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Using data from genome-wide molecular markers, genomic selection

procedures have proved useful for estimating breeding values and

phenotypic prediction. The link between an individual genotype and

phenotype has been modelled using a number of parametric methods to

estimate individual breeding value. It has been observed that parametric

methods perform satisfactorily only when the system under study has

additive genetic architecture. To capture non-additive (dominance and

epistasis) effects, nonparametric approaches have also been developed;

however, they typically fall short of capturing additive effects. The idea

behind this study is to select the most appropriate model from each

parametric and nonparametric category and build an integrated model that

can incorporate the best features of both models. It was observed from the

results of the current study that GBLUP performed admirably under additive

architecture, while SVM’s performance in non-additive architecture was found

to be encouraging. A robust model for genomic prediction has been developed

in light of these findings, which can handle both additive and epistatic effects

simultaneously by minimizing their error variance. The developed integrated

model has been assessed using standard evaluation measures like predictive

ability and error variance.
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1 Introduction

Genomic selection is a form of marker-assisted selection

(MAS) in which genomic markers covering the whole genome

are used to identify quantitative trait loci (QTL) which are in

linkage disequilibrium (LD) with at least one marker (Meuwissen

et al., 2001). Genomic selection predicts the breeding values of

individuals or lines in a population by analyzing their phenotypes

and high-density marker scores. The genomic selection process

starts with building a statistical model from individuals having

both genotypic and phenotypic information (i.e., training set); this

model is further used for estimation of breeding value of the

individuals in the breeding population/validation set (i.e.,

Genomic Estimated Breeding Value (GEBVs) for individuals

having only genotypic information). Individuals are then ranked

on the basis of GEBVs and subsequently superior individuals are

selected. Genomic selection methods have been successfully

applied for various plants (Jannink et al., 2010; Spindel et al.,

2015; Zhao et al., 2015; Crossa et al., 2016; Liu et al., 2019) and

animals (Hayes et al., 2009; Daetwyler et al., 2010; Daetwyler et al.,

2012; Wang et al., 2013; Wolc et al., 2015; Lu et al., 2016; Wiggans

et al., 2017; Liu et al., 2019), and reason behind this success is that

it incorporates all information on genome wide markers into the

prediction model.

As a choice of model, different methods that may be

parametric, nonparametric, and semiparametric can be used

for genomic selection. But, in general, it was observed that

performance of parametric methods were considerably better

than nonparametric methods in case of additive genetic

architectures (Gianola et al., 2006; Crossa et al., 2010;

Daetwyler et al., 2010; Heslot et al., 2012; Howard et al., 2014;

Sahebalam et al., 2019). The practical use of genomic selection

includes efforts such as appropriate statistical model selection,

training and testing data proportions, marker density, etc.,

which requires resource-based decision-making. Prediction

accuracy of a model can also be affected by factors like span of

LD, heritability of trait under observation, and genetic

architecture of individual under study. Due to the complexity

of plant genetics, some genomic selection techniques perform

very poorly as they are unable to model marker variance.

Further, due to the huge number of epistatic interactions, it

becomes challenging to practice parametric methods (Moore

and Williams, 2009). In epistatic interactions, a number of loci

are involved and also the possibility of interaction cannot be

ignored. Epistatic interaction may play a crucial role for

explaining genetic variation for quantitative traits, as ignoring

these kinds of interaction in the model may result in lower

genomic prediction accuracy (Gianola et al., 2006; Cooper et al.,

2009). In such cases, performance of model free i.e.

nonparametric methods were found to be more impressive

(Gianola et al., 2006).

Although some semiparametric (Gianola et al., 2006;

Campos et al., 2010; Legarra and Reverter, 2018) and other
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robust approaches (Tanaka, 2018; Budhlakoti et al., 2020a;

Majumdar et al., 2020b; Sehgal et al., 2020; Mishra et al., 2021)

have also been proposed and implemented for this purpose,

there is still room for improvement. To overcome the limitation

of individual parametric and nonparametric models, the current

study has been designed to develop a robust model by

integrating the best model from each category that can handle

diverse genetic architecture.
2 Materials and method

In GS, our main objective is to select superior individuals by

modelling the relationship between individual genotypic and

phenotypic information. One of the simplest models for

modeling this relationship is simple linear regression model.

