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Volatile organic compounds (VOCs) are one of the main fruit-quality

determinants in cucumber. Here, we investigated the differences in the VOC

and primary metabolite composition among 20 representative cucumber lines.

Results of non-targeted metabolomics revealed that the cucumber breeding

line of the Korean group showed a unique VOC composition in the fruit peel

compared to the other groups. Fruit-flesh VOCs significantly differed among

Korean, European, and Thai fruits. The main cucumber flavor components, 2-

hexenal, hexanal, 6-nonenal, 2,4-nonadienal, and 2,6-nonadienal, were lower

in the Korean cucumber lines than in the others. Conversely, linoleic acid

derivatives and a-linolenic acid, which are precursors of these VOCs, were

abundant in Korean cucumber line. This suggests that the metabolism related

to the characteristic flavor of cucumber are downregulated in Korean

cucumber line. This study provides novel insights into the fruit flavor-

associated metabolome in various cucumber lines.

KEYWORDS

Metabolomics, cucumber, fruit flavor, volatile organic compounds, hydroperoxide
lyase (HPL) and lipoxygenase (LOX) metabolisms
Introduction

Cucumber (Cucumis sativus L.) is a widely cultivated and consumed vegetable

around the world (Tatlioglu, 2012; Che and Zhang, 2019). It is characterized by a

fresh and distinct flavor (Hao et al., 2013; Che and Zhang, 2019; Zhang et al., 2021).

However, consumer preferences for cucumbers varies vastly because of its distinct
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flavors. Because of this, numerous studies have been conducted

to produce cucumbers with flavor characteristics suitable for

different consumer preferences by enhancing the fruit quality

through changes in cultivation methods (Guler et al., 2013; Li

et al., 2019; Shan et al., 2020; Du et al., 2022a; Du et al., 2022b; Mi

et al., 2022; Zhang et al., 2022).

In previous studies, 78 volatile organic compounds (VOCs)

from different classes, including aldehydes, alcohols, alkanes,

esters, and furans, have been identified in cucumbers (Hao et al.,

2013). In addition, the main VOCs related to flavor in

cucumbers have been identified. Based on the flavor threshold

and contents, 2,6-nonadienal is the major aroma active

compound among the various VOCs present in the cucumber

fruit, thus being largely responsible for their characteristic flavor

(Forss et al., 1962; Buescher and Buescher, 2001; Hao et al., 2013;

Chen et al., 2015). Additionally, the C6 and C9 aldehydes

derived from linoleic acid and synthesized by the lipoxygenase

(LOX) and hydroperoxide lyase (HPL) are the major VOCs in

cucumber (Stumpe et al., 2006; Chen et al., 2015; Shan et al.,

2020). Particularly, C6 aldehydes contribute to the distinctive

grassy, green flavors (Amaro et al., 2012; Chen et al., 2015),

whereas C9 aldehydes contribute to the characteristic flower-like

flavor (Chen et al., 2015). In addition, VOC content in the

cucumber fruit is higher in the peel than in the flesh (Guler et al.,

2013; Wei et al., 2016). Similarly, the cucumber fruit reportedly

contain more aldehydes than other functional groups, such as

alcohols, ketones, and terpenes (Guler et al., 2013; Wei et al.,

2016). However, few studies have compared the peel and flesh

VOC-composition among cucumber genotypes.

Metabolomics has significantly advanced our fundamental

understanding of the natural variation in the metabolite

composition among plants, as it provides information on the

metabolic responses of living systems to changes in their genetic

or environmental factors (Zhang et al., 2010; Matsuda et al.,

2015; Sumner et al., 2015; Mun et al., 2021). In particular, non-

targeted metabolomic approaches can be used for

characterization and classification based on distinctive or

characteristic metabolites in diverse plant species or genetic

lines (Arbona et al., 2009; Carreno-Quintero et al., 2013; Dıáz

et al., 2016). Therefore, in this study, we have conducted a non-

targeted metabolomics study to understand the differences in the

flavor components among 20 cucumber breeding lines. Further,

we aimed to determine how VOC metabolism differs between

the fruit’s peel and flesh among different breeding lines. We

performed the metabolomic analysis using gas chromatography

time-of-flight mass spectrometry (GC-TOF-MS) and headspace-

solid phase microextraction gas chromatography time-of-flight

mass spectrometry (HS-SPME-GC-TOF-MS) platforms to

compare VOCs and primary metabolites related to the flavor

quality among different cucumber lines. In addition, the relative

content of metabolites in different cucumber breeding lines were

described in a metabolic pathway map aimed to enhance our

understanding of the metabolism and molecular mechanisms
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associated to VOCs through the construction of a single

