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1Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou, China, 2Key
Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of National Forestry and
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The leaves of Eucommia ulmoides contain various active compunds and

nutritional components, and have successively been included as raw

materials in the Chinese Pharmacopoeia, the Health Food Raw Material

Catalogue, and the Feed Raw Material Catalogue. Core collections of E.

ulmoides had been constructed from the conserved germplasm resources

basing on molecular markers and morphological traits, however, the

metabolite diversity and variation in this core population were little

understood. Metabolite profiles of E. ulmoides leaves of 193 core collections

were comprehensively characterized by GC-MS and LC-MS/MS based non-

targeted metabolomics in present study. Totally 1,100 metabolites were

identified and that belonged to 18 categories, and contained 120 active

ingredients for traditional Chinese medicine (TCM) and 85 disease-resistant

metabolites. Four leaf chemotypes of the core collections were established by

integrated uses of unsupervised self-organizing map (SOM), supervised

orthogonal partial least squares discriminant analysis (OPLS-DA) and random

forest (RF) statistical methods, 30, 23, 43, and 23 chemomarkers were screened

corresponding to the four chemotypes, respectively. The morphological

markers for the chemotypes were obtained by weighted gene co-expression

network analysis (WGCNA) between the chenomarkers and the morphological

traits, with leaf length (LL), chlorophyll reference value (CRV), leaf dentate

height (LDH), and leaf thickness (LT) corresponding to chemotypes I, II, III, and

IV, respectively. Contents of quercetin-3-O-pentosidine, isoquercitrin were

closely correlated to LL, leaf area (LA), and leaf perimeter (LP), suggesting the

quercetin derivatives might influence the growth and development of E.

ulmoides leaf shape.

KEYWORDS

self-organizing map, random forest, non-targeted metabolomics, chemotype
classification, marker screening
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1 Introduction

Although have not yet been fully explored, plant metabolites

are important sources for food, medicines, health care products,

feed additives and some industrial materials. Plants were

estimated to produce above 200,000 metabolites in nature

(Dixon, 2003), while a single species was thought to contain

4,000~20,000 metabolites that exerted a wide range of effects on

growth, development, and interactions with biotic or abiotic

environments (Fernie et al., 2004; Wang et al., 2019a). E.

ulmoides had been widespread in continents of the northern

hemisphere according to the fossil records, however, after the

quaternary glaciation it only survived in northern and central

China (Call and Dilcher, 1997). By the introduction and

cultivation, at present E. ulmoides is widely planted in China as

one of the important tree species of national strategic resources,

which horizontally distributed in 24.5 ~ 41.5° N, 76 ~ 126° E, and

vertically below 2500 m (Li et al., 2019). Many valuable

metabolites including iridoids, flavonoids, phenylpropanoids,

and lignans had been extracted from E. ulmoides leaves, and

those exerted good functions in antibacterial, anti-inflammatory,

anti-oxidant, immune regulation, and hypoglycemic, and anti-

hypertension (Zhu et al., 2018; Wang et al., 2019b). E. ulmoides

leaves were listed as traditional medicinal herbs in the 2005 and

2015 editions of the Chinese Pharmacopoeia, and included in the

pilot project list for drug & food homologation by the National

Health Commission in 2019 (Gong et al., 2021). Besides, the

extracts of E. ulmoides leaves were stipulated for uses of growing-

finishing pigs, fish, and shrimp in the Catalogue of Feed Additives

(2013) that issued by the Ministry of Agriculture of China (Yang

et al., 2021).

Phytochemotype was regarded as a plant phenotype

differentiated by content, composition or structure of the

endogenous chemicals within a species, which indicated the

intraspecific variation and diversity (Rovesti, 1957; Eilers et al.,

2021). Analyses of phytochemotype classification and its

formation mechanism had both theoretical and practical

values in guiding the development & utilization, quality

evaluation and oriented cultivation of plant germplasm
Abbreviations: SOM, self-organizing map; PCA, principal component

analysis; OPLS-DA, orthogonal partial least squares discriminant analysis;