One problem with linear regression is that, generally, the

number of markers (genotype) is greater than the number of

individual (phenotype), that is, there exists a problem of large p

and small n i.e., p > n. In such a case, it may not be possible to

estimate parameters of regression model. Therefore, variable

selection approach i.e., Ridge Regression (RR) and Least absolute

Shrinkage and Selection Operator (LASSO), are alternatives to

this situation. Some other improved methods include Best

Linear Unbiased Prediction (BLUP) (Henderson, 1949),

Genomic BLUP (GBLUP) (Endelman and Jannink, 2012),

Bayesian methods, and their derivatives i.e. Bayes A, Bayes B,

Bayes C p and D p (Meuwissen et al., 2001; Gianola et al., 2009;

Habier et al., 2009; Habier et al., 2010). However, assumptions of

parametric models do not always hold (e.g., normality, linearity,

independent explanatory variables), which further suggests the

use of nonparametric methods. Various nonparametric based

methods, i.e. Reproducing Kernel Hilbert Space (RKHS),

Support Vector Machine (SVM), Artificial Neural Network

(ANN), and Random Forest (RF), have been proposed and

successfully used for genomic prediction in plants and

animals. A detailed comparison of various parametric and

nonparametric methods has been provided by Howard et al.,

2014; Budhlakoti et al., 2020b, in context to genomic selection.
2.1 Integrated estimation of GEBVs

The best model from each parametric and nonparametric

methods was identified. Under parametric methods

performance of GBLUP was found to be the best, whereas for

nonparametric method, SVM was found to be best using

appropriate evaluation measures. An integrated estimator for

GEBVs (more formally GEBVs from parametric methods and

EGV i.e. estimated genomic values from nonparametric

methods) has been developed for genomic selection by

combining estimates from the best parametric and

nonparametric methods (Majumdar et al., 2020a and
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Majumdar et al., 2020b). For better understanding, details of

both the methods have been given below.
2.2 Best linear unbiased prediction

BLUP is based on the theory of mixed random effect model.

Statistical formulation of the BLUP model can be written as

follows:

Y = Xb + Zm + e

where, b is a p × 1 vector of fixed effects, m is q × 1 vector of

random effects, m~N (0,G) and e is n × 1vector of residuals, e

~N (0, R). The estimator of fixed effect b is called Best Linear

Unbiased Estimator (BLUE) and random effects m is known as

BLUP. Estimation of BLUE and BLUP (b, m) by maximizing the

joint likelihood function is given below (Henderson, 1949):

f (Y ,m ) =  f (Y jm)f (m)

=
1

2pn=2 Rj j1=2 −
1
2
(Y − Xb − Zm) 0 R−1(Y − Xb − Zm)

� �

� 1

2pp=2 Gj j1=2 −
1
2
m 0 G−1m

� �

The estimate of (b, m) could be obtained by maximizing the

log of the above likelihood function and equating it to zero, which

could be written as the famous Henderson mixed model equation:

X
0
R−1X X

0
R−1Z

Z
0
R−1X Z

0
R−1Z + G−1

 !
b̂

m̂

 !
=

X
0
R−1Y

Z
0
R−1Y

 !

where G = var (m) and R = var (e). The solution to the

Henderson equation is BLUE of b, BLUP of m, where m and e

are normally distributed and maximizes f (Y, m) over unknown

parameters b and m.

