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Machine learning assisted
dynamic phenotypes and
genomic variants help
understand the ecotype
divergence in rapeseed
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Three ecotypes of rapeseed, winter, spring, and semi-winter, have been

formed to enable the plant to adapt to different geographic areas. Although

several major loci had been found to contribute to the flowering divergence,

the genomic footprints and associated dynamic plant architecture in the

vegetative growth stage underlying the ecotype divergence remain largely

unknown in rapeseed. Here, a set of 41 dynamic i-traits and 30 growth-related

traits were obtained by high-throughput phenotyping of 171 diverse rapeseed

accessions. Large phenotypic variation and high broad-sense heritability were

observed for these i-traits across all developmental stages. Of these, 19 i-traits

were identified to contribute to the divergence of three ecotypes using random

forest model of machine learning approach, and could serve as biomarkers to

predict the ecotype. Furthermore, we analyzed genomic variations of the

population, QTL information of all dynamic i-traits, and genomic basis of the

ecotype differentiation. It was found that 213, 237, and 184QTLs responsible for

the differentiated i-traits overlapped with the signals of ecotype divergence

between winter and spring, winter and semi-winter, and spring and semi-

winter, respectively. Of which, there were four common divergent regions

between winter and spring/semi-winter and the strongest divergent regions

between spring and semi-winter were found to overlap with the dynamic QTLs

responsible for the differentiated i-traits at multiple growth stages. Our study

provides important insights into the divergence of plant architecture in the

vegetative growth stage among the three ecotypes, which was contributed to

by the genetic differentiation, and might contribute to environmental adaption

and yield improvement.

KEYWORDS

machine learning, dynamic phenotyping, quantitative trait loci, ecotype, rapeseed
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Introduction

Crop species undergo multi−staged domestication from a

particular center and then expand to a wider geographical

distribution (Meyer and Purugganan, 2013). Long-term

domestication and improvement reshape crops to diverse

subspecies or ecotypes, with many geographically agronomic

traits, to adapt to different agro-ecological and cultural

environments. Recently, genomic changes underlying the

differentiated traits among different subspecies or ecotypes

have been successfully identified by high-throughput

genotyping assisted population genetic analysis in many crops,

which include rice (Wang et al., 2018b; Zhang et al., 2019), maize

(Hufford et al., 2012; Liu et al., 2015), soybean (Zhou et al.,

2015), cucumber (Qi et al., 2013), tomato (Lin et al., 2014) and

cotton (Wang et al., 2017; He et al., 2021). Numerous loci/genes

associated with root microbiota, plant architecture, grain yield,

stress responses, and flowering time were identified and will

accelerate the breeding process of new cultivars. Meanwhile,

such genomic features and differentiated traits can be used as

biomarkers to distinguish ecotype or subspecies (Zhang

et al., 2019).

The allotetraploid rapeseed (B. napus) is a relatively new species

and originates from interspecific hybridization between the ancestor

of European turnip (B. rapa, A subgenome) and the common

ancestor of kohlrabi, cauliflower, broccoli, and Chinese kale (B.

oleracea, C subgenome) less than 7500 years ago (Chalhoub et al.,

2014; Lu et al., 2019; Song et al., 2020). To date, the rapeseed

includes three ecotypes for adapting to different geographic areas

(Qian et al., 2006; Snowdon et al., 2007; Yin et al., 2020). Winter

(W) ecotype is mainly in Europe, and is generally sown in autumn

and flowers in late spring after a strong vernalization. Spring (S)

ecotype is mainly in Northern Europe, Canada, Australia, and

north-western China; it is not winter-hardy and is generally sown in

spring and flowers without vernalization. Semi-winter (SW)

ecotype is mainly found in the Yangtze River basin of China, and

is generally sown in autumn and flowers in early spring after

moderate vernalization. It has been suggested that the winter

ecotype was the original form of rapeseed, and the spring and

semi-winter ecotype were developed ~416 and ~60 years ago,

respectively (Lu et al., 2019). Recently, millions of genomic

variations among W, S, and SW ecotypes of rapeseed were

identified by SNP array and whole-genome resequencing (Wei

et al., 2017; Wang et al., 2018a; Lu et al., 2019; Wu et al., 2019). A

panel of genes, such as BnaA10.FLC, BnaA02.FLC, BnaA03.FLC.a

BnaA02.FT, and BnaA03.FRI, were identified to be associated with

the flowering time divergence of three rapeseed ecotypes, by

integration of selective sweep analysis, genome-wide association

study (GWAS), single gene haplotype analysis, and transgenic

validation (Wei et al., 2017; Yi et al., 2018; Wu et al., 2019; Yin

et al., 2020). The haplotypes in these genes and flowering time could

be used to distinguish the ecotype and improve the cultivar in

rapeseed. However, the divergence of genomic footprints and
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associated dynamic plant architecture in vegetative growth stages

has not yet been analyzed systematically.