pathway. Our results provide a solid theoretical basis for

further research on the manipulation of cucumber flavor

components in breeding programs focused on consumer

preference-related traits.
Materials and methods

Chemicals and reagents

HPLC grade solvents were purchased from Fisher Scientific

(Waltham, MA, USA). All standard compounds and analytical-

grade reagents used were obtained from Sigma-Aldrich (St.

Louis, MO, USA) and Junsei Chemicals (Tokyo, Japan).
Sample information and preparation

To analyze the metabolome of the cucumber fruit, the

following 20 cucumber breeding lines were used: SJ01, SJ10,

SJ24, SJ30, SJ80, SJ67, SJ69, SJ37, SJ39, SJ86, SJ87, SJ97, SJ109,

SJ159, SJ43, SJ50, SJ262, SJ62, SJ65, and SJ46 (Figure 1).

Cucumbers were grown in soil inside a plastic greenhouse

under sunlight from July 2020 to September 2020, in Anseong,

Korea. Detailed sample information (line name, group, fruit

length, fruit diameter, and fruit weight) for the 20 cucumber

breeding lines is summarized in Table S1. Cucumber fruits were

tagged on the day of anthesis, and were harvested 10 days after

anthesis. After harvesting, fruits were stored at 17°C in a

warehouse (Anseong, Korea) for a day. And fruits were

transferred to a laboratory (Seoul, Korea) to perform

metabolite analysis. Each cucumber fruit was washed with

distilled water and divided into three segments based on

length. Intermediate segments were used for metabolomic

analysis. Peel and flesh were separated using a hand-held

vegetable peeler. To analyze VOCs, fresh peel and flesh

samples were ground into a powder under liquid nitrogen

using a mortar and pestle. Powdered samples were stored

at −80°C until VOC extraction. To extract primary

metabolites, each sample was dried using a freeze dryer

(Operon, Gimpo, Korea) for 5 days and then ground into a

powder using a mortar and pestle. Dried powder samples were

stored at −80°C until primary metabolite extraction. The

analysis included three biological samples per breeding line.
Sample extraction for primary
metabolic profiling

Dried powder samples (100 mg) were extracted with 1 mL of

80% aqueous methanol, containing 1% v/v an internal standard

solution (1 mg/mL of 2-chloro-L-phenylalanine in water), using
frontiersin.org
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anMM 400 mixer mill (Retsch®; Haan, Germany) at a frequency

of 30 s−1 for 10 min, followed by sonication for 5 min at 4°C

(Hettich Zentrifugen Universal 320; Tuttlingen, Germany).

Extracted samples were centrifuged at 15,000 rpm for 10 min

at 4°C, and the supernatants were filtered using 0.2 µm

polytetrafluoroethylene (PTFE) syringe filters (Chromdisc,

Daegu, Korea). The filtered supernatants were completely

dried using a speed-vacuum concentrator (Biotron, Seoul,

Korea). And 80% methanol was added to the dried extract to

make a final concentration of 10,000 ppm (10 mg/mL) for

analytical determination.
Gas chromatography time-of-flight mass
spectrometry (GC-TOF-MS) analysis for
primary metabolites

Extracts in 80% MeOH was derivatized prior GC-TOF-MS

analysis. For derivatization, 100 µL of the re-dissolved sample

extract was collected in 1.5 mL Eppendorf tubes and completely
Frontiers in Plant Science 03
dried using a speed-vacuum concentrator. Derivatization involved

oximation and silylation. For oximation, 50 µL methoxyamine

hydrochloride (20 mg/mL in pyridine) was added to the dried

extract, and then the mixture was incubated for 90 min at 30°C.

