings by IAA

accumulation in the base of stem cuttings towards AR source

cells (Druege and Franken, 2019). SA is known for triggering

systemic-acquired resistance (SAR) in plants (Chen et al., 1996).

Low concentrations of SA was reported to promote AR

formation and change the root apical meristem architecture,

but high SA concentrations suppressed the root growth process

(Pasternak et al., 2019). After Om19 inoculation, ARs rapidly

appeared from microcuttings. Meanwhile, genes related the

symbiosis including SymRK and DMI were activated in ARs,

resulting in Om19 colonization of the roots. Furthermore,

YUC3, a key gene controlling IAA biosynthesis in plants

(Cheng et al., 2007; Won et al., 2011), genes encoding N

absorption (AMT and NRT) and N metabolism (GOGAT and

GS) as well as phosphate transporter (PHT) in Om19-inoculated

plants were upregulated by 3 to 7 folds compared to control

plants without Om19 inoculation. As a result, inoculated plants

were able to take up significantly higher quantities of nutrients

including N, P, K, Ca, Mg, and S, and plant growth substantially

increased compared to the control plants. A working model for

the Om19-mediated AR formation was proposed. The rapid AR

formation on the one hand was induced by IAA produced by

Om19 and on the other hand by IAA biosynthesized by plants.

The high concentration of Trp synthesized by Om19 could be

readily used by plant as the precursor to synthesis of IAA. The

formation ARs, in turn, provided Om19 with host for

colonization. This study for the first time documented the

ability of Om19 to biosynthesize several hormones, of which

IAA plays an important role in inducing AR formation.

This model also provides explanations as to why ex vitro

rooting of microcuttings is more effective than in vitro rooting. A

major component of commercial substrates is peat moss,

ranging from 30% to 75% based on volume (Chen et al.,

2005). As mentioned before, O. maius was initially isolated

from peat soils by Barron (1962). Commercial substrates rich

in peat moss might have ErM mycorrhizal fungi. Gorman and

Starrett (2003) screened ErM occurrence in commercial

substrates and found that the majority of the peat and peat-

based substrates used in the U.S. and Canada contained ErM

fungi. ErR fungi were reported to naturally colonize roots of

blueberry plants during nursery production (Scagel, 2005a).

Thus, the ErM fungi in the substrates could act similar to

Om19 in biosynthesis of phytohormones including IAA for

inducing AR formation of ericaceous plant cuttings. Those

ErM may also synthesize a large amount of Trp for plants to

produce endogenous IAA. In general, endogenous hormones are
frontiersin.org
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more effective than exogenous application. Ismail et al. (2021)

reported that bacterial and fungal endophytic metabolites

significantly enhanced plant growth compared to exogenous

applied hormones. IAA biosynthesized inside plants by either

plants or ErM could be considered endogenous and thus could

be more effective for inducing AR formation than exogenous

applied auxin during in vitro rooting.

Ericoid mycorrhizal fungi also produce other bioactive

compounds (Table 2). Some can increase bioavailability of soil

mineral elements, such as siderophore for chelating soil Fe

(Ahmed and Holmström, 2014). Some are enzymes, including

cell-wall-degrading enzymes (PCWDEs) that can degrade soil

organic matter (SOM) (Kohler et al., 2015; Martino et al., 2018).

Others have antimicrobial activities (Hosoe et al., 1999; Ouyang,

2021), and still others are antioxidants, such as rutin (Lin

et al., 2021).
Ericoid mycorrhizal fungi enhance
plant growth

Ericoid mycorrhizal fungi have been well documented for

promoting the growth of ericaceous crops. ErM fungi are able to

establish symbiotic relationships with plant roots. The
Frontiers in Plant Science 06
established symbiosis enables plants to better adapt to acidic

soils with low pH values and low nutrient status and improve

root acquisition of nutrients, thus, enhancing plant growth. The

growth enhancement is attributed to several factors: (1) The

ability of ErM to biodegrade SOM resulting in the bioavailability

of nutrients for plants; (2) the symbiosis-resultant expansion of

nutrient acquisition surface area for capturing more mineral

elements; and (3) the upregulation of gene expression, such as

those associated with symbiosis and N and P uptake and

metabolism, leading to the increased N and P absorption and

metabolism and enhanced plant growth.
ErM fungi mediated degradation of soil
organic matter

A unique characteristic of ErM fungi is their capability to

biodegrade SOM (Martino et al., 2018). SOM is the organic

fraction of the soil consisting of animal and plant residues and

microorganisms at different stages of decomposition and

contributes significantly to soil fertility and productivity (Myers

and Leake, 1996; Biswas and Kole, 2017). Ericaceous plants are

native to acidic soils, low in nutrients but high in recalcitrant

organic materials, which results in a low bioavailability of mineral
TABLE 2 Bioactive compounds released by ericoid mycorrhizal fungi.