Machine learning (ML) is a set of computational approaches

to find predictive patterns in data and has been widely used to

identify biomarkers for subspecies discrimination and yield

heterosis prediction (Zhang et al., 2019; Dan et al., 2021; van

Dijk et al., 2021). Previously, we developed an automatic image

analysis pipeline to quantify dynamic plant architecture

throughout multiple development stages in rapeseed (Li et al.,

2020). In this study, this pipeline was used to study the dynamic

architecture of plant growth and growth rate within a rapeseed

population, including 14 W types, 24 S types, and 133 SW types.

We identified that a subset of 19 i-traits contribute to divergence

of the three ecotypes using the random forest (RF) model of ML.

And, we analyzed genomic variations of the population, genomic

basis of the ecotype differentiation, and QTL information of all

dynamic i-traits. It was found that 213, 237, and 184 QTLs of

differentiated i-traits overlapped with the 37, 33, and 42 ecotype

differentiation regions between W and S, W and SW, and S and

SW, respectively. This suggests that our identified differentiation

of i-traits among the ecotypes was contributed to by the genetic

variations and differentiation.
Materials and methods

Sample collection and phenotyping

A total of 171 rapeseed cultivars or inbred lines were

collected from ten countries or regions across the world

(Supplementary Table S1). These lines were selected from our

previously published population to represent the three ecotypes

of W, S, and SW (Wang et al., 2018a). Phenotyping was

performed in the high-throughput rice phenotyping facility

(HRPF), located in Huazhong Agricultural University, Wuhan,

China (Yang et al., 2014). All rapeseed lines were sowed in the

pot and screened from the seedling to the initial flowering stage

at 11 time points of T1 to T11, with intervals of one week

(Supplementary Table S2). Experimental layout and

management were the same as that described previously (Li

et al., 2020). The trials were performed using a randomized block

design with three replications in the winter-spring growing

season of 2014-2015. In total, we generated a total of 215.42

Gb of RGB images (44,118 images; PNG format), which are

available in a database (http://plantphenomics.hzau.edu.cn/

usercrop/Rape/image/2014-2015-GWAS, selecting of “2014-

2015-GWAS”). A set of 41 dynamic i-traits (18 i-traits in top

view and 23 i-traits in side view) and 30 growth-related traits

reflecting the growth speed were obtained using the image

analysis pipeline, described previously (Supplementary Table

S3) (Li et al., 2020). The detailed instructions of the image

analysis pipeline and the source code of programs built in the

LabVIEW 2015 (National Instruments, US) can be obtained in
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our previous study (Li et al., 2020). Outliers were removed by

“3s” criterion; the remaining i-traits were used for subsequent

phenotypic analysis.
Identification of i-traits contributing to
the divergence of ecotype

Five machine learning models, namely discriminant analysis

(DCA), random forest (RF), support vector machine (SVM),

multilayer perceptron (MLP), and convolutional neural network

(CNN), were performed to distinguish different ecotypes, based

on the 18 i-traits in top view from T1 to T11 and 23 i-traits in

side view from T7 to T11, respectively. DCA was performed by

IBM SPSS 20.0. RF, SVM, MLP, and CNN were built by

Python3.6. The detailed parameters were as follows: (1)

Bayesian basis DCA expression was established to distinguish

different ecotypes and i-traits with high contribution which were

acquired with stepwise establishment of discriminant

expressions. (2) CART algorithm was used to split nodes in

building RF. (3) SVM with radial basis kernel was built for a best

decision edge with the highest confidence between ecotypes,

which was searched for by adjusting the slack variable and

penalty factor C. (4) Multilayer perceptron (MLP) and

convolutional neural network (CNN) were activated by

softmax on the last layer. For each model, the i-traits were

divided into training sets and testing sets and the capability of

the model was evaluated by the performance using the test set.

