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Response of the wheat
mycobiota to flooding
revealed substantial shifts
towards plant pathogens
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Rainfall extremes are intensifying as a result of climate change, leading to

increased flood risk. Flooding affects above- and belowground ecosystem

processes, representing a substantial threat to crop productivity under climate

change. Plant-associated fungi play important roles in plant performance, but

their response to abnormal rain events is unresolved. Here, we established a

glasshouse experiment to determine the effects of flooding stress on the spring

wheat-mycobiota complex. Since plant phenology could be an important

factor in the response to hydrological stress, flooding was induced only once

and at different plant growth stages, such as tillering, booting and flowering. We

assessed the wheat mycobiota response to flooding in three soil-plant

compartments (phyllosphere, roots and rhizosphere) using metabarcoding.

Key soil and plant traits were measured to correlate physiological plant and

edaphic changes with shifts in mycobiota structure and functional guilds.

Flooding reduced plant fitness, and caused dramatic shifts in mycobiota

assembly across the entire plant. Notably, we observed a functional transition

consisting of a decline inmutualist abundance and richness with a concomitant

increase in plant pathogens. Indeed, fungal pathogens associated with

important cereal diseases, such as Gibberella intricans, Mycosphaerella

graminicola, Typhula incarnata and Olpidium brassicae significantly increased

their abundance under flooding. Overall, our study demonstrate the

detrimental effect of flooding on the wheat mycobiota complex, highlighting

the urgent need to understand how climate change-associated abiotic

stressors alter plant-microbe interactions in cereal crops.
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Introduction

Intense and long-lasting precipitations are expected to

increase in frequency in Europe and other regions with

ongoing global warming, which will in turn increase the

frequency of flooding events (Tabari, 2020). Flooding causes a

saturation of soil pore volume (i.e., waterlogging) and thus, gas

transport including oxygen is substantially reduced. Cereal crop

fitness and productivity are severely affected by water flooding

since oxygen depletion occurs (Rhine et al., 2010; Morton et al.,

2015; Ding et al., 2020), and even short-term flooding events

(e.g., a few days) can significantly impact wheat growth (Malik

et al., 2002). Wheat yield losses due to flooding and waterlogging

range from 10% to over 50% (Jincai et al., 2001; Kaur et al.,

2020), but they depend on stress duration, wheat genotype,

growth stage, agricultural management, and soil characteristics

(Kaur et al., 2020).

Flooding alters soil physiochemical properties, such as pH,

redox potential, nutrient concentrations, and promotes oxygen

depletion. Collectively, these changes in soil adversely affect the

capability of a crop plant to survive (Visser et al., 2003; Dat et al.,

2004; Niu et al., 2014). Equally important, flooding influences

plant-microbe interactions, causing substantial compositional

shifts of the plant microbiota with crucial consequences on its

beneficial functionalities for the host plant (González Macé et al.,

2016; Francioli et al., 2021a).

The biodiversity of soil-inhabiting fungi plays a key role in

crop production and agricultural ecosystem functioning, especially

in cereal cropping systems. Soil moisture is a key factor controlling

fungal abundance and mycobiota structure. Most research on

flooding and waterlogging of soil mycobiota has focused on

wetlands, and thus, there is only a rather limited understanding

of how the crop mycobiota is affected by waterlogging. Arbuscular

mycorrhizal fungi (AMF) can support the growth and yield of

crops by increasing mineral nutrient uptake, disease resistance and

abiotic stress tolerance of crop plants, including cereals (Pellegrino

et al., 2015). Plant benefits from mutualistic fungi may be

negatively affected by soil waterlogging through the reduction of

the initiation of mycorrhizal colonization of the host plants (Miller

and Sharitz, 2000; Wolfe et al., 2006; Wang et al., 2016), which in

turn reduces plant nutrition, in particular root phosphorous uptake

(Deepika and Kothamasi, 2015). Flooding may also increase plant

susceptibility to pathogens (Kirkpatrick et al., 2006), since infection

by a number of pathogens is favored under anoxic conditions

(Velásquez et al., 2018). On the other hand, flooding induces

general defense pathways that may increase pathogen resistance

and plant fitness (Adams et al., 2017).

Since the frequencies and intensities of extreme precipitation

events are predicted to increase in the upcoming decades, it is

crucial to understand how such environmental changes will

affect the biodiversity and functions of fungal populations

interacting with cereal crop hosts. Hence, we set up a pot
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mycobiota. In this experiment, flooding stress was induced only