Fungal species Bioactive compounds Role of the compound References

Cryptosporiopsis sp. Rutin Antioxidative activity Lin et al., 2021

Hymenoscyphus
ericae and
Oidiodendron
griseum

Hydroxamate siderophore A chelator product for improving iron bioavailability in soils Schuler and
Haselwandter, 1988

Hymenoscyphus
ericae

Phenol-oxidation and extracellular o-polyphenol
oxidase (tyrosinase)

Degraded lignin or soluble phenolic compounds Bending and Read,
1997

Hymenoscyphus
ericae

Chitinase Involved in chitin degradation Kerley and Read,
1997; Bougoure and
Cairney, 2006

Leohumicola
incrustata

Amyloglucosidase Hydrolyzed individual glucose units from the non-reducing ends of
starch chains

Adeoyo et al., 2018

Oidiodendron cf.
truncatum

Four new tetranorditerpenoids, oidiodendrolides
A, B, and C, and oidiodendronic acid

Antibiotic activity against pathogenic yeast Hosoe et al., 1999

Oidiodendron
maius

Plant cell wall-degrading enzymes, PCWDEs Degraded plant cell wall Kohler et al., 2015

Oidiodendron
maius

Mucilage and soluble and wall-bound pigments Chelated heavy metal ions Martino et al., 2000b

Oidiodendron
maius

Tryptophan, indole-3-pyruvate, indole-3-acetic
acid (IAA), brassinolides (BRs), jasmonic acid

(JA), and salicylic acid (SA)

Precursor for IAA biosynthesis. IAA, BRs, JA, and SA are plant growth
regulators

Wei et al., 2020

Oidiodendron
flavum

Harzianic acid Antimicrobial activity Ouyang, 2021

Oidiodendron
truncatum

Fourteen norditerpene and three anthraquinone
metabolites.

Antifungal activity Rusman et al., 2020

Ericoid mycorrhizal
fungi

Indole-3-acetic acid (IAA), hydrogen cyanide
(HCN), siderophores, and phosphatase

IAA is plant growth regulator; HCN is a co-product of ethylene
biosynthesis; siderophores improve nutrient bioavailability; and

phosphatase solubilizes insoluble forms of phosphorus

Hamim et al., 2019
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elements, particularly N and P (Cairney and Meharg, 2003). ErM

fungi can degrade SOM, leading to the release of nutrients for host

plants. Among the ErMs, R. ericae and O. maius were found to

degrade cellulose, tannic acid, pectin, and chitin (Rice and Currah,

2001; Thormann et al., 2002; Rice and Currah, 2005). A wide

range of enzymes were released from the two ErM fungi for

degrading fungal and plant cell wall polymers, complex aliphatic

compounds, and organic phosphorus (Smith and Read, 2008).

Kohler et al. (2015) sequenced 13 EcM, ErM, and OrM species as

well as five saprotrophs and found that EcM fungi have reduced

numbers of genes for PCWDEs compared to their ancestral wood

decayers. Later, Martino et al. (2018) sequenced genomes of ErM

fungi R. ericae, Meliniomyces bicolor, M. variablilis, and O. maius

and compared their gene repertoires with EcM, OrM, and six

pathogenic or saprotrophic Leotimycetes and 50 other

Basidiomycetes and Ascomycetes. The authors found that ErM

fungi possessed lipases, polysaccharide-degrading enzymes,

proteases, and enzymes in secondary metabolism that were

comparable to those of pathogens and saprotrophs but higher

than those of EcM fungi, suggesting the ErM fungi are unique due

to their dual saprotrophic and biotrophic lifestyle. Additionally,

RNA-Seq analysis showed that highly upregulated genes in ErM

fungi were those involved in lipases, cell wall-degrading enzymes

(CWDEs), transporters, proteases, and mycorrhizal-induced

small-secreted proteins (MiSSPs). Thus, ErM fungi represent a

unique group of fungi in degradation of SOM, which explains in

part as to why ericaceous plants can survive and grow in the acidic

and low nutrient soils.