Finally, the i-traits excavated by RF model with high

contribution to divergence of ecotype were used for

subsequent analysis.
Redraw of rapeseed images from i-traits

Based on the i-traits excavated by RF model with high

contribution to divergence, a text-to-images model

StackGANv1 (https://github.com//hanzhanggit//StackGAN)

was used to construct the rapeseed images. StackGANv1 was

built by python 2.7 with tensorflow 0.12 and accelerated with

GEFORCE RTX2080 SUPER. Stage I (i-traits to images) and

stage II (images to images) were trained 800 times and 200 times,

respectively. After the simulated images were obtained by the

StackGANv1, three parameters, MSE, SSIM, and PSNR, were

calculated to evaluate the image similarity between real and

simulated images.
Mapping, variant calling and annotation

Sequence data (PE100 reads) of the 171 rapeseed lines were

obtained from our previous study (Wang et al., 2018a). The

variants were identified again based on the newly published
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ZS11 genome (Song et al., 2020). Putative single nucleotide

polymorphisms (SNPs) were obtained using the Burrows-

Wheeler Alignment tool (BWA), SAMtools, and Genome

Analysis Toolkit (GATK), according to the variant calling

process that was described previously (Tang et al., 2021). The

raw variants were further filtered using the following criteria: (1)

the relative heterozygosity (HR) had to be less than 0.2 (Wu

et al., 2016); (2) the percentage of missing genotype had to be less

than 60% in the population; and (3) the confidence score from

GATK had to be greater than 20. Finally, missing genotypes of

all variants were imputed using Beagle software and variants

with allele frequencies lower than 5% in the population were

discarded. The identified SNPs were annotated using the

ANNOVAR package (Wang et al., 2010), based on the ZS11

genome and annotation model (http://cbi.hzau.edu.cn/bnapus/

index.php).
Population genetics analysis

To build a phylogenetic tree and perform principal

component analysis, a subset of 131,319 SNPs was selected

randomly with a step of 5-kb window across the genome.

These SNPs were distributed evenly among the genome and

better reflect population structure and demography. The

phylogenetic tree was constructed using MEGA X software

(Kumar et al., 2018), with the neighbor joining method and

1000 bootstrap replicates. Principal component analysis was

performed using the smartpca program in EIGENSOFT

software (Price et al., 2006); with that the first two

eigenvectors were used. Linkage disequilibrium (LD) between

each pair of SNPs was calculated for 1,000-kb windows using

PopLDdecay software (Zhang et al., 2018). The LD decay was

calculated on the basis of the r2 value between two SNPs in each

window and plotted using custom R script.
Ecotype differentiation analysis

Nucleotide diversity (p), measuring the degree of variability

within a population, was calculated for 100-kb sliding windows

with a step size of 10 kb using the VCFtools (Danecek et al.,

2011). Population fixation statistics (FST) was estimated for 100-

kb sliding windows with a step size of 10 kb using the

PopGenome (https://popgenome.weebly.com/). The average

FST from all sliding windows was used to reflect the degree of

population divergence among different ecotypes. Sliding

windows with the top 1% FST value were selected as putative

significant differentiated windows. Of these, the top 1% had

FST≥0.72, 0.66, and 0.5 for W vs S, W vs SW, and S vs SW,

respectively. Neighboring windows, the distance <20 kb, were

then merged into one region. These regions were regarded as

highly diverged across ecotype.
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Genome-wide association study

Genome-wide association study (GWAS) was performed

using a mixed linear model (MLM) in genome-wide efficient

mixed model association (GEMMA) software, such as that

described previously (Wang et al., 2018a). The effective

number of independent markers (N) was calculated using

GEC tool (Li et al., 2012), and suggestive P value (1/

N=8.67×10-7) was set as the significance threshold. The

GWAS signals of all traits was identified according to the

following two steps. Firstly, all P value of SNPs responsible for

each i-trait were used as a query of function “clump” of PLINK

software. The function was used to obtain the independent peak

SNPs of each i-trait with a sliding window based on the decay of

LD. The parameter of PLINK was –clump-p1 8.67×10-7 –clump-

p2 1×10-5 –clump-r2 0.3 –clump-kb 500 –clump-allow-overlap.

The QTL intervals for each i-trait were defined as the minimum

and the maximum position of the SNPs meeting these criteria.