GBLUP is an improved version of BLUP where additive

genomic relationship matrix (G) is used as a variance-covariance

matrix of random effect in the model.
2.3 Support vector machine

SVM is based on the principle of maximum separating

hyperplane. It constructs a hyperplane with the objective

of separating data into different classes. In case our problem

is based on regression instead of classification, i.e., when

output data is continuous in nature, then the Support Vector

Regression can be used. Support Vector Regression (SVR) is an

important application of SVM technique and has been used

interchangeably in the literature. In order to understand this,
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consider a mapping function f (X): Rp !R, given the set of

training data

(X1,Y1), (X2,Y2)  ,   :   :  , (Xn,Yn),  Xi ∈ Rp,  Yi ∈ R

Let us assume a simple linear function of the following form:

f (X) = w’X + b, where, w is vector of weight to be estimated

(i.e. regression coefficients) and b denotes bias. f (X) is

minimized by the following problem formulation:

minw,b ∅ (w, b) =
1
2
jjwjj2+co

n

i=1
eki

where ei = Yi – f (Xi), is error of i
th data point from training

set, also known as loss function L(.) which measures quality of

estimation, and c represents regularization parameter which

handles trade-off between margin and error.
2.4 Proposed estimator

The integrated estimator for estimated breeding or genomic

value can be expressed as

YEst = wYGBLUP +  ð1  –w)YSVR (1)

where, YEst is new predicted phenotype from integrated model,

w is s 2
SVR

s2
GBLUP+s

2
SVR
, where s2

SVR and s 2
GBLUP are the error variance of

models SVR and GBLUP respectively, YGBLUP is the predicted

GEBV from GBLUP, whereas YSVR is the predicted EGV from SVR

model. Let us assume that error variance of YEst is represented by

s 2
EST , then by optimizing w, s 2

EST can be obtained as:

s 2
Est =

s 2
SVR

s2
GBLUP+s

2
SVR

� �2
s 2
GBLUP +

s 2
GBLUP

s2
GBLUP+s

2
SVR

� �2
s2
SVR

s 2
Est =

s 2
GBLUPs

2
SVR

s2
GBLUP+s

2
SVR

(2)
2.5 Estimation of error variance for
proposed estimator

In order to develop the integrated genomic selection model,

estimate of error variances for GBLUP (s 2
GBLUP) and SVR (s 2

SVR)

models have been obtained using two different methods i.e.

Refitted Cross Validation (RCV) and k fold Refitted Cross

Validation (k-RCV). RCV method was originally given by Fan

et al., 2012, for the estimation of error variance in ultrahigh

dimensional regression procedure. The basic procedure behind

RCV and k-RCV is the same except that data is split into two

equal halves for RCV and k equal sizes for k-RCV respectively.

Algorithm of both RCV and k-RCV methods are depicted

through the flow diagrams in Figure 1.
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2.6 Data simulation

In order to check the performance of the model, data was

simulated using QTL Bayesian interval mapping method

implemented in R based package “qtlbim” (Yandell et al.,

2007). R is open source and freely available at http://www.r-

project.org (R Core Team, 2019). Package “qtlbim” is based on

Cockerham’s model which is a standard model for simulation of

marker data and has been followed in many studies (Bedo et al.,

2008; Piao et al., 2011; Howard et al., 2014; Budhlakoti et al.,

2020a; Budhlakoti et al., 2020b; Li et al., 2020).

Statistical formulation of Cockerham’s model is given as follows:

Yijk = Gij + eijk

= m + a1x1 + d1z1 + a2x2 + d2z2 + iaawaa + iadwad + idawda

+ iddwdd + eijk (3)

where m is the mean, a1 and a2 are additive genetic effects at

locus A & B, d1 and d2 are dominance effects at locus A & B, eijk is

a residual. iaa is additive × additive effect of loci A and B, iad is

additive × dominance of loci A and B, ida is dominance × additive

of loci A and B, and idd is dominance × dominance of loci A and B.