once, either at tillering, booting or flowering because plant

phenology is an important driver in plant microbiota assembly

(Donn et al., 2015; Francioli et al., 2018; Lewin et al., 2021) and

abiotic stress may differentially affect the microbiota assembly

dynamics depending on the specific plant growth stage (PGS) in

which it occurs (Na et al., 2019; Breitkreuz et al., 2020). We used

a metabarcoding approach to assess the response of the

mycobiota associated with different plant compartments

(phyllosphere, rhizosphere and root) to flooding stress. Several

soil and plant parameters were measured to correlate

physiological plant and edaphic changes with shifts in

mycobiota structure. We expected that plant biomass would be

negatively affected and that soil physico-chemical parameters

and plant physiological state would change in response to

flooding. Thus, we hypothesized that (i) the wheat mycobiota

structure would be differentially affected depending on the

timing of flooding events, with early mycobiota being more

susceptible to community disruption. Furthermore, we

hypothesized (ii) that these shifts in mycobiota assemblage

between control and flooding treatment would be strongly

correlated by alterations in the soil and plant traits induced by

flooding stress. Lastly, we hypothesized (iii) substantial shifts in

wheat mycobiota functional guilds as a response to flooding and

waterlogging stress.
Materials and methods

Experimental setup

We investigated the response of the wheat mycobiota

complex to flooding stress establishing a pot experiment that

was conducted from September to December 2019 in a

glasshouse at the Leibniz Institute of Plant Genetics and Crop

Plant Research (IPK) in Gatersleben, Germany. Detailed

description of the experimental setup is provided in Francioli

et al. (2021a). In brief, seeds of spring wheat (Triticum aestivum

L. Chinese Spring) were germinated in sieved soil (2 mm), which

was obtained from the “Experimental Station Dedelow”

(Prenzlau, Germany). The soil is classified as a sandy loam

and its physico-chemical parameters are listed in Table S1. In the

third week after sowing, seedlings were individually transferred

to 10 L pots containing 5 kg of the soil used for germination (one

seedling per pot). Wheat plants were grown under controlled

conditions of day/night temperature, i.e., 18/16°C, air humidity

70%, light intensity 250-300 µE and photoperiod of 16 h light

and 8 h darkness. A completely randomized design was used to

place the pots on glasshouse tables. To monitor the

developmental stage of the plants and the consequent flooding

induction, we used the Zadoks scale (Zadoks et al., 1974).
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Flooding stress was induced only once and for a period of 12

days at tillering, booting, or flowering, and replicates were

destructively sampled (Figure S1). Considering that the aim of

the experiment was to investigate the response of the soil-wheat-

mycobiota complex to severe water stress, flooding was induced

for a period of 12 days to ensure sufficient oxygen depletion in

the flooded treatments. Previous studies have shown that

complete oxygen depletion in the top soil occurs within 2-8

days of flooding across a wide range of soils (Cannell et al., 1980;

Meyer et al., 1985; Drew, 1992). Six replicates were established

for each combination of plant growth stage and water treatment,

for a total of 36 pots. Control plants were monitored at 50%

WHC, which corresponded with the field capacity of the soil

used in this study. Flooding treatment was established by

keeping manually the water level at least 5 cm above the soil

surface for 12 days.

On the twelfth day of exposition to flooding, and in the

corresponding developmental stages, control and flooded plants

were harvested, and tillers and spikes number recorded. Leaf

material was collected only from fully expanded leaves, while

rhizosphere soil was collected by manually uprooting wheat

plants and shaking off the root-adhering soil into sterile zip bags.

Afterward, roots were carefully washed with tap water to remove

the remaining soil particles as much as possible. Soil, leaf and

root samples were immediately frozen and stored at -80°C.

Macro- (C, N, P, Mg, S, K and Ca) and micronutrient (Mn,

Zn and Na) concentrations in the roots and leaves were

measured using sector field high-resolution mass spectrometry

(HR)-ICP–MS (Element 2, Thermo Fisher Scientific, Germany).

Several edaphic parameters were also measured from the

rhizosphere soil samples. Briefly, total soil organic carbon

(TOC) and total nitrogen (TN) contents were determined in

triplicate by dry combustion using a Vario EL III C/H/N

analyzer (Elementar, Hanau, Germany). Plant available P

(PDL) was extracted from fresh soil with double lactate

extraction (1:50 w/v, pH 3.6, 1.5 h; Riehm (1943)). After

filtration of the suspension (Whatman Schleicher and Schuell

595 1/5 Ø 270 mm), the extracted P was quantified

colorimetrically using the molybdenum blue method (Murphy

and Riley, 1962). Mn, Ca, Na, K, and Mg concentrations in soil

were determined using inductively coupled plasma-optical

emission spectrometry-ICP-OES (ICP-iCAP 6300 DUO,

ThermoFisher Scientific, Germany). Although some soil and

plant data have been published in a previous work (Francioli

et al., 2021a), here we present the full dataset of soil and plant

properties measured in the study.
DNA extraction, amplicon library
preparation and sequencing

DNA was extracted from the collected material using

respectively 0.35g of soil, leaf and root, with the DNeasy
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PowerLyzer PowerSoil Kit (Qiagen). We employed the same

DNA extraction kit for the isolation of the genomic material

from all the collected samples to allow the comparison of fungal

communities across compartments, as suggested in Francioli

et al. (2021b). Fungal DNA amplification was performed using

the primers ITS1F/ITS2R (White et al., 1990) using the following

PCR protocol: PCR was carried out in a 50 ml reaction volume

with 1 ml of DNA template (~ 5ng), 0.2 mM dNTPs and 0.4 mM
of each primer (PCR conditions: 95°C for 5 min; 35 cycles at

95°C for 1 min, 56°C for 1 min and 72°C for 1 min; and 72°C for

5 min). The amplicons were sent to LGC Genomics GmbH

(Berlin, Germany) for barcoding and paired-end sequencing on

Illumina MiSeq v3 platform. Demultiplexing was performed

using Illumina bcl2fastq 2.17.1.14 software following clipping

of barcode and sequencing adapters. Primers were removed

using Cutadapt v3.4 (Martin, 2011) following sequence

processing using QIIME 2 v2022.2 (Bolyen et al., 2019).