Secondly, all QTLs with overlapping intervals were categorized

as nonredundant QTLs.
Results and discussion

Phenotypic variation

We evaluated the phenotypic diversity and broad-sense

heritability (H2) of the 41 dynamic i-traits. The magnitude of

diversity varied drastically among different i-traits in the

rapeseed accessions at each time point (Figure 1A;

Supplementary Table S4). The average fold change for all i-

traits was 4.44, ranging from 1.04 to 147.68 among the different

time points. Of which, MU3_TEX_SV/TV (Third moment of

whole plant in top/side view, reflecting the complex degree of

leaves) and PC6_SV (Plant compactness of whole plant traits in

side view, reflecting the compactness of the whole plant) had the

highest range of phenotypic variation across all time points

expect time point T8-T10, with the fold change of the traits

ranging from 5.16 to 19.73 (Figure 1A). This result was similar to

that reported previously (Li et al., 2020). However, the fold

change of all 41 i-traits in this study was higher than that

observed in rapeseed intervarietal substitution line (ISL)

population previously (Li et al., 2020). This suggests that the

dynamic i-traits have a wider diversity in the nature rapeseed

germplasm compared with the artificially constructed

population. Among the 11 time points, the average of H2 of all

41 i-traits was 0.67 (Figure 1B; Supplementary Table S4). Of

these, most (39, 95.12%) i-traits have higher heritability (>0.50)

at more than half of the time points. And, the i-traits generally

showed the highest heritability at the time points T7 or T8 (the

bud stage, Figure 1B). This phenomenon was also observed in

the ISL population previously (Li et al., 2020).
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Performance of classification models

To identify the i-traits contributing to the divergence of

three ecotypes in rapeseed, five machine learning models,

namely discriminant analysis (DCA), random forest (RF),

support vector machine (SVM), multilayer perceptron (MLP),

and convolutional neural network (CNN), were established

using i-traits in top view from T1 to T11 and side view from

T7 to T11, respectively. The classification accuracy of different

models through all dynamic time points were shown in

Figures 1C, D. A high classification accuracy with similar

dynamic change among the time points was observed for all

five models. The average of classification accuracy ranged from

0.75 to 0.83, and 0.79 to 0.83 for i-traits in top view from T1 to

T11 and side view from T7 to T11, respectively. (Figures 1C, D).

Moreover, the average of classification accuracy increased

gradually and reached the maximum in T7 and T8 for i-traits

in both top view (0.82 and 0.83) and side view (0.82 and 0.83),

although the visual difference was not particularly obvious

among some accessions in the three rapeseed ecotypes, from

both top and side view at T7 period (Figure 1E). These results

suggest that the machine learning is effective in distinguishing

the rapeseed ecotypes based on the dynamic i-traits.
I-traits contributing to the ecotype
divergence

It would be beneficial if the ecotype could be distinguished in

early growth stage. Notably, RF with the contributed i-traits was

established and displayed an impressive accuracy at the first

inspection stage of top-view (T1) and side-view (T7); 78.0%

samples were correctly classified in T1 and 81.7% samples were

correctly classified in T7 (Figures 1C, D). A subset of nine i-traits

in top view and 10 i-traits in side view from the top 50% of i-

traits were screened by RF, which contributed to the divergence

of ecotype in rapeseed (Supplementary Table S5). To further

verify whether these extracted i-traits can well distinguish the

individual plants, the nine i-traits and 10 i-traits in top-view and

side view were taken to train stackGAN to generate images,

respectively. Model with i-traits in T1 with 4,872 images in top-

view was trained for 15 hours, and model with i-traits in T7 with

22,691 images in side-view was trained for 48 hours (Figure 2A).

Examples of coupled real and simulated images are shown in

Figures 2B, C. It was showed that the simulated images of plant

were clear and bright with smooth texture details and highly

similar with the coupled real ones. Moreover, three evaluation

parameters of image similarity, mean square error (MSE),

structural similarity (SSIM), and peak signal-to-noise ratio

(PSNR), were 0.02, 0.75, and 17.13, respectively. This

observation indicates a high similarity between the simulated

and real images. Taken together, these results suggest that the
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B

C D

E

A

FIGURE 1

Dynamic phenotype of 43 i-traits across 11 time points and performance of models distinguishing the rapeseed ecotype. (A) Heat map showing
the phenotypic fold change. (B) Heat map showing the broad-sense heritability (H2) of traits. (C, D) Classification accuracy of five machine
learning models based on the i-traits in top-view from T1-T11 (C) and side view from T7-T11 (D). DCA, discriminant analysis; RF, random forest;
SVM, support vector machine; MLP, multilayer perceptron; CNN, convolutional neural network. (E) Images of three rapeseed ecotypes from T7
in top view and side view. The top-left numbers indicated the No. of displayed accessions.
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selected traits could represent the overall plant well and be used

as biomarkers to distinguish the ecotypes.