WGCNA, weighted gene co-expression network analysis; KNN, k-nearest

neighbor algorithm; RF, random forest; LOESS, locally weighted scatter plot

smoothing; SVR, support vector regression; LASSO, least absolute shrinkage

and selection operator; RSD, relative standard deviation; TCM, traditional

Chinese medicine; QC, quality control; LL, leaf length; LTWR, length to

width ratio of leaf; LDH, leaf dentate height; LDW, leaf dentate width; LDN,

leaf dentate number; LW, leaf width; LA, leaf area; CRV, chlorophyll

reference value; LP, leaf perimeter; LT, leaf thickness; SL, stipe length;

SLFW, specific leaf fresh weight; SLDW, specific leaf dry weight.
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resources (Desjardins, 2008). Although standards of

chemotype classification and nomenclature for different plant

species have not been unified (Hua et al., 2009), intraspecific

chemotype variations were found and studied in several tens

plants including Agastache rugosa, Cannabis sativa, and

Valeriana jatamansi since the concept proposed (He et al.,

2018; Jin et al., 2021; Dang et al., 2022). Because of the

development of statistical analysis for high dimensional data,

and the maturity of chromatograph-mass spectrometer

technologies, the high-throughput detection of plant

metabolomics provided whole and new perspectives for

accurate chemotype classification and evaluation, and related

metabolic regulatory mechanisms (Deng et al., 2020; Yang et al.,

2020). Metabolites in different plant chemotypes could be the

causes or markers of the morphological traits (Saito, 2013). Co-

expression analysis between metabolites and morphological

traits facilitated early selection and prediction of complex

traits in breeding, and that had been successfully applied to

several staple crops (Shepherd et al., 2006; Wei et al., 2017; Shi

et al., 2020). E. ulmoides was a monotypic species of

Eucommiaceae. Germplasm genetic diversity of E. ulmoides

had been evaluated by morphological traits, major active

metabolites, and a number of molecular markers from RAPD

to SNP (Wu et al., 2011; Yao et al., 2012; Yu et al., 2015; Du et al.,

2017; Liu et al., 2022). Most results tended to believe that the

genetic diversity of E. ulmoides at the intra-population level was

higher than at the inter-population level, and its genetic distance

was not evidently correlated to geographical distribution.

However, at systematic chemotypic level, E. ulmoides

germplasm resources were not been fully evaluated and

classified except of the male flower core collections (Liu et al.,

2020). E. ulmoides core collections from nearly 2,000 germplasm

resources had been constructed and conserved in the National

Germplasm Resources Bank of Major Famous Tree Species in

the North (34°55′22″ N, 113°46′16″ E), Yuanyang, Henan

Province (Li et al., 2018a).

In this study, we conducted a large scale metabolomics study

by GC-MS and LC-MS/MS in leaves of 3 clonal replicates of 193

core collections (579 individuals) form 43 geographic origins that

grew under similar growth environment and cultivation practices,

to determine the possible leaf chemotypes and chemical markers

across the collections. We processed the non-targeted

metabolomics data by two clustering methods, K-means and

SOM, and evaluated the results by comprehensive uses of RF

model, OPLS-DA, and targeted determination of 13 metabolites.

Additionally, we analyzed the correlations between the leaf

metabolites and morphological traits, and the morphological

markers of the chemotypes. These results would provide

valuable references and be conductive to the germplasm

collection strategy, directed breeding, quality control, and leaf

resources utilization of E. ulmoides.
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2 Materials and methods

2.1 Plant materials and sampling

Six individuals of 193 core collections have been planted

after grafting propagation at tree spacing of 3 m × 3 m and

implemented by basically consistent cultivation measures and

managements in the E. ulmoides germplasm pool since 2013.

Mature leaves grew at the middle annual branch were sampled

from 2~4 individuals of each core collection in late August 2020.