We have simulated a total of five data sets for genotypic and

phenotypic information using the Cockerham’s model described

above (Eq. 3) with diversified genetic architecture (additive and

epistasis) at various levels of heritability (ranges from low

heritability 0.3 to medium 0.5 and high heritability 0.7 for F2

population). For the additive data, there is one QTL in each

chromosome with either a positive or negative additive effect and

no epistatic interaction say it as (a, e0). For non-additive/epistatic
Frontiers in Plant Science 04
data, we assumed two QTLs on each of the five, seven, and ten

chromosomes respectively; remaining chromosomes have no

QTL. So, a total 5, 7, and 10 two-way epistatic interactions are

considered for the non-additive datasets. So in each dataset, there

is a combination of one of the five different levels of heritability

(viz. 0.3, 0.5, 0.7) and four levels of epistatic effects (viz. 0, 5, 7, 10)

denoted as e0, e1, e2, e3. So, finally, we have four ifferent

combinations of datasets with additive and epistatic effects i.e.

(a, e0), (a, e1), (a, e2) and (a, e3). For each genetic architecture we

have simulated the data for 200 individuals with 2000 SNPs each.

Simulated data have 10 chromosomes with 200 SNPs in each with

specified length. A total of 2000 markers are distributed over all 10

chromosomes in such a way that each marker is equi-spaced over

the chromosome. No missing genotypic values and no missing

phenotypic values are considered in the datasets.
2.7 Real data set

In order to check the robustness of our approach the same

has been validated using real data. We have used a total of six

datasets in the current study. A detailed discussion regarding

each of the dataset is given below.

2.7.1 Dataset 1: Wheat
Wheat lines were genotyped using 1447 Diversity Array

Technology markers generated by Triticarte Pty. Ltd. (Canberra,

Australia; http://www.triticarte.com.au). Markers are coded for

two different values i.e. their presence (1) or absence (0). This

data set includes 599 lines phenotyped for trait grain yield (GY)

for four mega environments. However, for matter of
B

A

FIGURE 1

Basic steps for estimation of error variance using (A) RCV and (B) k-RCV.
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convenience we have just considered GY for the first mega

environment. The final number of DArT markers after quality

control and final editing was 1279 and the same was used in the

current study (Crossa et al., 2010; Cuevas et al., 2016).

2.7.2 Dataset 2: Maize
The maize dataset is generated by CIMMYT’s Global Maize

Program (Crossa et al., 2010). It originally included 300 maize

line with 1148 SNP markers. Markers with the highest frequency

are coded as 0 and lowest frequency as 1. Here also the trait

under study is GY, evaluated under drought and watered

conditions. After final editing, 264 maize lines with 1135 SNPs

markers were available for final study (Crossa et al., 2010).
2.7.3 Dataset 3-6: Wheat
This wheat dataset is generated from CIMMYT semiarid

wheat breeding program, which is comprised of 254 advanced

wheat breeding lines genotyped for 1726 DArt markers (Poland

et al., 2012). Dataset is recorded for four different phenotypic

traits: Days to Heading (DTH), Thousand Kernel Weight

(TKW), Yield (under irrigated condition hence denoted as YI),

and Yield (under draught condition i.e. YD). For convenience,

here trait DTH is considered as Dataset-3, trait TKW as Dataset-

4, trait YI as Dataset-5, and trait YD as Dataset-6.
2.8 Evaluation measure

Predictive Ability and Prediction Error were used for evaluation

of the different models. Predictive ability can be defined as Pearson

correlation coefficient (r) between observed phenotypic value and

predicted phenotypic value. The same can be expressed as (Eq. 4)

r =
SY ,Ŷ
SYSŶ

(4)

where SY ,Ŷ denotes the covariance between observed and

predicted phenotypic value, SY is standard deviation of observed

phenotype, and SŶ denotes standard deviation of predicted

phenotype. Prediction error can be simply defined as mean

sum of square error (MSE) between observed phenotypic value

and predicted phenotypic value. The same can be expressed

using the following formula (Eq. 5)

MSE =
1
no

n
i=1(Yi − Ŷ i)

2 (5)

where Yi is observed response, Ŷ i is predicted phenotype

value of ith individual, and n denotes total number of individuals

in the training set.

To compare the performance of methods under study, a

cross-validation technique is used. Data is divided into two parts,

i.e., training and validation sets, in such a way that the training

set comprises 70% of data and the rest of the data is in the
Frontiers in Plant Science 05
validation set. The former is used for model building and the

latter for model evaluation. The whole procedure is repeated 100

times and predictive ability and prediction error were calculated.