The plant architecture reflected by the contributed i-traits

might be associated with the environmental adaption and yield

improvement among the ecotypes, which are the two important

breeding processes in rapeseed (Hu et al., 2022). Of these,

GCV_TV (Green color value in top view) shows the green

component that to some extent is negatively associated with

the chlorophyll content of plants (Wu et al., 2018). There was a

significant difference for the GCV_TV of each stage among the

three ecotypes (Figures 3A, F). This result suggests that

GCV_TV had been selected artificially during the breeding,

and the W ecotype, the original form of rapeseed, had more

chlorophyll content in leaf, which putatively increased

photosynthesis rate and sugar content. The W_TV (Plant

width in top view) and PAR_SV (perimeter/projected area

ratio of whole plant in side view) are associated with the leaf

angle and shape, petiole length, and plant compactness. A
Frontiers in Plant Science 06
significant difference was observed among the three ecotypes

(Figures 3B, C), which suggests that the W ecotype displayed

more horizontal leaves with short petiole (Figure 3F). These

performances may help rapeseed with overwintering during

strong vernalization (Hu et al., 2022). The FDNIC_TV/SV

(Fractal dimension without image cropping of whole plant in

top/side view) are positively associated with the biomass and

yield in rapeseed (Li et al., 2020). SW ecotype had a significantly

higher value for these two i-traits of each stage than that of W

and S ecotype (Figures 3D, E). This observation might suggest

that the yield of modern SW accessions had been improved

during the rapeseed breeding (Hu et al., 2022). In addition,

similar significant differences were observed for other

contributed plant morphological i-traits among the three

ecotypes (Supplementary Figures S1, S2). Furthermore,

SE_TEX_TV/SV (standard error of whole plant in top/side

view), S_TEX_TV/SV (smoothness of whole plant in top/side

view), M_TEX_TV (mean value of whole plant in top view), and
B C

A

FIGURE 2

Generation of images based on machine learning. (A) Procedure of generating rapeseed images by the StackGANv1 model. (B, C) Comparison
of images between real and simulated images generated based on the nine i-traits in top view (B) and ten i-traits in side view (C) from the top
50% i-traits screened by the RF model.
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A

FIGURE 3

Characteristics of the subset of i-traits contributing to ecotype divergence among the three ecotypes. (A–E) The box plots of GCV_TV (A),
W_TV (B), PAR_SV (C), FDNIC_TV (D), and FDNIC_SV (E) from T1 to T11 among the three rapeseed ecotypes. Differences between the ecotypes
were analysed by Wilcoxon rank-sum test and different letters represent significant difference (P < 0.05). (F): Plant morphology of the three
rapeseed ecotypes from T7 in top view and side view. The top-left numbers indicated the No. of displayed accessions.
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MU3_TEX_TV/SV (third moment of whole plant in top/side

view), which are texture traits and reflect the complex degree of

leaf grayscale in vegetable state, displayed significant differences

among the three ecotypes across each stage (Supplementary

Figures S1, S2). This result suggests that the leaves become more

complex in S and SW ecotype, compared withW ecotype, during

the breeding of rapeseed.
Genomic variation and population
structure

The 171 rapeseed accessions consisted of 14 W ecotypes, 24

S ecotypes, and 133 SW ecotypes. These lines had a wide

geographic distribution, including Europe (France, Sweden,

Denmark, Germany, Czech Republic), Canada, Australia,

China, and Japan (Figure 4A; Supplementary Table S1). A

total of 6.83 billion paired-end reads (1.36 Tb of sequence)

were obtained, with an average depth of 5.28× of the reference

genome ZS11 (Supplementary Table S1). After mapping against

the newly published genome of ZS11 (Song et al., 2020) and

variants filtering, we identified a total of 5,324,005 SNPs

(Figure 4B; Supplementary Table S6). Of these, 2,589,260

(48.6%), 1,166,139 (21.9%), and 1,568,606 (29.5%) were

located in intergenic regions, upstream/downstream regions,

and the gene body, respectively (Supplementary Table S7). We

also identified 316,612 nonsynonymous SNPs, which caused

start codon changes, gain of premature stop codons, or the

production of elongated transcripts (Supplementary Table S7).