Denoising was performed by using the build-in method for

DADA2 (Callahan et al., 2016) with forward and reversed reads

truncated at 250 bp and 220 bp, respectively. The DADA2

pipeline started from 13,427,188 reads and yielded 9,005,083

non chimeric sequences. Amplicon sequencing variants (ASV)

produced by DADA2 were assigned to taxonomy using the naïve

bayesian classifier (Wang et al., 2007) against the Unite 8.3

reference database (Nilsson et al., 2018), and non-fungal ASVs

were discarded. Only ASVs that were detected in more than two

samples were included in the data analyses. Alpha diversity

metrics were calculated from the normalized sequence library,

which was rarefied to 20,000 reads per sample.
Functional characterization of
the fungal ASVs

We characterized the ASV data into three functional guilds,

pathogens, saprotrophs, and mutualists, based on functional

guilds associated with a given taxonomic level reported in the

databases FUNGuild (Nguyen et al., 2016) and FungalTraits

(Põlme et al., 2020) according to the authors’ instructions. To

create the subset of pathogenic ASVs, we followed the procedure

described in Francioli et al. (2020). Briefly, we kept only the

identified pathogen ASVs that were taxonomically characterized

at the species level, and then their plant pathogenicity was cross-

checked using the literature references (Agrios, 2004; Domsch

et al., 2007; Arnolds and van den Berg, 2013; Farr and Rossman,

2014; Dighton, 2016; Dighton and White, 2017) to include

pathogens that are associated with well-established plant

diseases. We acknowledge that the modus operandi used to

attribute the “pathogen” classification to the fungal species

identified may have introduced some biases, since the effective

pathogenicity of a particular fungal taxon also depends on the

realized host-fungus interactions and the environmental context

(van Ruijven et al., 2020; Ampt et al., 2022). By comparison, the
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classification of the identified ASVs in saprophytic and

mutualistic fungi was less complicated. Fungal saprobes are

merely those that have only been reported as free-living or in

combination with an endophytic guild, whereas mutualistic

fungi were those taxa reported as arbuscular mycorrhizal

(obligate symbionts) or exclusively endophytic fungi (i.e.,

fungal endophytes that have not been reported as pathogenic

or saprotrophic) (Lozano et al., 2021). In total, 502 fungal ASVs

were assigned to a functional guild, representing 42.7% of the

total fungal sequences.
Statistical analyses

Differences in soil and plant properties were tested among the

treatments and plant growth stage (PGS) by univariate analysis of

variance (ANOVA) followed by Tukey’s honestly significant

difference (HSD) post hoc test. All variables included in the

analysis were tested for normality using Shapiro-Wilk and

Jarque-Bera tests, and the homogeneity of variance was

examined using Levene’s test. A log10 transformation was

applied to all variables that did not meet the parametric

assumptions. Univariate PERMANOVA models were used to

test the effects of soil-plant compartment, PGS and watering

treatment on fungal richness (Anderson, 2017). Pairwise

differences in fungal richness between watering treatments at

the same PGS and compartment were estimated using ANOVA

followed by Tukey’s HSD post hoc test. Differences in the fungal

community structure were determined across plant-soil

compartments, PGSs and flooding treatments. We first

calculated Bray-Curtis dissimilarities using Hellinger

transformation (square root transformation of relative

abundances; Legendre and Gallagher (2001)). Permutational

multivariate analysis of variances (PERMANOVA) based on

Bray-Curtis dissimilarity was performed to analyze the effect of

the abovementioned experimental factors on the mycobiota

structure using 999 permutations for each test. Structural

dissimilarities of the mycobiota between flooding and control

treatments at each PGS were compared to resolve at which PGS

the application of flooding had the largest effect. Variance

partitioning based on redundancy analysis (RDA) was

performed to quantify the contribution of soil properties, plant

attributes, PGSs and watering treatments to the structure of fungal

communities in each compartment. Following Blanchet et al.