For better understanding, a brief flowchart of the whole

procedure followed in the current study is provided in Figure 2.

In order to implement all the methods under study, R

programming platform (R Core Team (2019). R: A language

and environment for statistical computing, R foundation for

statistical computing Vienna - Google Search) was used; to fit

different models under study, R package STGS was used

(Budhlakoti et al., 2019).
3 Results and discussion

3.1 Comparative study of existing
parametric methods

Here, using a simulation analysis, the most popular methods

(i.e., Stepwise Regression, BLUP, LASSO, Bayesian LASSO, and

GBLUP) for genomic selection under diverse genetic

architectures were examined. Each method was evaluated at

different heritability levels (i.e. 0.3, 0.5, and 0.7). Cross-validation

technique was used to assess the performance of various models,

and results of the same are presented in Table 1.

The following critical observations can be made from the

results (Table 1).
i. At low heritability (0.3), the performance of

GBLUP was found to be the highest and

reasonable. However, performance of BLUP and

Bayesian LASSO were also quite impressive. It

can also be observed that as heritability increases,

the performance of LASSO in comparison to

other methods quickly improves.

ii. At moderate heritability (0.5), performance of

GBLUP is highest in comparison to the others.

However, an important thing to note is that there

is not much difference in the performance of all

the methods except stepwise regression.

iii. At high heritability (0.7), consistency in the

performance of GBLUP is still maintained, with

the performance of other methods (BLUP,

LASSO, and Bayesian LASSO) also at par with

GBLUP.

iv. Performance of stepwise regression is very low

throughout at all levels of heritability. This makes

this method unsuitable for genomic selection

studies.

v. LASSO can also be used as one of the preferable

statistical models for genomic selection studies,

especially when additive effects are present, but

only for high heritable traits.
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Fron
vi. For real-time scenarios (e.g., agriculture field

data) where trait heritability is generally low

(for most commonly studied yield related

traits), GBLUP can be quite good for genomic

selection studies. Results indicates that GBLUP

has better predictive ability of estimating GEBVs

of individuals over their counterparts.
3.2 Comparative study of existing
nonparametric methods

This section summarizes the performance of different

nonparametric methods under study, i.e., RKHS, SVR,

ANN, and RF, at diverse levels of heritability. Predictive
tiers in Plant Science 06
ability and prediction error were used as evaluation

measures for different models. Results of the same are

presented in Table 2.

On the basis of results obtained (Table 2), the following

inferences can be drawn:
i. Performance of SVR was consistent throughout

different levels of heritability with respect to its

predictive ability and MSE.

ii. However, ANN also performed quite well, almost

at par with SVR. Performance of random forest

was poor at low heritability, however it improved

gradually with high heritability.

iii. Performance of RKHS and RF were not found to

be encouraging in comparison to their

counterparts throughout the study.
FIGURE 2

Flow diagram for the procedure followed to develop the integrated model in the current study.
TABLE 1 Predictive ability and MSE of GEBVs for different parametric methods using simulated dataset at different levels of heritability (h2).

h2/Parameters GBLUP BayseianLasso StepwiseR BLUP LASSO

0.3 PA 0.74 0.72 0.52 0.70 0.72

MSE 0.26 0.18 0.92 0.26 0.21

0.5 PA 0.86 0.83 0.42 0.84 0.83

MSE 0.23 0.25 0.90 0.24 0.23

0.7 PA 0.89 0.86 0.48 0.87 0.86

MSE 0.32 0.32 0.88 0.32 0.24
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From the above discussion, two models, GBLUP and SVR,

each from parametric and nonparametric respectively, can been

considered as the best model based on their performances in

terms of estimating GEBVs and EGVs respectively for selection

of individuals. Using these results, a robust model has been

developed by integrating GBLUP and SVR by minimizing their

error variance. Detailed results regarding error variance

estimated using different methods is given below.
3.3 Comparison of error variances for
GBLUP, SVM and integrated model

Here, two different methods for estimation of error

variances, i.e., RCV and k-RCV, have been used for GBLUP,

SVR, and Integrated model. Results of the same have been

presented one by one in the tables given below.