The number and density of SNPs in the A subgenome

(2,692,034; 7.08 SNPs/kb) was higher than that in the

C subgenome (2,631,971; 4.61 SNPs/kb) (Figure 4B;

Supplementary Table S7).

To get the overall genetic relationship among the three

ecotypes in this population, we explored the phylogenetic

relationship and performed principal component analysis

(PCA) of 171 accessions using randomly selected SNP

markers. The neighbor-joining tree revealed the accession

within W, S, and SW ecotype clustered each other,

(Figure 4C). However, there were thirteen SW accessions

mixed with the S ecotype clade. This result was supported by

the PCA, in which principal component PC2 separated the W

ecotype from the S and SW ecotype, and PC1 separated the S

ecotype from most SW ecotypes except the abovementioned

mixed thirteen SW accessions (Figure 4D). It was found that

genetic diversity of SW ecotype types (p=1.68×10-3) was higher
than that of S (p=1.56×10-3) and W (p=1.17×10-3) (Figures 4B,
E; Supplementary Table S6). The diversity level in all three

ecotypes was similar to that reported in the larger germplasm

accessions previously (Wu et al., 2019; Tang et al., 2021; Hu

et al., 2022), which suggests that our population could represent
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genetic diversity of the three ecotypes. And, the genetic diversity

in A sub-genome was higher than that in C sub-genome in all

three ecotypes, with the maximum difference observed in SW

ecotype (Figure 4B). This observation was consistent with the

fact that the diversity of B. rapa contribute more to A genome of

B. napus than B. oleracea to C genome of B. napus diversity

(Qian et al., 2006; Sun et al., 2017). The decay of linkage

disequilibrium (LD) with physical distance between SNPs (1/2

max r2) occurred at 20.6 kb in our population, with 52 kb in W

ecotype, 23.5 kb in S ecotype, and 18.4 kb in SW ecotype

(Figure 4F; Supplementary Table S6). The LD extent of C sub-

genome was much higher than that of A sub-genome,

independent of the ecotype (Figure 4F; Supplementary Figure

S3). The overall LD extent and its sub-genomic pattern in our

study was similar to that reported previously (Lu et al., 2019; Wu

et al., 2019; Tang et al., 2021).
QTL identification of the i-traits and
growth-related traits

We performed GWAS using a set of 5,324,005 SNPs, which

allowed us to identify the genetic basis of 41 dynamic i-traits and 30

growth-related traits. We detected a total of 4,088 loci associated

with 66 traits across different time points, including 1,421, 1,753,

and 914 loci associated with i-traits in top view, i-traits in side view,

and growth-related traits, respectively (Figures 5A–C;

Supplementary Table S8). The number of loci was significantly

more than that identified for the same i-traits in the ISL population

(Li et al., 2020), which suggested a higher detection power by

combining high-throughput phenotyping and GWAS. Of which,

1,222 and 1,054 loci were responsible for the contributed i-traits in

top view and side view, respectively. These associated loci were

further involved in the 602 nonredundant QTLs, which was

revealed by the trait-related association network (Figure 5D),

suggesting the linkage or pleiotropy of locus. Of these, the largest

proportion of nonredundant QTL were associated with a single trait

(209, 34.7%), with those 105 nonredundant QTLs (17.4%)

underlying single timepoint-dependent dynamic i-traits and 104

nonredundant QTLs (17.3%) underlying single growth-related

traits. QTLs simultaneously affected the same trait at multiple

growth stages, ranging from 2 to 7 and 2 to 5 for the dynamic i-

traits in top view and side view, respectively (Supplementary Figure

S4). The results reveal that these associated QTLs were expressed

throughout multiple growth stages, which was almost impossible to

detect by artificial phenotyping. For example, the QTLs involved in

Bin161 on chromosome A07 simultaneously affected the PAR_TV

at time points T4-T10 (Supplementary Figure S5A), which

contributed to ecotype divergence and are associated with leaf

angle and shape, petiole length, and plant compactness. And, the

QTLs involved in Bin49 on chromosome A02 affected the
frontiersin.org

https://doi.org/10.3389/fpls.2022.1028779
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Feng et al. 10.3389/fpls.2022.1028779
B