(2008), the significance of the global model using all predictors

was tested first. Variable selection was performed using forward

selection implemented with the forward.sel function in the R

package “packfor” (Dray et al., 2011). Variance partitioning was

conducted using the varpart function in the “vegan” R package

(Oksanen et al., 2018). We then constructed a model of

multivariate analysis of variance using distance-based

redundancy analysis (db-RDA) based on the Bray-Curtis

distance to determine the environmental variables that were
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compartment. Fungal biomarker taxa were identified by

explaining differences between the mycobiota compartments

and between flooding and control treatments at each PGS in all

three plant-soil compartments, employing a linear discriminant

analysis effect size (LEfSe) (Segata et al., 2011). To test whether the

relative abundance of a specific fungal taxa or the cumulative

abundances of the three fungal guilds (pathogens, saprobes and

mutualists) were affected by watering treatment we built factorial

GLMs with negative binomial errors, building a separate model

for each test using the glm.nb function in the “MASS” R package

(Venables and Ripley, 2002). All data were analyzed with R

version 4.0 (R Core Team, 2020).
Results

Effect of flooding on plant performance,
plant traits and on soil properties

Flooding had a detrimental effect on wheat fitness. We found

a reduced root biomass (55%) at tillering (P< 0.05), while at

booting, shoot and root dry biomass decreased by 25% and 70%,

respectively (Table S2). Furthermore, significant (P< 0.05)

decreases in the number of tillers (29%) and spikes (13%) were

associated with flooded wheat plants (Table S2). Significant

effects of flooding on the measured soil-plant traits were

widely observed across all plant compartments. Overall,

significant increases (P< 0.05) in soil moisture, pH, Zn, and

available P was observed in all flooded soil samples (Table S3).

Flooding had also a severe effect on root and leaf properties, as

the concentration of all the plant nutrients measured were

strongly affected by this stressor, especially at early stage of

plant growth. For example, the root and leaf N, S, P, Mg and K

concentrations were significantly (P< 0.05) lower in the flooded

wheat plants at tillering and booting stage (Table S3). On the

contrary, total soil C and S, root S and Na, and leaf C showed a

significant (P< 0.05) different trend, being higher (P< 0.05) in

the control than in the flooded samples.
Effect of plant compartment, PGS and
flooding on the wheat mycobiota

The ITS rRNA gene high-quality reads recovered from all

samples clustered in 1772 fungal ASVs. Fungal richness ranged

from 21 to 415 ASVs and differed significantly among plant

compartments (P< 0.001, Table S4), with the rhizosphere

having the highest and the phyllosphere the lowest number

(Figure 1A). Compartmentalization explained most variation in

total fungal richness, whereas plant growth stage (PGS) and

watering treatment (WT) had a marginal effect (Table S4). Plant

compartment was also the main factor for variation in mycobiota
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structure (44% of variance; Table 1), and principal coordinate

analysis (PCoA) clearly reflected this finding (Figure 1B). Looking

belowground, the root-associated fungal (RAF) ASVs were mainly

a subset of the rhizosphere community (Figure 2A). However,

large differences in the abundances of the dominant fungal taxa

were observed between these two belowground compartments.

For instance, the rhizosphere mycobiota was characterized by a

significantly higher proportion (P< 0.05) of the phyla

Mortierellomycota, Chytridiomycota, and Zoopagomycota and

of the class Tremellomycetes (Basidiomycota) compared with

the other compartments (Figure S2). On the other hand, wheat

roots were enriched (P< 0.05) in fungal taxa affiliated with the

Basidiomycota classes Agaricomycetes and Cystobasidiomycetes.

Leaf mycobiota was primarily composed by taxa within the

Ascomycota classes Dothideomycetes and Sordariomycetes

(Figure S2). Notably, taxa associated with the phyla

Olpidiomycota and Mucoromycota were solely identified in root

and leaf samples, respectively (Figure 2B).

Within each compartment, substantial and significant effects

offlooding and plant phenology on the mycobiota structure were

found. In general, flooding explained approximately 7% of the

variance across all plant compartments, while PGS accounted for

20% of the variation in roots and leaves and 14% in the
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between PGS and WT, which explained an additional 7.2%,

10.8% and 9.8% of variation in the rhizosphere, root and leaf,

respectively. This interaction suggests a differential response of

the wheat mycobiota to flooding, which is, however, dependent

on the PGS at which flooding stress was induced. Principal

coordinates analysis of each investigated compartment

confirmed the PERMANOVA results, distinguishing the

samples associated with a particular PGS along the first axis,

while the second coordinate clearly separated flooded samples

from the corresponding controls (Figures 3A–C).

To understand at which PGS the application of flooding had

the largest effect on the mycobiota assemblage dynamics, we

compared structural dissimilarities of the fungal communities

between flooding and control treatments at each PGS. In the

rhizosphere, the largest impact of flooding stress on the

mycobiota community assemblage was observed in the earliest

(tillering) and latest stages (flowering) of plant growth

(Figure 4). In the roots and leaves, the lowest impact of

flooding on fungal community structure was observed at

flowering, while the highest impact was observed at tillering

and booting. LEfSe analysis confirmed that flooding stress

caused a larger disruption to early (tillering) compared with
A B

FIGURE 1

Characteristics of the wheat mycobiota. (A) Observed richness and (B) principal coordinate analysis of the wheat mycobiota across plant
compartment, plant growth stage and watering treatment.
TABLE 1 The effect of the soil-plant compartment, plant growth stage (PGS) and watering treatment (WT) on the wheat mycobiota structure.