Soil organic nitrogen (ON) is a fraction of SOM, including

intracellular and cell-wall bound proteins and nucleic acids of

plant and microbial origin (Nemeth et al., 1987; Abuarghub and

Read, 1988). The main groups of soil ON compounds are

aliphatic-N, including polysaccharide N and amino-N as well

as aromatic N, such as those present in soil humus (Chen and

Xu, 2006; Talbot and Treseder, 2010). These large molecules can

be degraded by enzymes of ErM fungi into monomers, such as

oligomer, small peptides, and amino acids (Talbot and Treseder,

2010) which are small enough for soil microbes and plants to

take up or further mineralize and incorporate as ammonium and

nitrate (Séneca et al., 2021). Studies have shown that mycorrhizal

fungi and plant roots can take up amino acids. ErM fungi R.

ericae were able to use all 20 common amino acids except glycine

(Leake and Read, 1990; Cairney et al., 2000; Midgley et al., 2006),

while O. spp. can use alanine, glutamic acid, arginine, lysine,

proline, asparagine, glutamine, histidine, and cysteine

(Whittaker and Cairney, 2001). Furthermore, ErM fungi have

the capacity to use proteins, peptides or even chitin as a sole N

source (Leake and Read, 1990; Read, 1996). Lin et al. (2011)

evaluated three ErM isolates, Rf9 and Rf32 belonging to the

genus Cryptosporiopsis and Rf28, a member of Phialocephala

in decomposition SOM. Both Rf28 and Rf32 possessed the

highest decomposition rates, up to 10.4% in 70 days, but Rf9

had a decomposition rate of 6.8%. Enzymatic assay showed that
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Rf28 and Rf 32 secreted cellulase, laccase, peroxidase, and

tyrosinase, but Rf9 mainly released peroxidase and tyrosinase.

Seedlings of R. formosanum Hemsl. grown in substrate without

ErM inoculation showed chlorotic symptoms and limited root

growth, while those inoculated with ErM exhibited much

stronger growth vigor than those of the control. This study

implies that ErM-mediated decomposition of soil ON provides

seedlings with nutrients, particularly N.
Enhanced growth of plants
through symbiosis

Inoculation of ErM fungi can substantially enhance the

growth of ericaceous plants. In general, ericaceous plants can

be naturally colonized by ErM fungi (Hambleton and Currah,

1997; Gorman and Starrett, 2003), but the colonization rates are

low, less than 15%. Inoculation of ErM fungi can increase

colonization rates, up to 30% (Scagel, 2005a), and the

colonization promoted growth in blueberry cultivars. Table 3

lists growth enhancement of ErM fungi on ericaceous plants.

Inoculation of ErM fungi affected acclimatization and growth of

microcuttings of Pieris floribunda (Starrett et al., 2001).

Container-grown R. indica inoculated with O. maius Om19

had more abundant roots and a larger above ground canopy

than those uninoculated (Wei et al., 2016a). Plant height, root,

shoot, and total fresh weights of seedlings of R. kanehirae

inoculated with two ErM strains significantly increased when

ammonium was used as a N source (Lin et al., 2021). ErM fungi

in nature Finnish peat moss promoted rooting of rabbiteye

blueberry (V. virgatum Ait.) and vegetative growth (Li et al.,

2021). Dry weights of shoots, leaves, and roots of rooted cuttings

were 2.37, 4.51, and 4.34 g, respectively compared to 0.47, 0.90,

and 0.67 g of those grown in sterilized peat moss. Furthermore,

root P and Mg concentrations and shoot K content increased in

plants grown in unsterilized peat moss. A recent study also

showed that single inoculation of V. corymbosum with O. maius

or Phialocephala fortinii significantly increased plant dry weight

(Wazny et al., 2022).