Silylation was performed by adding 50 µL of N-methyl-N-

(trimethylsilyl) trifluoroacetamide to the mixture, followed by

incubation for 30 min at 37°C. All samples were filtered using a

0.2 µm PTFE filter (Chromdisc, Daegu, Korea) prior to analytical

determination. An aliquot of 1 µL sample was injected into the GC-

TOF-MS instrument in the splitless mode. GC-TOF-MS analysis

was performed using an Agilent 7890A GC system (Agilent

Technologies, Palo Alto, CA, USA) coupled with an Agilent 7693

autosampler (Agilent Technologies) and Pegasus HT TOF-MS

(LECO Corp., St. Joseph, MI, USA). Chromatographic separation

was conducted using an Rtx-5MS column (30 m × 0.25 mm, 0.25

mm particle size; Restek Corp., St. Joseph, MI, USA) with helium as

the carrier gas. Analytical methods and operation parameters used

were described previously (Lee et al., 2016; Son et al., 2016).

Analysis was performed on three biological and two

analytical replicates.
FIGURE 1

Immature fruits of the representative 20 cucumber breeding lines evaluated in this study.
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Headspace-solid phase microextraction
gas chromatography time-of-flight mass
spectrometry (HS-SPME-GC-TOF-MS)
analysis for VOCs

To extract VOCs from the cucumber samples, the

homogenized powder sample (5 g) was transferred into a 20

mL SPME glass vial (20 mL) and added 2 mL of a 20% NaCl/

Octanal (98:2, v/v) solution. For volatile collection, headspace-

solid phase microextraction (HS-SPME) of the VOCs was

performed using a 50/30 µm divinylbenzene/carboxen™/

polydimethylsiloxane (DVB-CAR-PDMS) StableFlex™ fiber

(Sigma Aldrich, St. Louis, MO, USA). The SPME fiber,

preheated to 270°C for 1 min, was injected into the SPME vial

and exposed to the headspace for 20 min at 60°C. The fiber was

then introduced into the injector port of a GC-MS instrument

(7890A GC-5975C MSD; Agilent) equipped with a DB-FFAP

column (30 m × 0.25 mm, 0.25 µm film; J&W Scientific, Folsom,

CA, USA). The injector (in splitless mode) temperature was set

at 250°C, and extraction of VOCs was performed by exposing

the SPME fiber to the headspace of the sample supernatants for

30 min at 37°C. Oven temperature was initially set to 50°C for

2 min and then increased to 300°C at a rate of 10°C min−1. Upon

reaching 300°C, the temperature was held at that point for 3 min.

The temperature of the transfer line was set at 240°C. After

extraction, the fiber was removed from the holder and desorbed

at the GC port for 1 min at 270°C. The analytical methods and

operational parameters used for VOC analysis were based on our

previous study (Jo et al., 2022). Sample analysis was performed

using two analytical replicates.
Data processing and multivariate
statistical analysis

Raw data obtained by GC-TOF-MS and HS-SPME-GC-

TOF-MS were converted to NetCDF (*. cdf) format using

LECO ChromaTOF software (version 4.44). After conversion,

the NetCDF files were processed using the metAlign software

package for peak detection, retention time correction, and

alignment. Thereafter, the processed data were used by

SIMCA-P+ 12.0 (Umetrics, Umea, Sweden) for principal

component analysis (PCA) and partial least squares

discriminant analysis (PLS-DA). To select significantly

different metabolites among samples, variable importance in

the projection (VIP > 0.7) values were based on a PLS-DA score

plot. In addition, a significance test (p < 0.05) for differences

between biological and analytical replicates was performed by

analysis of variance (ANOVA) and Duncan’s multiple range

tests using the PASW Statistics 18 software (SPSS, Inc., Chicago,

IL, USA). Selected metabolites were tentatively identified by

comparison of various parameters, including mass fragment
Frontiers in Plant Science 04
patterns, retention times, and mass spectra of data for

standard compounds under the same conditions obtained

from published papers and commercial databases, such as the

National Institute of Standards and Technology (NIST) Library

(version 2.0, 2011, FairCom, Gaithersburg, MD, USA) and

Wiley 9.
Results

Analysis of VOCs in 20 cucumber
breeding lines

Cucumber peel and flesh VOC profiles of 20 different

breeding-lines were examined using HS-SPME-GC-TOF-MS.