Parameter df Pseudo-F R2 P‐value

Compartment 2 52.276 0.447 0.001

PGS 2 5.120 0.044 0.001

WT 1 3.048 0.013 0.008

Compartment * PGS 4 3.559 0.061 0.001

Compartment * WT 2 2.671 0.023 0.003

PGS * WT 2 2.277 0.019 0.015

Compartment * PG * WT 4 1.960 0.034 0.004
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late (booting and flowering) wheat mycobiota in all

compartments, identifying at tillering always twice as many

fungal biomarker taxa as in the other PGSs (Figures S3-5).

Furthermore, mycobiota dissimilarities between flooding and

control treatments were always lower in the soil than in the

leaves and roots (Figure 4), suggesting that the effects of flooding

on fungal community assembly were more pronounced on

plant-associated fungi.

Finally, variance partitioning was performed to quantify the

contribution of soil and plant properties and their interactions

with watering treatment and PGS on the structure of the wheat

mycobiota. These four experimental factors captured a large

proportion of the variance, accounting for 55%, 42% and 38% in

the root, leaf and rhizosphere, respectively (Figures 3D–F).

Within the rhizosphere and leaf compartments, the pure effect
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of these variables on the wheat mycobiota structure was

marginal, since most variance explained by them was shared.

In contrast, the root mycobiota was considerably influenced by

the pure effect of plant traits (9% of variance), PGS (7% of

variance) and WT (4% of variance) and by the interactions of

these factors and soil parameters (>20% of variance). These

findings suggested an important interactive effect of PGS and

WT on plant and soil properties, which in turn significantly

affected mycobiota assembly. db-RDA further revealed that root

C and Mn together with leaf N, Mg and Mn content were

significant factors (P< 0.05) affecting RAF assembly (Table 3).

The fungal community inhabiting the rhizosphere was mainly

influenced by soil parameters such as pH, soil K and PDL (P<

0.05), together with root N and Na concentration. On the

contrary, the leaf mycobiota was significantly (P< 0.05)
TABLE 2 The effect of plant growth stage (PGS) and watering treatment (WT) on the fungal community structure associated with the rhizosphere,
root and leaf compartments.

Parameter df Pseudo-F R2 P‐value

Rhizosphere

PGS 1 2.712 0.14 0.001

WT 2 2.534 0.065 0.001

PGS * WT 2 1.4 0.072 0.007

Root

PGS 1 4.375 0.197 0.001

WT 2 2.966 0.067 0.001

PGS * WT 2 2.399 0.108 0.001

Leaf

PGS 1 4.801 0.213 0.001

WT 2 2.986 0.066 0.001

PGS * WT 2 2.206 0.098 0.001
front
A B

FIGURE 2

Composition of the wheat mycobiota. (A) Venn diagram showing the shared and unique fungal ASVs between soil-plant compartments. (B) Relative
abundance of the main fungal phyla composing the wheat mycobiota across plant compartment, plant growth stage and watering treatment.
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affected primarily by leaf traits as Na, Mg, Mn and K

concentration, and by root K and root Mn (Table 3).
Pathogens

We identified 28 ASVs from the 1772 fungal ASVs that are

known as plant pathogenic fungal taxa (Table S5). They accounted

for 6.5% of the total fungal reads and were affiliated with 16 fungal

species, mainly of the genera Gibberella, Olpidium,Mycosphaerella,

Ilyoectria and Typhula. Belowground compartments were

characterized by distinct pathogenic taxa and by a significant (P<

0.05) higher number of pathogens, while PSG and WT had a

marginal or no effect on pathogen richness (Table S6; Figure S6).

Flooding notably influenced plant fungal pathogenic community

assembly (Figure S7; Table S7), since it significantly (P< 0.05)

increased their abundance (from 5.4% to 7.6% of total fungal reads

in the control and flooding samples, respectively), and particularly

at the early stage of plant growth (Figure 5A). Gibberella intricans

(teleomorph of Fusarium equiseti), the causal agent of head blight

and crown rot in cereals, was (i) the most representative pathogen

identified (accounting for 5.1% of total fungal sequences), (ii)

detected in all samples, and (iii) significantly (P< 0.05) more

abundant in flooding (5.8% of total reads) than in the control

treatments (4.4%). Most other representative fungal pathogens were

associated with a specific compartment. This was the case for
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Mycosphaerella graminicola, the causal agent of wheat leaf blotch,