The increased growth of plants is largely attributed to the

following factors: (1) The bioavailability of small ON

compounds degraded by ErM fungi mentioned above. (2) The

symbiosis results in the establishment of root and hyphal

networks that greatly expand root surface areas for capturing

more mineral nutrients. Atucha et al. (2020) studied the

phenology of roots, root anatomy and morphology in terms of

root orders in cranberry (V. macrocarpon Ait). More than 50%

of new roots produced during the growing season were vertically

distributed in the upper 5 cm of soil depth, and mycorrhizal

fungi were able to colonize the intact cortex and epidermis of the

first three root orders. It is known that large root systems

generally have a larger root surface areas and concomitantly

shorter average half distance between root axes in the soil or
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substrate for more effectively capturing nutrient elements (Chen

and Gabelman, 2000). Thus, absorption of N, P, and other

mineral nutrients was markedly increased in ErM colonized

plants. (3) ErM fungi are able to biosynthesize and release

hormones for stimulating root growth, such as IAA, BR, JA,

and SA, which can stimulate plant growth and improve plant

stress tolerance. (4) ErM-colonization results in the increased

expression of a large number of genes. To gain insight into the

intimate relationships of ErM fungi with ericaceous plants and

the mechanism underlying growth stimulation, Wei et al.

(2016b) analyzed transcripts induced by the symbiosis between

ErM Om19 and R. fortunei using RNA-Seq. The symbiosis

induced 16,892 upregulated genes in Om19-coloinzed roots.

Homologous to symbiosis related genes, such as SymRK,

CCaMK, DM1, NORK, genes involved in N uptake including

AMT3, NRT1-1, NRT1-2, as well as N metabolism, such as GS-1

and GS-2 and GOGAT-1 and GOGAT-2 were highly upregulated

in roots inoculated with Om19, suggesting that ErM fungi might

share the same strategy as AM fungi in the establishment of

symbiotic relationships with ericaceous plants. The increased

expression of the genes in N uptake and metabolism

corresponded to the increased N absorption and metabolism

as well as plant growth. Thus, the ability of ericaceous plants to

survive and grow in acidic and low nutrient soils is largely
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associated with their symbiotic relationship with ErM fungi

(Cairney and Meharg, 2003).

It is worthy of note that different strains within an ErM

species may perform differently in regulation of N uptake in

ericaceous plants. Five strains isolated from Calluna vulgaris had

different capacities to use organic and mineral N sources (Grelet

et al., 2005). Different isolates of epacrid root endophytes

differed in the use of amino acids (Whittaker and Cairney,

2001). Using 15N tracing, Grelet et al. (2009) found that the

rates of appearance of 15N in shoots of cranberry after roots were

inoculated with three strains of Helotiales were low and not

different from the control (no ErM inoculation) when nitrate

was used as a N source. However, differences occurred among

strains when glutamine was used as a N source. When NH4 was

used a N source, two strains had the highest rates compared to

the other strains. Thus, for practical application of ErM fungi as

biostimulants, appropriate species or strains should be chosen.
Improve plant tolerance to abiotic
and biotic stresses

Plants as sessile organisms and permanently stay in their

established sites. In addition to harsh environmental conditions,
TABLE 3 Ericoid mycorrhizal fungi improve rooting of propagules and enhance plant growth.

Fungal species Host plant species Observed responses References

Cryptosporiopsis sp Rhododendron
pseudochrysanthum

Enhanced seedling growth as total fresh weight of inoculated seedlings was higher than
the control seedlings

Lin et al., 2021

Hymenoscyphus ericae Pieris floribunda Increased survival rate of micropropagated plants during ex vitro acclimatization. Starrett et al.,
2001

Hymenoscyphus ericae,
Oidiodendron griseum,
and Pezizella ericae,

Seven highbush blueberry
cultivars (Vaccinium

corymbosum)

Improved plant growth as inoculants increased plant growth; but root/shoot biomass
ratios decreased due to the application of organic or inorganic fertilizers

Scagel, 2005a;
Scagel, 2005b

Hymenoscyphus ericae and
Oidiodendron griseum

Vaccinium corymbosum Improved plant growth as inoculated plants produced significantly larger floral displays,
more fruits per inflorescence, and heavier fruits with lower sugar content, than

uninoculated control plants.