To evaluate the variation in VOCs profile among the 20

cucumber breeding lines, a multivariate analysis was

performed. Although the PCA models obtained from HS-

SPME-GC-TOF-MS analysis displayed clustering patterns for

each line (Figures 2A, D), it was difficult to identify a clearly

distinct pattern per breeding line due to the enormous diversity

among the samples (Figures 2A, D). Therefore, PLS-DA was

performed to confirm the differences among breeding lines in

more detail (Figures 2B, E). PLS-DA models obtained from HS-

SPME-GC-TOF-MS analysis revealed that the cucumber fruit

(i.e., peel and flesh) clustered together depending on the

geographical group to which they belong (Figures 2C, F).

Thus, with regard to peel, the “European group” (“SJ62” and

“SJ65”) was separated from other groups across PLS1 (6.17%). In

turn, the “Korean group” (“SJ01,” “SJ10,” “SJ24,” and “SJ30”)

was distinguished from other groups across PLS2, (5.02%), while

the “Thai group” (“SJ86,” “SJ87,” “SJ97,” and “SJ109”) was

significantly different from the Korean and the European

groups (Figure 2C). To investigate distinctive VOCs of the

different groups of cucumbers, we selected significantly

discriminated metabolites based on the VIP values (>0.7)

derived from the PLS-DA model. In all, 21 VOCs, including

11 aldehydes, 4 alcohols, 2 acids, 1 furan, 1 sesquiterpenoid were

determined as significantly distinct among the peels of the

different breeding lines in this study (Table S2). The relative

abundance value of these 21 VOCs were displayed on a Table S4.

Each column indicated an average of the relative abundance

value of each cucumber line. In particular, the levels of several

aldehydes and alcohols, including hexanal, 6-nonenal,

benzaldehyde, pentanal, 2,4-nonadienal, and 1-octen-3-ol,

were present in clearly low concentrations in the Korean and

European groups. In contrast, Thai cucumbers showed higher

levels of these compounds than the former groups (Table S4).

In turn, the analysis of cucumber flesh allowed the

identification of a more discriminant, line-dependent VOC-

profiling trend than the analysis of the peel. Most cucumber

lines were clustered together in the middle, but the “Korean
frontiersin.org
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group” cucumbers (“SJ01,” “SJ10,” “SJ24,” and “SJ30”) were

specifically distinguished from other groups by PLS1 (7.20%)

(Figure 2F). To investigate the distinctive VOCs of the different

groups of breeding lines, we selected significantly discriminated

metabolites based on VIP value (>0.7) derived from the PLS-DA

model. Thus, 19 volatile compounds, including 10 aldehydes, 6

alcohols, 1 acid, 1 furan, and 1 sesquiterpenoid, were found to be

significantly discriminant among the flesh of different cucumber

breeding lines (Table S3). The relative abundance value of these

19 VOCs were displayed on a Table S5. Each column indicated

an average of the relative abundance value of each cucumber

line. Most aldehydes, including 2,6-nonadienal, propanal,

pentanal, 2,4-nonadienal, 2-octenal, tetradecanal, hexadecanal,

hexanal, and 2-hexanal, were present in relatively low levels in

cucumbers of the Korean group, compared to the others. In

contrast, several alcohols, such as 3-nonen-1-ol, 3,6-nonadien-

ol, and (6Z)-nonen-1-ol, were detected at relatively high levels in

the Korean cucumbers. In addition, nonanoic acid, 2-ethylfuran,

and b-ionone were clearly detected at low levels in the Korean

cucumbers, relative to the other groups (Table S5).
Comparative metabolomics study of
Korean, European, and Thai cucumbers

Because of the enormous diversity of the samples, the

analysis of VOCs presents in 20 cucumber breeding lines
Frontiers in Plant Science 05
showed great difficulty to identify a clearly distinguished

pattern per breeding line. Therefore, we tried to narrow down

the number of samples into three groups: Korean, European, and

Thai, which were the ones most clearly distinguished from all

other groups, as per multivariate statistical analysis from HS-

SPME-GC-TOF-MS of 20 breeding lines. Specifically, the

cucumber lines (“SJ24,” “SJ62,” and “SJ109”) were selected, as

they were farthest apart from the rest in the PLS-DA model.