which was exclusively detected in wheat leaves and showed a

significant increase (P< 0.05) in all flooded plants compared with

the control plants (Figure 5A). Similarly, Typhula incarnata, a

fungal species responsible for Typhula blight in wheat (Lawton

and Burpee, 1990), was uniquely found in the flooded rhizospheric

samples. Olpidium brassicae, a soil-borne root-infecting pathogen

(Hartwright et al., 2010) and a vector of plant viruses (Campbell,

1996) that has been previously reported in wheat roots (Esmaeili

Taheri et al., 2015), was solely detected in root samples. O. brassicae

was also found significantly more abundant (P< 0.05) in flooded

roots and wasmainly associated with late PGSs, such as booting and

flowering (Figure 5A).
Saprotrophs

Saprotrophs were represented by 394 ASVs and accounted

for a large proportion of the mycobiota, ranging from 25% in the

belowground compartments to more than 50% in the

phyllosphere (Figure 5B). The saprophytic communities

differed significantly in structure, composition and richness

between compartments and responded significantly to WT

and PGS (Figures S8-9; Table S8-S9). Panaleous fimicola, a

ubiquitous soil saprotroph belonging to Agaricomycetes, was

the most abundant saprobe found belowground (accounting for
A B

D E F

C

FIGURE 3

Effect of the experimental variables on the spring wheat-mycobiota complex. Principal coordinates analysis (PCoA) of the mycobiota detected in
the (A) leaf, (B) rhizosphere and (C) root compartments. Variance partitioning analysis illustrating the effects of soil parameters, plant traits,
watering treatment and plant growth stage (PGS) on the mycobiota associated with the (D) leaf, (E) rhizosphere and (F) root compartments.
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7.4% of total fungal sequences), but it was not detected in the

phyllosphere. P. fimicola was significantly influenced by WT, as

it was almost depleted in rhizosphere samples under flooding

(from 8.1% to 0.8% of total fungal reads in the control and

flooding samples, respectively) (Figure 5B). The rhizosphere
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mycobiota was characterized by a proportion of saprotrophic

taxa affiliated with the cosmopolitan Ascomycota genera

Tetracladium and Talaromyces, which were scarcely detected

in the other compartments. In the roots, we found coprophilous

taxa associated with the Sordariomycetes genera Myrmecridium
A

B

D

E

F
C

FIGURE 4

Heatmap representing the Bray-Curtis dissimilarity of mycobiota structure between watering treatment and plant growth stage (PGS) in the (A) leaf, (B)
rhizosphere and (C) root compartments. Box plots of the Bray-Curtis dissimilarities between flooding and control samples at each PGS in the (D) leaf,
(E) rhizosphere (F) and root compartments. The different letters indicate significant differences among PGS (Tukey’s HSD test P< 0.05).
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and Schizothecium. Their abundance shifted across PGS,

regardless of WT. The saprophytic community of the

phyllosphere was structured by completely different fungal

taxa, with large compositional shifts across PGS and WT

(Figure 5B). Arthrinium malaysianum and Preussia pilosella

were the most representative species, and they were not

detected belowground. Furthermore, leaf-inhabiting

endophytes of Basidiomycetous yeasts Filobasidium, which are

endophytes and occur in the phyllospheres and grains of several

wheat varieties (Nicolaisen et al., 2014; Sapkota et al., 2017), were

uniquely found in leaves, and they were not affected by WT.
Mutualists

Mutualists represented a low proportion of the total

mycobiota, accounting for approximately 1% of the total

sequences and 80 ASVs. Of these ASVs, 53 were identified as

AMF species (phylum Glomeromycota, 0.56% of total fungal

reads), and Archaeospora trappei, Funnelifromis caledonium,

Parglomus laccatum and Rhizophagus rregolaries were the

most abundant AMF identified. The remaining 17 ASVs

corresponded to root endophytic fungi affiliated with the

Ascomycota genera Knufia and Lecythophora. Mutualist

richness depended on the plant compartment, since none were

identified in the phyllosphere. Interestingly, mutualist richness

and community structure were strongly affected by flooding

(Table S10-S11, Figure S10), as their richness and abundance

decreased dramatically in flooded soils and roots (Figure 5C,

Figure S11). The deleterious effect of flooding on the mutualist

taxa was more evident in the rhizosphere than in the roots

(Table S11; Figure 5C). PGS had also a significant effect (P<0.05)
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on richness and structure of mutualistic fungi, which was more

pronounced in the rhizosphere, as the abundance of these

beneficial taxa consistently increased with plant maturity.
Changes of soil and plant properties over
PGS and WT significantly influenced
fungal functional guilds

Variance partitioning and db-RDAmodel analysis revealed a

strong contribution of soil and plant properties and their

interactions with watering treatment and PGS on the structure

of the characterized fungal functional guilds (Figure S12; Table

S12). In general, the fungal guilds associated with roots and

leaves were more affected by the experimental variables than

those in the rhizosphere (Figure S12). For instance, variance

partitioning captured more than 35% of the variation within the

root and leaf pathogen communities, revealing that root

pathogens were significantly (P< 0.05) correlated with soil pH,

S and K, while phyllospheric pathogens were correlated with

root C, root S, leaf Na andMn contents (Table S12). As expected,

the saprotrophic communities were significantly associated with

specific properties characterizing the compartment in which

they were detected. Indeed, the rhizosphere saprotrophs were

significantly (P< 0.05) affected by soil pH and root C, Mn and

Mg. Root saprobes were influenced by root C, P and Mg

concentration, while leaf S, Na and C contents affected the

phyllosphere saprophytic community (Table S13). Mutualistic

taxa were solely identified belowground. The root mutualists

correlated with root K and Na concentrations. Interestingly, the

rhizospheric mutualistic community was associated with shifts

in soil pH, PDL and root S content (Table S14).
TABLE 3 Relationships between the predictor soil and plant properties and the mycobiota in the leaf, rhizosphere and root compartments.