Brody et al.,
2019

Meliniomyces variabilis,
Oidiodendron maius, O. or
Rhizoscyphus ericae

Vaccinium virgatum
‘Rabbiteye blueberry Ait.

Promoted vegetative growth including more leaves and shoots, greater total leaf area
and shoot length than those grown in sterilized substrate

Li et al., 2021

Oidiodendron maius and
Hymenoscyphus sp.

Vaccinium corymbosum Improved plant growth and vitality and increased biomass accumulation Wazny et al.,
2022

Oidiodendron maius Rhododendron cv. Azurro Increased root biomass and plant phosphorus concentrations Vohnıḱ et al.,
2005

Oidiodendron maius Rhododendron fortunei Enhanced plant growth evidenced by larger canopies and root systems of seedlings, and
genes related to plant uptake of N and N metabolism were highly upregulated

Wei et al.,
2016a; Wei
et al., 2016b

Oidiodendron maius Arabidopsis thaliana Increased shoot and root biomass, shortened the primary root and increased the lateral
root length and number of seedlings

Casarrubia
et al., 2016

Oidiodendron maius Rhododendron kanehirae Promoted plant growth since plant height, roots, shoots, and total fresh weight
significantly increased when ammonium was used as a N source

Lin et al., 2020

Oidiodendron maius Rhododendron fortunei Enhanced microcutting growth and increased N and P contents of plants Wei et al., 2020

Oidiodendron maius Vaccinium virgatum Ait
‘Tifblue’

Altered the length and branching of pioneer and/or fibrous roots of rooted cuttings Baba et al.,
2021a
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ericaceous plants often encounter other stressful factors, such as

salt, drought, heavy metals as well as plant pathogens. Evidence

has shown that in addition to growth promotion, symbiotic ErM

fungi can substantially improve plant tolerance to abiotic and

biotic stresses (Table 4). The enhanced stress tolerance in turn

can improve plant productivity compared to those without

symbiotic establishment.
Resistance to heavy metals

Another distinct characteristic of ErM fungi is their

adaptability to heavy metal stress (Meharg and Cairney, 2000).

C. vulgaris is a dominant plant in mine spoil sites as it can

tolerate Cu2+ and Zn2+. Such a tolerance is attributed to its

symbiotic relationship with ErM fungi. In the early 1980s,

Bradley et al. (1981) reported that resistance of C. vulgaris to

Cu2+ and Zn2+ was constitutive even in those mycorrhizal

endophyte plants collected from sites without metal

contamination (Bradley et al., 1981; Bradley et al., 1982).

Martino et al. (2000b) reported that two isolates of O. maius

from metal contaminated soils showed enhanced tolerance to

Zn2+ in vitro, and later they reported that the mechanism behind

the tolerance was due to the production of extracellular

compounds, such as malate and citrate either to solubilize or

chelate heavy metal ions (Martino et al., 2003). Subsequently, the

ErMmetal tolerant isolate known as Oidiodendron maius Zn has
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ErM-mediated metal tolerance (Daghino et al., 2016). Its

genome was sequenced (Kohler et al., 2015). A recent report

showed that a homeostatic mechanism at the cellular level

mediated by transport proteins may play an important role

(Ruytinx et al., 2020). Blueberry plants colonized by ErM fungi

were also found to be able to tolerate high concentrations of Fe

and Mn (Hashem, 1995a; Hashem, 1995b) as well as Al (Yang

and Goulart, 2000). In addition to tolerance to Cu2+, Cd2+, and

Zn2+, ErM fungi are particularly resistant to arsenate (AsO4
3-).

Sharples et al. (2001) compared As resistance between isolates of

Hymenoscyphus ericae derived from C. vulgaris in soils

contaminated with AsO4
3- and natural heathland soils and

found that H. ericae isolated from the mine sites sustained

significant growth at AsO4
3- concentration up to 4.67 mol m–

3; however, the growth of the isolates from the heathland soils

were almost completely inhibited. All isolates regardless of their

origins had an identical response to Cu2+. These results suggest

that H. ericae response to As is adaptive but their response to

Cu2+ is constitutive.