These three lines belong to the Korean, European, and Thai

groups, respectively. By analyzing the three most strikingly

different cucumbers as per multivariate statistical analysis, we

tried to identify the VOCmetabolic pathways responsible for the

observed differences in cucumber flavor. Primary metabolites

and VOC profiles from peel and flesh of three different

cucumber lines, namely, “SJ24”, “SJ62”, and “SJ109,” were

examined using GC-TOF-MS and HS-SPME-GC-TOF-MS.

Variations in primary metabolites and VOC profiles between

the peel and flesh of the three lines were examined based on

multivariate analysis of the respective datasets.

The results revealed that the three cucumbers could be

distinguished from each other and clustered depending on the

corresponding breeding line (Figure S1). The PLS-DA score plot

also showed a pattern similar to that of the PCA score plot

(Figure 3). To investigate the distinctive metabolites among the

three cucumbers, we selected significantly discriminated

metabolites based on VIP value (>0.7), derived from the PLS-

DA model.
B C

D E F

A

FIGURE 2

PCA and PLS-DA score plots of 20 cucumber breeding lines of peel (A–C) and flesh (D–F) based on HS-SPME-GC-TOF-MS data set.
(A, B, D, E) indicate the color of sample line. (C, F) indicate the color of sample group. ▲, peel; ●, flesh.
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Thirty-two significantly discriminant metabolites, including

11 amino acids, 4 organic acids, 7 carbohydrates, 3 fatty acids,

hydroxylamine, uracil, and 5 non-identified compounds were

selected using the PLS-DA model based on peel GC-TOF-MS

datasets (Table S6). In addition, 22 volatiles, including 11

aldehydes, 6 alcohols, 1 acid, 1 furan, 1 sesquiterpenoid, and 2

non-identified compounds were determined as significantly

discriminant, based on the PLS-DA model for the HS-SPME-

GC-TOF-MS datasets (Table S7). Meanwhile, in the fruit flesh,

35 significantly discriminant metabolites, including 13 amino

acids, 3 organic acids, 9 carbohydrates, 3 fatty acids, 2-

ethylfuran, b-ionone, and octanoic acid were selected using the

PLS-DA model based on GC-TOF-MS datasets (Table S8). In
Frontiers in Plant Science 06
addition, 17 volatiles, including 9 aldehydes, 4 alcohols, 1 furan,

and 1 sesquiterpenoid compounds were determined to be

significantly discriminant based on the PLS-DA model for the

HS-SPME-GC-TOF-MS datasets (Table S9).

Moreover, we performed metabolic pathway analysis

integrating primary and VOC metabolism to understand the

biosynthesis of VOCs in cucumber fruits. Thirty-three

metabolites selected as significantly discriminant in both peel

and flesh were displayed on a metabolic pathway using a heat

scale box (Figure 4). The furan and aldehydes located at the

beginning of the VOCs synthesis pathway were relatively low in

“SJ24” (Korean group) than in “SJ62” (European group) or in

“SJ109” (Thai group). Particularly, C6 (hexanal and 2-hexanal)
B

C D

A

FIGURE 3

PLS-DA score plots of different three cucumbers based on SPME-GC-TOF-MS (A, B) and GC-TOF-MS (C, D) data set. (A, C) are the results of
analyzing different peel data. (B, D) are the results of analyzing different flesh data. Different sample symbolized as: Peel (▲: SJ24 (Korea group),
▲: SJ62 (Europe group), ▲: SJ109 (Thailand group)), flesh (●: SJ24 (Korea group), ●: SJ62 (Europe group), ●: SJ109 (Thailand group)).
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and C9 aldehydes (2,6-nonadienal and 2,4-nonadienal) showed

clearly low patterns in “SJ24” than in other lines. These

compounds are known to be the main VOCs in cucumber

fruits. In contrast, linoleic acid derivatives and a-linolenic
acid, which are precursors of VOCs, were found in relatively

high concentration in “SJ24.” This trend was the same for both

peel and flesh.