Leaf Rhizosphere Root

F P F P F P

Soil pH ns ns 2.642 0.001 ns ns

PDL ns ns 1.525 0.013 ns ns

Soil S ns ns 1.336 0.049 ns ns

Root C ns ns 1.364 0.045 1.429 0.05

Root N ns ns 1.420 0.018 ns ns

Root Na ns ns 1.341 0.041 ns ns

Root K 1.647 0.002 ns ns ns ns

Root Mn 1.613 0.004 ns ns 2.471 0.001

Leaf N ns ns ns ns 2.027 0.002

Leaf Na 5.501 0.001 ns ns ns ns

Leaf Mg 4.821 0.001 3.550 0.001 7.330 0.001

Leaf Mn 2.566 0.001 ns ns ns ns

Leaf K 1.588 0.005 ns ns 1.760 0.005
frontiers
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Discussion

Our study demonstrated clear detrimental effects of flooding

on the spring wheat mycobiota complex. In addition to the

negative impact of flooding on wheat fitness, dramatic

compositional shifts in fungal communities were observed in

the flooded samples across the three soil-plant compartments

investigated. To a large extent, these differences were explained

by the pure and interactive effects of flooding and plant growth

stage (PGS) on plant and soil properties. Our work also

highlighted that flooding can significantly restructure the
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wheat mycobiota, in particular altering the composition and

abundance of agriculturally relevant taxa. Under flooding, the

relative abundance of pathogenic fungi increased compared with

the control plants, regardless of PGS and compartment.

Conversely, mutualistic taxa, especially AMF, significantly

decreased their richness and presence in all flooded samples.

These findings support the idea that flooding represents a

substantial threat to crop and cereal productivity under

climate change. Therefore, it is imperative to unravel factors

influencing the soil-plant-mycobiota complex and its

functionalities in response to climate change-associated
A

B

C

FIGURE 5

Relative abundance of the (A) pathogenic, (B) saprotrophic and (C) mutualistic taxa detected in the different compartments, plant growth stages
and watering treatments.
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extreme weather events (Rahmstorf and Coumou, 2011; De

Vries and Shade, 2013).
Flooding reshaped the wheat mycobiota

Our study provided an in-depth characterization of the effects

of flooding stress on the spring wheat mycobiota. The mycobiota

was greatly affected by flooding, as distinct fungal taxa

characterized the flooding and control samples across all three

soil-plant compartments, rhizosphere soil, roots and leaves. In

general, flooding stress caused large shifts in the mycobiota

structure at each PGS it was induced. However, it had the

greatest impact on the mycobiota assembly at tillering, especially

in the root compartment. These findings acknowledged our first

hypothesis, as they demonstrated that flooding caused a greater

disruption to early compared with late PGS mycobiota. Recent

studies have reported similar results, with the juvenile plant-

associated microbiota more affected by water stress compared

with the microbiota associated with late stages of plant

development (Xu et al., 2018; Francioli et al., 2021a; Francioli

et al., 2022). Taken together, these observations may imply that the

mycobiota of young plants is still in a dynamic process of

establishment, in which community assembly is less resilient to

abiotic and biotic stresses. Hence, a more stable mycobiota can be

expected to be associated with the plant during late growth stages

by prior establishment of a more stable community, i.e., likely with

a higher and tighter degree of interactions (Angel et al., 2016;

Edwards et al., 2018; Lewin et al., 2021). Interestingly, we observed

a more severe impact offlooding on the mycobiota associated with

plant compartments (roots and leaves) compared with the

rhizosphere compartment. This highlights the selective pressure

exerted by the plant host, corroborating that community assembly

dynamics of plant-associated fungi are to a large extent under host

control (Sapkota et al., 2015; Agler et al., 2016). Moreover, our

analysis showed that the spring wheat mycobiota, especially the

root-associated mycobiota, was significantly correlated with plant

traits and by their interactive effect with edaphic properties, PGS

and WT. Indeed, flooding dramatically affected plant and soil

properties, such as soil pH and many root and leaf attributes,

which in turn were significantly associated with shifts in the

mycobiota structure across the wheat plants (Table 3). Changes

in soil pH are a commonly reported consequence of waterlogging

(Sun et al., 2007; Hemati Matin and Jalali, 2017), and it has been

recognized as a key driver in structuring the mycobiota across a

wide range of soils and ecosystems (Fierer and Jackson, 2006;

Lauber et al., 2009; Bardelli et al., 2017; Guo et al., 2020). Plant

traits, such as root and leaf nutrient concentrations, have been

widely described as important factors in shaping the plant

mycobiota (Kembel and Mueller, 2014; Fitzpatrick et al., 2018;

Freschet et al., 2021), and their variations may significantly impact

community assembly (Leff et al., 2018; Ulbrich et al., 2021;

Maywald et al., 2022). Collectively, these findings validated our
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second hypothesis, highlighting the detrimental influence of

flooding on plant and soil properties, which in turn are strongly

associated with mycobiota structure and assembly dynamics.
Detrimental effects of flooding on
agriculturally relevant fungal clades