Although some progress on the tolerance of ErM fungi to

heavy metals has been made, our understanding on how ErM

colonization can improve plant tolerance to heavy metal stress

remains incomplete. Sharples et al. (2001) reported that

C. vulgaris tolerance to As in the mine sites was due to the

colonization of H. ericae, which allows the host to maintain an

adequate supply of PO3
3- to limit the level of AsO4

3- in the
TABLE 4 Ericoid mycorrhizal fungi improve plant tolerance to abiotic stresses.

Fungal species Host plant
species

Observed responses References

Hymenoscyphus ericae Calluna vulgaris and
Vaccinium
macrocarpon

Improved plant tolerance to Fe by limiting its transport to shoots Shaw et al., 1990

Hymenoscyphys ericae Vaccinium
macrocarpon

Reduced Fe and Mn in leaves of mycorrhizal plants and increased Fe and Mn in root
tissues, protected shoots from metal stress on the basis of exclusion rather than
accumulation

Hashem, 1995a;
Hashem, 1995b

Hymenoscyphus ericae Vaccinium
mocrocarpon

Provided plants with organic and inorganic P Myers and Leake,
1996

Hymenoscyphus ericae Calluna vulgaris Enhanced plant tolerance to arsenate Sharples et al., 2000a;
Sharples et al., 2000b

Hymenoscyphus complex Woollsia pungens Improved plant tolerance to drought Chen et al., 2003

Meliniomyces variabilis
and Oidiodendron maius

Rhododendron
groenlandicum,
Vaccinium myrtilloides,
and
Vaccinium vitisidaea

Increased plants tolerance to salt stress Fadaei et al., 2020

Oidiodendron maius Vaccinium
corymbosum

Improved plant tolerance to Al by restriction of Al in roots Yang and Goulart,
2000

Oidiodendron maius Vaccinium myrtillus Enhanced plant tolerance to Zn by producing extracellular compounds to chelate Zn Martino et al., 2000a;
Martino et al., 2000b

Oidiodendron maius Rhododendron fortunei Increased N bioavailability to seedlings and induced the expression of genes related to N
uptake and metabolism

Wei et al., 2016b

Pezoloma ericae Vaccinium
macrocarpon

Increased the ability of plant to utilize NO3−-N Kosola et al., 2007
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cytosol, i.e., an ErM-mediated avoidance mechanism in

C. vulgaris. To address ErM fungal colonization modulated

plant tolerance to heavy metals, Casarrubia et al. (2020)

studied O. maius mediated Cd tolerance in V. myrtillus and

found that ErM colonized roots exposed to Cd had a reduced

level of Cd compared to those uninoculated. Transcriptomic

analysis showed that GSH metabolism was involved in the Cd

tolerance as phytochelatins are biosynthesized from GSH, which

can bind Cd to reduce toxicity (Chen and Goldsbrough, 1994;

Chen et al., 1997). Some plant metal transporters were also

regulated during the symbiosis and may be responsible for the

reduced Cd content observed in mycorrhizal roots exposed to

this metal.
Tolerance to salt and drought stress

Several recent studies showed that ErM fungi can effectively

improve ericaceous plant tolerance to salt stress. A recent study

showed that velvetleaf blueberry (V. myrtilloides), labrador tea

(R. groenlandicum), and lingonberry (V. vitisidaea) plants

inoculated with M. variabilis had increased dry weights of

roots when imposed on NaCl-treatment. Inoculation of O.

maius increased root dry weight accumulation in lingonberry

plants treated with NaCl at 30 mM (Fadaei et al., 2020). Salt

stress generally disrupts plant water relations by adversely

affecting water uptake and osmotic balance as well as root

hydraulic conductivity in plants (Sutka et al., 2011), which

then lead to the decrease in cell turgor and stomatal opening

and the inhibition of cell elongation. As a result, transpiration

rates and net photosynthetic rates decreased, and plant growth

was suppressed (Vaziriyeganeh et al., 2018). In the report of

Fadaei et al. (2020), transpiration and net photosynthetic rates of

three ericaceous plant species treated with 30 mM NaCl were

drastically reduced when grown in a substrate without ErM

inoculation, but such detrimental effects were either completely

or partially reversed by the inoculation of O. maius and M.

variabillis. It was reported that EcM and AM colonization of

roots increased the expression level of root aquaporins, resulting

in the substantial improvement of root hydraulic conductivity

(Xu et al., 2015). The authors believed that ErM fungi may act

similar to AM in the alleviation of plant salt stress.