C D

E

F

A

FIGURE 4

Features of the rapeseed population consisted of winter, spring and semi-winter ecotypes. (A) The geographic distribution of the 171 accessions.
Accessions from China are represented by a circle on the provincial capital city. Accessions from other countries are represented by a circle on
the capital city. Circle size indicates number of accessions. (B) Circos plot showing genetic diversity among three ecotypes. R1: gene density,
R2: SNP density, R3: genetic diversity (p) in whole population, R4: genetic diversity (p) in winter ecotype group, R5: genetic diversity (p) in semi-
winter ecotype group, R6: genetic diversity (p) in spring ecotype group. (C) Phylogenetic tree of all accessions inferred from a subset of 131,319
SNPs, distributed randomly across whole-genome. The yellow, green, and blue dots indicate winter, spring, and semi-winter accessions.
(D) PCA plots of the first two components of 171 accessions. (E) Summary of nucleotide diversity and population divergence across the three
ecotype groups. Values in circles represent measures of nucleotide diversity for the group, and values between pairs indicate ecotype
divergence (FST). (F) Decay of LD (r2) in the three groups (top) and two subgenomes (bottom).
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MU3_TEX_SV at time points T7-T11 (Supplementary Figure S5B),

which contributed to ecotype divergence and reflect the complex

degree of leaf grayscale in vegetable state. Two i-traits in top view

and all seven i-traits in side view were found to be associated with a

number of loci at all eleven and five time points, respectively

(Figures 5A, B; Supplementary Table S8). For the i-traits in top

view and side view, the number of associated loci for each i-trait

ranged from 1 to 218 (PAR_TV_5) at all 11 time points and from 1

to 134 (PC1_SV_7) at all 5 time points, with an average of 1.22-

98.50 and 1.25-101.20 loci per time point, respectively. The QTLs

were distributed nonrandomly throughout the rapeseed
Frontiers in Plant Science 10
chromosome, with a maximum of 344 on C01 and a minimum

of 102 on C5. However, there was the symmetrical distribution of

QTL in A sub-genome (2,042) and C sub-genome (2,046) (c2-test,
p = 0.95).
Genetic divergence of the differentiated
i-traits among the three ecotypes

To detect the genetic basis underlying the differentiated i-

traits among the three ecotypes, we first calculated the pairwise
B

C D

A

FIGURE 5

Dynamic QTLs detected in the population by GWAS. (A) QTLs responsible for the 18 i-traits in top view. i1-i18 represent GCV_TV, M_TEX_TV,
SE_TEX_TV, S_TEX_TV, MU3_TEX_TV, U_TEX_TV, E_TEX_TV, TPA_TV, H_TV, W_TV, HWR_TV, FDNIC_TV, FDIC_TV, R_TV, PAR_TV, HA_TV,
AC_TV, and GPA_TV, respectively. (B) QTLs responsible for the 23 i-traits in side view. i1-i23 represent M_TEX_SV, SE_TEX_SV, S_TEX_SV,
MU3_TEX_SV, U_TEX_SV, E_TEX_SV, TPA_SV, H_SV, W_SV, HWR_SV, FDNIC_SV, FDIC_SV, R_SV, PAR_SV, HA_SV, AC_SV, GPA_SV, PC1_SV,
PC2_SV, PC3_SV, PC4_SV, PC5_SV, and PC6_SV, respectively. The time points T1-T11 and T7-T11 are shown as circles with a colour gradient
from light to dark, as indicated in the legend of (A, B). (C) QTLs responsible for the 30 growth-related traits. G1-G30 represent a_linear_TV,
b_linear_TV, a_power_TV, b_power_TV, a_Exp_TV, b_Exp_TV, a_log_TV, b_log_TV, a_quadratic_TV, b_quadratic_TV, c_quadratic_TV,
a_sin_TV, b_sin_TV, c_sin_TV, d_sin_TV, a_linear_SV, b_linear_SV, a_power_SV, b_power_SV, a_Exp_SV, b_Exp_SV, a_log_SV, b_log_SV,
a_quadratic_SV, b_quadratic_SV, c_”uadr’tic_SV, a_sin_SV, b_sin_SV, c_sin_SV, and d_sin_SV, respectively. (D) Network of associated bins with
different traits. Green, blue, purple, and yellow nodes represent color traits, growth-related traits, histogram texture traits, and plant
morphological traits (Details in Supplementary Table S3). The grey nodes of the outer ring represent the identified 602 nonredundant bins.
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FIGURE 6