3.3.1 Refitted cross validation
Error variance estimated using Refitted Cross Validation

(RCV) for GBLUP, SVR, and Integrated model is presented

in Table 3.

From Table 3, it has been observed that error variance of the

integrated model is less than the error variance of GBLUP and

SVR at diverse genetic architectures i.e., irrespective of levels of

heritability and genetic effects.

3.3.2 k-fold refitted cross validation
Error variances estimated using k-fold refitted cross

validation (i.e., k-RCV) for GBLUP, SVR, and Integrated

model were given in Table 4.

From Table 4, it has also been observed that the error

variance of the integrated model was found to be less than
Frontiers in Plant Science 07
GBLUP and SVR across all levels of heritability using k-

RCV approach.

In order to compare and better understand the results

obtained through different methods of estimations for error

variance (i.e., RCV, k-RCV), the same has been presented

graphically in Figure 3.

The following important findings can be drawn from the

results (Figure 3).
i. The error variance estimated through RCV and

k-RCV is almost similar. However, variance

estimated through RCV is slightly lower than k-

RCV; this difference may be caused by the

reduced sample size in case of k-RCV.

ii. Our proposed method is robust to both

architecture (i.e., additive and epistatic) as

evidenced from error variance obtained through

RCV and k-RCV.

iii. Error variance obtained through RCV and k-

RCV is highest for SVR in comparison to BLUP

and the integrated model.

iv. In general, error variance increases with increase

in heritability level across the various methods.
3.4 Performance of error variance
estimation methods for integrated model

Here we have presented the results of different error variance

estimation methods (RCV and k-RCV) in terms of their

capability and how accurately it gives GEBVs or EGVs. The

same has been calculated using each approach, i.e., GBLUP,
TABLE 2 Predictive ability and MSE of EGVs for different nonparametric methods under study using simulated dataset for various levels of
heritability (h2).

h2/Parameters RKHS ANN SVR RF

0.3 PA 0.53 0.72 0.75 0.63

MSE 0.67 0.60 0.47 0.78

0.5 PA 0.55 0.82 0.85 0.70

MSE 0.86 0.55 0.55 0.60

0.7 PA 0.62 0.84 0.88 0.72

MSE 0.93 0.58 0.54 0.71
frontiersin
TABLE 3 Error variance for different GS models at different heritability using RCV.

h2 GBLUP SVR Integrated Model

0.3 1.12 4.57 0.90

0.5 0.94 9.39 0.85

0.7 1.10 22.84 1.05
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SVR, and integrated model, and the predictive ability of each of

them was observed.
3.4.1 Refitted cross validation
Predictive ability for GBLUP, SVR, and the integrated model

using RCV variance is given below in the table at different levels

of heritability and genetic effect.
3.4.2 k-fold refitted cross validation
Predictive ability for GBLUP, SVR, and the integrated model

using k-RCV variance is given below in the table at different

levels of heritability and genetic effect.

The following important findings can be drawn from the

results obtained in Tables 5, 6:
Fron
i. Performance of GBLUP is good when data have

only additive architecture, while SVR performs

equally well with diverse genetic architecture

(with and without epistasis), especially at low

heritability.

ii. At low heritability, the performance of the

integrated model is consistent and robust.

iii. However, at high heritability (i.e. h2 = 0.5 & 0.7),

the performance of all the models in terms of

prediction accuracy are at par.
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iv. With increasing levels of epistasis and heritability,

the predictive ability of the integrated model is

still maintained
In order to support the facts obtained from the results of the

simulation study, the same has also been tested on real datasets.

Results obtained from the real dataset also tells the same story;

here prediction accuracy for the integrated model is either at par

or better than GBLUP and SVR model. However, here also the

performance of k-RCV is slightly better than RCV. Graphical

representation of the same is given below (Figure 4).