Neither amino acid nor carbohydrate metabolism showed

any distinct trend in any of the cucumber samples. With respect

to carbohydrate metabolism, glucose, myo-inositol ,

carbohydrate (1), and carbohydrate (2) were relatively lower in

“SJ109” of the Thai group than in any other group. Conversely,

carbohydrate (5) exhibited the opposite pattern. In turn,

threonic acid was relatively highly abundant in peels of “SJ24”
Frontiers in Plant Science 07
(Korea group), whereas in the flesh, it was higher in “SJ109”

(Thai group). As for amino acid metabolism, valine and aspartic

acid showed a high relative abundance in “SJ109” (Thai group),

while tryptophan and GABA showed a higher relative

abundance in “SJ24” (Korean group) than in “SJ62” (European

group) or “SJ109” (Thai group).
Discussion

Fruit flavor characteristics are important components of

cucumber fruit quality. Cucumber fruit is well known for its

distinct flavor, which is crucial for evaluating fruit quality

(Palma-Harris et al., 2001). In a previous study, 78 VOCs
FIGURE 4

Schematic diagram of the biosynthetic pathway and relative content of metabolites in SJ24, SJ62, and SJ109 cucumbers. The pathway was
modified from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (http://www.genome.jp/kegg/). The colored squares
(blue-to-red) represent the relative abundance.
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related to fruit flavor were identified in cucumber fruits,

including aldehydes, alcohols, esters, alkanes, and furans (Hao

et al., 2013). Aldehydes accounted for a large proportion of these

VOCs (Chen et al., 2015). Furthermore, C6 and C9 aldehydes are

the most important compounds for fruit and vegetable flavor

(Ligor and Buszewski, 2008; Wang et al., 2010; Shen et al., 2014;

Li et al., 2019). Specifically, C6 and C9 aldehydes contribute to

the distinctive grassy and green, and flower-like flavors,

respectively (Ligor and Buszewski, 2008; Amaro et al., 2012;

Chen et al., 2015). The main volatile compound in cucumber,

2,6-nonadienal, which has cucumber-like flavor, is a C9

aldehyde (Buescher and Buescher, 2001; Chen et al., 2015).

In this study, we performed VOC profiling to compare fruit

flavor quality among 20 different cucumber breeding lines that

are the main representative types of cucumbers consumed

worldwide. Multivariate analysis of both peel and flesh data

revealed that sampled cucumbers were clustered depending on

the country of origin (Figures 2C, F). Especially with regard to

the peel, European (“SJ62” and “SJ65”) and Korean (“SJ01,”

“SJ10,” “SJ24,” and “SJ30”) cucumbers were separated from

other groups across PLS1 and PLS2 (Figure 2C). In addition,

the Thai group of breeding lines (“SJ86,” “SJ87,” “SJ97,” and

“SJ109”) were separated farthest from the breeding lines in the

Korean and European groups (Figure 2C). Several C6 and C9

aldehydes (hexanal, 2,4-nonadienal, and 6-nonenal) were

present at relatively low levels in the cucumbers of the

Korean and European groups. In contrast, cucumbers in the

Thai group showed higher levels of these compounds than any

other cucumbers. Similarly, 1-octen-3-ol showed a pattern

similar to that of these compounds. A characteristic

phenomenon was observed in the flesh of cucumbers of the

Korean group (“SJ01,” “SJ10,” “SJ24,” and “SJ30”), which

distinguished this from all other groups by PLS1 (Figure 2F).

The levels of most aldehydes, including propanal, pentanal, 2-

octenal, tetradecanal, hexadecanal, C6 aldehydes (hexanal and

2-hexanal), and C9 aldehydes (2,6-nonadienal and 2,4-

nonadienal), were relatively low in cucumbers of the Korean

group. However, several C9 alcohols, such as 3-nonen-1-ol,

3,6-nonadien-ol, and (6Z)-nonen-1-ol, were more abundant in

cucumbers of this group than in those of any other group. In

addition, nonanoic acid, 2-ethylfuran, and b-ionone were

present in low levels in the Korean group, compared with

other groups (Figure 3B). In a previous study, C6 aldehydes

were reportedly related to a grassy, green flavor, while C9

aldehydes were found associated to a flower-like flavor (Chen

et al., 2015). In addition, propanal has a stimulate flavor, and

pentanal has a fresh flavor (Chen et al., 2015). In turn, 2-

ethylfuran contributes to a fruity flavor, and b-ionone affects

the flower-like flavor (Wei et al., 2016). Therefore, it can be

inferred that cucumbers of the Korean group have relatively

lower levels of distinct flavors derived from C6 and C9

aldehydes in both peel and flesh, than those in other groups.
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Volatiles of the C6 and C9 types are produced via the