Flooding resulted in a substantial restructuring of the plant-

associated mycobiota along with a dramatic taxonomic and

functional guild change, validating our third initial hypothesis. We

observed a general and considerable decline in the relative

abundance and richness of mutualists and a concomitant increase

in the relative abundance and richness of pathogens and

saprotrophs. Belowground, arbuscular mycorrhizal fungi (AMF)

relative abundance declined in the flooded samples by nearly two-

thirds across all plant stages, driven primarily by Paraglomus and

Funnelifromis genera. These findings are in accordance with

greenhouse (Miller and Sharitz, 2000; Deepika and Kothamasi,

2015) and field studies (Barnes et al., 2018) that observed reduced

mycorrhizal hyphal growth and root colonization under high soil

moisture content. The significant increase in plant available P

measured in the flooded soils might also be linked to the

reduction in AMF richness and abundance, since soil available P

governs the level of root colonization by arbuscular mycorrhizal

fungi in agro- and natural ecosystems (Verbruggen et al., 2013;

Camenzind et al., 2014; Liu et al., 2016; Wang et al., 2017).

Furthermore, mycorrhizal fungi may play a vital role in improving

plant resistance and tolerance to biotic stressors such as pathogens

(Pozo et al., 2009). Thus, the increased detection of pathogens under

flooding might be a consequence of reductions in the diversity and

composition of AMF and in their inability to colonize roots under

flooding conditions (Azcón-Aguilar et al., 2002; Singh and Giri,

2017). In our study, fungal pathogens associated with important

cereal diseases, such as Gibberella intricans, Mycosphaerella

graminicola, Typhula incarnata, significantly increased their

abundance under flooding, which further supports the detrimental

effect of high soil moisture levels on the wheat mycobiota complex.

Predictably, flooding also favored the enrichment of the aquatic

fungus and root-infecting obligate plant parasite Olpidium brassicae,

which was mainly observed in flooded roots at late PGSs (booting

and flowering). These findings are in line with recent studies that

have shown significant increases in the abundance and richness of

fungal pathogens under flooding (Kirkpatrick et al., 2006; Barnes

et al., 2018) and drought (Choudhary et al., 2016; Francioli et al.,

2020; Lozano et al., 2021) across different ecosystems, indicating a

strong linkage between pathogen abundance and reduced plant

performance under these abiotic stresses (Chakraborty et al., 2000;

Garrett et al., 2006). Interestingly, across all soil-plant compartments,

the abundance of the identified fungal pathogens was always higher

in the flooded wheat plants at the tillering stage, which further

indicated a low resilience of the plant-associated mycobiota to

hydrological stress at an early growth stage.
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In addition, flooding affected also the fungal saprotrophic

community, which represented the largest proportion of the

characterized fungal functional guilds. Saprotrophs are less

dependent on plants than other fungal groups, and most of their

activity occurs around the rhizosphere because of the release of root

exudates and other rhizodeposits. They promote mineralization

processes, altering nutrient availability and may indirectly

influence plant growth (Gams, 2007; Bardgett and van der Putten,

2014). This explains the large differences in saprotrophic community

composition between the above and belowground compartments

investigated herein. Fungal saprophytic communities of the root and

rhizosphere compartments were particularly associated with shifts in

root nutrient concentrations caused by flooding. This highlights the

tight dependency of fungal saprotrophs with the soil environment.

Indeed, saprophytes are expected to be more dependent upon their

respective substrates than other fungal groups (Gebauer and Taylor,

1999) and could therefore be influenced by abiotic factors such as

soil nutrients or soil moisture (Kubartová et al., 2009; Crowther et al.,

2012; Francioli et al., 2021c). Furthermore, anoxia resulting from

flooding may profoundly influence plant growth and thus indirectly

alter the belowgroundmycobiota through changes in the quality and

quantity of rhizodeposits, including exudates, competition for

nutrients, or further mechanisms (Henry et al., 2007; Hartman

and Tringe, 2019). Overall, changes in the composition of plant-

associated mycobiota under flooding stress may have profound

ecosystem-level effects on plant fitness and productivity, as well as

on soil processes such as C, N and P cycles, within natural and

agricultural ecosystems (Barnes et al., 2018).

Our study addressed for the first time all relevant plant

compartments that are colonized by fungi and their response to

flooding stress. Experiments under controlled glasshouse conditions

represent an essential starting point, but there is a need to confirm

such insights from controlled plant-level studies with field

conditions that include a broader variance of soil parameters and

weather as well as further biotic interactions. Research on flooding

and waterlogging of the crop mycobiota in agroecosystems is

limited to only a handful of studies. While the soil mycobiota is

considerable resilient to drought (Bapiri et al., 2010; Kaisermann

et al., 2017; de Vries et al., 2018), they are evidently highly sensitive

to high soil moisture levels. This suggests that extreme precipitation

that leads to waterlogging events represents an overlooked and

important regulator of plant mycobiota assembly in agroecosystems

under climatic threats. In summary, our findings support the

adverse outlook of an increased plant pathogenicity under climate

change scenarios in agricultural ecosystems.
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