The ErM colonization also enhances drought tolerance of

ericaceous plants. Mu et al. (2021) studied responses of lowland

and upland blueberry seedlings to drought stress. Seedlings were

grown in sterilized soil under controlled environmental conditions

and inoculatedwithM.variabilis,O.maius,P. ericae, andPezoloma

ericae. All plants were imposed on three cycles of drought stress

throughwithdrawingwatering.Uninoculated,well-wateredupland

plants after three weeks of drought treatments produced higher dry

weights compared to the uninoculated lowland plants. This

difference, however, was offset after the plants were inoculated

with ErM fungi, indicating that ErM addition significantly
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improved drought tolerance of the lowland and upland plants.

Among the four ErM species, Pezicula ericae was found to be the

most effective in enhancing drought resistance in lowland and

upland seedlings as its inoculation maintained a higher water

potential in plant shoots and higher net photosynthetic and

transpiration rates, thus increased dry weight production.
Responses to biotic stress

Information regarding ErM fungi improving ericaceous

plant resistance to pathogens is rather limited. In a study

conducted to test if ErM fungi could suppress the infection of

soil-borne pathogens on mycorrhizal roots of C. vulgaris

and R. hirsutum, Grunewaldt-Stöcker et al. (2013) inoculated

Pythium spp. and Phytophthora cinnamomic, respectively to roots.

The establishment of mycorrhizae, pathogen infections, and

disease development in plants were examined microscopically.

Results showed that ErM fungi suppressed the growth of external

pathogenic mycelium and reduced pathogen infections. A

complete reduction was observed at higher ErM colonization

levels. However, pathogen infection occurred in those with low

ErM colonization. These results showed that ErM colonization

played a role in the direct suppression of oomycete pathogens

from infection of ericaceous plants.

Systemic acquired resistance (SAR) is an immune response

of plants against pathogen infection. It has been reported that

some mycorrhizal fungi and plant growth promoting bacteria

can induce SAR against a wide range of plant pathogens

(Pieterse et al., 2014; Backer et al., 2018). However, SAR

induction by ErM fungi has not been reported in ericaceous

crops. Considering the fact that SA can effectively induce SAR in

plants (Chen et al., 1996; Metraux, 2001) and O. maius can

biosynthesize SA (Wei et al., 2020), it is likely that ErM fungi, O.

maius in particular, should be able to induce SAR in plants,

providing plants with long-lasting resistance to some plant

pathogens. Further studies are warranted to test this hypothesis.
Conclusion and future perspectives

Ericoid mycorrhizal fungi have saprotrophic and biotrophic

lifestyles and are able to biodegrade SOM and establish

symbiotic relationships with plants in the family Ericaceae.

The degradation of SOM results in the bioavailability of

nutrients to themselves and plants. The symbiosis extends

their life cycle and also enhances seed germination, rooting of

cuttings, plant growth as well as tolerance to abiotic and biotic

stresses. This review documents that the improved plant growth

is related to hormones produced by ErM fungi and also

colonization-resultant expression of genes in N and P

absorption and metabolisms. Thus, ErM fungi is considered

biostimulants for promoting the establishment and growth of
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ericaceous plants. Considering some species in the family

Ericaceae are economically important crops, it is expected that

some ErM fungi could be developed as biofertilizers for improve

plant propagation and production.

Our understanding of the ErM-mediated biostimulating

effects on ericaceous plants, however, is largely incomplete.

Further research is warranted to (1) identify and isolate key

genes from ErM fungi in biodegradation of SOM, particularly

ON and explore the genes for improving soil fertility, (2)

evaluate important ErM species or strains in biosynthesis of

hormones and isolate those for increased production of

hormones through bioreactor and utilize the isolates for

improving plant propagation and production, (3) analyze

heavy metal tolerant species or strains of ErM through omics

to identify the mechanism underlying metal tolerance and use

the isolates for phytoremediation of metal-contaminated soils,

and (4) develop ErM biofertilizers by combining different species

or strains, each with specific biostimulating effects on

propagation, growth promotion, and/or stress tolerance for

improving the productivity of ericaceous plants.
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