From the above discussion, two models, GBLUP and SVR,

each of parametric and nonparametric respectively, can be

considered the best models based on their performance in

terms of reduced error variance and improved estimation of

GEBVs and EGVs, respectively, for the selection of individuals.

On the basis of this result, a robust model has been developed in

this study by integrating GBLUP and SVR based on suitable

weightage according to their error variance.
3.5 Practical deployment to the
breeding programs

Here we present the R script as supplementary information

for estimating the GEBVs of an individual using the integrated
TABLE 4 Error variance for different GS models at different heritability using k-RCV.

h2 GBLUP SVR Integrated Model

0.3 1.04 4.57 0.85

0.5 1.05 9.91 0.95

0.7 1.28 26.72 1.22
BA

FIGURE 3

Error variance for integrated GS model at different heritability using various methods (A) RCV and (B) k-RCV in comparison to the error variance
of best methods from both parametric and nonparametric i.e. GBLUP and SVR (Results from Tables 3, 4).
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TABLE 6 Predictive ability (PA) with its standard error (SE) for different GS models at different heritability using k-RCV variance.

h2 GBLUP
(a,e0)

GBLUP
(a,e1)

SVR(a,
e1)

SVR(a,
e0)

Integrated Model
(a,e0)

Integrated Model
(a,e1)

Integrated Model
(a,e2)

Integrated Model
(a,e3)

0.3 PA 0.74 0.68 0.75 0.74 0.76 0.74 0.70 0.66

SE
(PA)

0.045 0.072 0.062 0.063 0.048 0.045 0.04 0.042

0.5 PA 0.86 0.84 0.85 0.81 0.88 0.87 0.82 0.80

SE
(PA)

0.032 0.045 0.041 0.048 0.029 0.026 0.032 0.041

0.7 PA 0.89 0.87 0.88 0.85 0.91 0.89 0.85 0.82

SE
(PA)

0.030 0.039 0.032 0.041 0.027 0.024 0.032 0.03
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TABLE 5 Predictive ability (PA) with its standard error (SE) for different genomic selection models on mixed architecture (additive and epistatic
effects) using RCV variance.

h2 GBLUP
(a,e0)

GBLUP
(a,e1)

SVR(a,
e1)

SVR(a,
e0)

Integrated Model
(a,e0)

Integrated Model
(a,e1)

Integrated Model
(a,e2)

Integrated Model
(a,e3)

0.3 PA 0.74 0.68 0.75 0.74 0.75 0.74 0.70 0.64

SE
(PA)

0.045 0.072 0.062 0.063 0.059 0.056 0.055 0.06

0.5 PA 0.86 0.84 0.85 0.81 0.88 0.85 0.82 0.79

SE
(PA)

0.032 0.045 0.041 0.048 0.035 0.027 0.03 0.03

0.7 PA 0.89 0.87 0.88 0.85 0.90 0.89 0.84 0.81

SE
(PA)

0.030 0.039 0.032 0.041 0.024 0.020 0.02 0.02
FIGURE 4

Prediction accuracy for different genomic selection models on a real dataset.
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model (Supplementary File S1). The user may also run different

GS-based models using a variety of other publicly accessible R

tools & packages. In the future, GS-based tools or R packages

may be developed that incorporate advanced and other GS-

based models for hassle-free implementation.
4 Conclusion

In the current study, an effort has been made to develop a

comprehensive methodology that addresses both the advantages

and disadvantages of each parametric and nonparametric model.

The performance of the GBLUP and SVRmodels was determined

to be the best among its counterparts for both the parametric and

nonparametric frameworks, respectively. The predictive ability

and error variance of the developed integrated model were

assessed, and it was found that our proposed approach

performs either better or at par with existing models. It has also

been observed that our proposed model is good at handling the

diverse genetic architecture, i.e., additive and epistatic, in terms of

reducing the error variance and enhancing the predictive ability.

As a future directive, developed methodology could be evaluated

by measuring the impact of within and across family predictive

ability and other cross validation schemes.
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