Genome-wide ecotype divergence with integration of multiple GWAS signals responsible for the differentiated i-traits. (A, B) Highly divergent
regions between the winter and spring ecotypes (A) and winter and semi-winter ecotypes (B). The horizontal red dashed lines indicate the
thresholds (top 1% of FST values). Region indicated by the asterisk was that surrounding BnaA10.FLC. (C-F) GWAS signals responsible for
FDNIC_SV (C), PAR_SV (D), S_TEX_SV (E), and PAR_TV (F) across multiple time points, which overlapped the common divergent regions on C09
chromosome between winter and spring/semi-winter ecotypes. The red vertical dashed lines in Manhattan plots indicate the threshold of GWAS
(-log (P value) = 6.02).
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population differentiation level and searched for genomic

regions showing the highest level of fixation for SNPs (the top

1% of FST) across different ecotypes. There were 78, 73, and 79

such regions with an FST value greater than 0.72, 0.67, and 0.50

between W and S ecotypes, W and SW ecotypes, and S and SW

ecotypes, respectively (Supplementary Table S6). These regions

covered 9.11 Mb, 9,03 Mb, and 9.02 Mb in total, containing 605,

618, and 755 genes, respectively (Supplementary Table S6). We

identified the local differentiation signals surrounding

BnaA10.FLC on Chromosome A10 between W and S ecotype

(Figure 6A), which had been detected previously and is a major

association with seasonal crop type in rapeseed (Wu et al., 2019;

Yin et al., 2020). This result prompted us to annotate the

differentiation signals among the three ecotypes, in

combination with the above-mentioned GWAS signals of

differentiated i-traits.

Interestingly, when the physical QTLs of ecotype

differentiated i-traits were compared with the 230 divergent

regions, we found that 35, 33, and 42 divergent regions were

located within known QTLs responsible for the differentiated i-

traits between W and S, W and SW, and S and SW, respectively

(Supplementary Table S9). Overall, the ratio of divergent regions

overlapping with QTLs of ecotype differentiated i-traits (47.8%)

was significantly more than that overlapping with QTLs of i-

traits that little contributed to the divergence of ecotype (31.7%)

(c2-test, p = 2.66×10-4). For the divergent regions between W

and S ecotype, a subset of 213 QTLs responsible for FDNIC_TV/

SV, PAR_TV/SV, S_TEX _TV/SV, HA_TV, HWR_SV,

SE_TEX_SV, and TPA_SV overlapped with the divergent

regions. For the divergent regions between W and SW

ecotype, a subset of 237 QTLs responsible for FDNIC_TV/SV,

PAR_TV/SV, S_TEX _TV/SV, GCV_TV, HA_TV, M_TEX_TV,

W_TV, HWR_SV, MU3_TEX_SV, SE_TEX_SV, and TPA_SV

overlapped with the divergent regions. For the divergent regions

between S and SW ecotype, a subset of 184 QTLs responsible for

FDNIC_TV/SV, MU3_TEX_TV/SV, PAR_TV/SV, GCV_TV,

M_TEX_TV, S_TEX _SV, SE_TEX_SV, and TPA_SV

overlapped with the divergent regions. Of these, four common

divergent regions between W and S/SW, located on

chromosome A10, C01, and C09, were found to overlap with

the dynamic QTLs responsible for FDNIC_SV, PAR_ SV,

S_TEX _SV, and PAR_ TV at multiple growth stages

(Figure 6; Supplementary Figures S6–S8). The strongest

divergent regions between S and SW on chromosome C02

overlapped with the QTLs responsible for PAR_SV and

FDNIC_TV at multiple growth stages (Supplementary Figure

S9). Taken together, these results supported that alleles of i-traits

contributing to ecotype divergence have experienced selection

among the ecotype in rapeseed, which revealed that

differentiation of i-traits among the ecotypes was contributed

to by the genetic variations and differentiation.
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