lipoxygenase (LOX) and hydroperoxide lyase (HPL) pathways

(Sivankalyani et al., 2017; Li et al., 2019; Shan et al., 2020). They

are synthesized from polyunsaturated fatty acids, such as linoleic

acid and a-linolenic acid, by LOX and HPL enzymes (Boonprab

et al., 2003; Boonprab et al., 2006; Mosblech et al., 2009).

Further, LOX and HPL are key enzymes in the oxylipin

pathway and are encoded by multiple genes (Schwab et al.,

2008). Stereospecific oxidation of VOC precursors, such as

linoleic acid and a-linolenic acid, is catalyzed by LOX. Plant

LOX enzymes are classified as 9-LOX or 13-LOX according to

their positional specificity of fatty acid oxygenation in the case of

a C18 fatty acid of the hydrocarbon backbone (Mosblech et al.,

2009). The hydroperoxides synthesized using 9-LOX were

cleaved into C9 aldehydes by 9-HPL. Meanwhi le ,

hydroperoxides produced by 13-LOX are cleaved into C6

aldehydes by 13-HPL (Matsui et al., 2006; Shan et al., 2020).

To understand the synthesis of VOCs affecting fruit flavor,

additional primary metabolome analysis was performed on the

three cucumber lines (SJ24, SJ62, and SJ109), which multivariate

analysis revealed as the ones farthest apart. 2-Ethylfuran, C6

aldehydes (hexanal and 2-hexenal), and C9 aldehydes (2,6-

nonadienal and 2,4-nonadienal) located at the beginning of

the VOCs synthesis pathway showed clearly lower relative

contents in “SJ24” (Korean group) than in “SJ62” (Europe

group) or in “SJ109” (Thai group). However, linoleic acid

derivatives and a-linolenic acid, which are precursors of these

VOCs, were found to be relatively higher in “SJ24” than in the

other two lines (Figure 4). The opposite patterns of C6 and C9

aldehydes and fatty acids in all precursors of VOCs were

observed in both cucumber peel and flesh. Therefore, we

inferred that the process of synthesis of C6 and C9 aldehydes

from fatty acids is downregulated in the Korean cucumber lines,

compared to the other groups of lines, likely due to the lesser

LOX and HPL activities, whereby, the Korean cucumber lines

showed relatively less flavor characteristics.
Conclusion

We analyzed the differences in volatiles of 20 cucumber

breeding lines. Lines of the Korean, European, and Thai groups

showed specific peel-VOC patterns that clearly distinguished

them from other groups. Hexanal, 6-nonenal, and 2,4-

nonadienal showed a pattern of re lat ive ly higher

concentrations in the Thai group, in contrast with the lower

concentrations in the Korean and European breeding lines. With

respect to the flesh, the Korean group differed from others in that

it showed low levels of 2,6-nonadienal, 2,4-nonadienal, hexanal,

and 2-hexenal. However, linoleic acid methyl ester, and a-
linolenic acid, which are precursors of volatile organic

compounds, were found to be relatively higher in the Korean
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cucumbers than in those of other groups both in the peel and

flesh. This result suggests that the LOX and HPL associated

synthesis of volatiles from fatty acids are downregulated in the

Korean cucumber lines.

This study presents profiling information on VOC-related

quality characteristics that greatly affect consumer preferences

for 20 cucumber breeding lines. It was obtained by the non-

targeted metabolomic approach. In addition, we found that the

Korean cucumber lines evaluated herein show relatively less

intense flavor characteristics than other lines. Thus, we propose

the Korean cucumber line could have an advantage for

consumers who are sensitive and dislike the strong flavor of

cucumber fruit.
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