The samples were separated to 6 biological replications for GC-

MS non-targeted determination, and to 3 biological replications

for LC-MS/MS non-targeted determination, respectively. After

sampling the materials were firstly frozen in liquid nitrogen,

then stored at -80°C in laboratory. Samples for HPLC targeted

determination were sampled in late August 2021 and followed

the similar methods. Geographical origins of 193 collections and

their leaf morphology characters were summarized and analyzed

in Supplementary Table 1.
2.2 GC-MS analysis

Powdery sample was weighed (ca. 80.0 mg) after ground by

liquid nitrogen and was added with 60 µL 0.2 mg·mL-1 ribitol

and 1.5 mL extraction solvent (methanol, chloroform and water

in volume ratio of 2.5:1:1) for 30 min sonication in cold water

bath. After centrifuging the mixture at 12,000 rpm for 10 min at

4°C, the supernatant of 1ml was transferred, followed by the

addition of 400 µL water. The supernatant of 100 µL was

transferred and dried by nitrogen after the mixture vortexed

for 30 s and centrifuged at 12,000 rpm for 5 min at 4°C. The

methoxyamine hydrochloride of 60 µL (20 mg·mL-1) was added

in pyridine to the resident solution and shaken for 90 min at 37°

C for derivatization. Then 100 µL MSTFA and 1% TMCS were

added to the mixture and shaken 30 min at 37°C. At last, the

solution was derived at room temperature for 30 min and

transferred to the liner tube for test after filtered by 0.50 µm

filter membrane (Weckwerth et al., 2004).

The injection of 1 µL of solution into a Thermo scientific Trace

1310 GC-MS system (Thermo Fisher Scientific, USA) was

performed in the non-split mode. Separation was carried out on

a non-polar DB-5 capillary column (30 m × 0.25 mm I.D., J&W

Scientific, USA), with high purity helium as the carrier gas at a

constant flow rate of 1.0 mL/min. The column temperature

program was of 80°C for 5 min, following ramped at 10°C. min

to 195°C and held for 4min, and then ramped at 3°C. min to 260°C

and held for 6 min, and finally ramped at 4°C. min to 305°C and

held for 5 min. Temperature of the ion source, the transmission

line and the inlet temperature was set to 310°C, 260°C, and 280°C,

respectively. Full scan mode (SCAN) was employed and the mass

scan range was of 50~600 m/z. The quality control (QC) sample
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was prepared by mixing aliquots of the samples to be a pooled

sample. To monitor and assess GC-MS system stability, 1 injection

of QC sample was tested behind every 10 injections of the normal

samples (Subbaraj et al., 2019).
2.3 LC-MS/MS analysis

The powder sample of 100 mg was ground and weighed after

vacuum freeze-drying The sample was added with 1 mL of 50%

methanol and shaken for 1 h. Then the mixture was centrifuged

at 14,000 rpm for 10 min after placed in a refrigerator at 4°C

overnight. The supernatant was transferred to an inner tube for

test after filtered through 0.22 µm membrane.

The injection of 5 µL of solution into liquid chromatography

Q-Exactive Orbitrap mass spectrometry (Thermo Fisher

Scientific, USA) was performed by the autosampler at 10°C.

Chromatographic separation was carried out on the Hypersil

GOLD™ AQC18 column (2.1 mm × 100 mm, particle size 1.9

µm) at 30°C applying the following binary gradient at a flow rate

of 300 µL. min-1: 0-2.5 min, isocratic 90%-95% A (water/formic

acid, 99.9/0.1 [v/v]), 5%-10% B (acetonitrile/formic acid, 99.9/

0.1 [v/v]); 2.5-6 min, 10%-12% B; 6-10 min, 12%-15% B; 10-13

min, 15%-17% B; 13-14 min, 17%-25% B; 14-20 min, 25%-80%

B; 20-22 min, 80%-100% B 22-25 min, 100% B; 25-25.1 min,

linear from 100% to 5% B; 25.1-28 min, 5% B. Eluted

compounds were detected from m/z 70 to 1,050 using a Q-

Exactive Orbitrap mass spectrometer equipped with an HESI

electrospray ion source in positive and negative ion modes using

the following instrument settings: spray voltage, ± 3.2 kV; Full

MS resolution, 70,000; dd-MS2 resolution,17,500; collision gas,

high purity N2; step collision energy, 20/40/60 V. QC samples

were scanned at interval of 10 samples (Li et al., 2018b).
2.4 HPLC analysis

Powder samples of 500 mg were ground and weighed after

vacuum freeze-drying. The sample was added with 10 mL of 60%

methanol and extracted by ultrasonication for 30 min. Then the

mixture was centrifuged at 12,000 rpm for 10 min after placed in

a refrigerator at 4°C overnight. The supernatant was transferred

to injection bottle for test after filtered through 0.22

µm membrane.

The injection of 5 µL solution into high performance liquid

chromatography (Waters ACQUITY Arc system, USA) coupled

with a 2998 photodiode array (PDA) detector was performed.

Chromatographic separation was carried out on Thermo

Syncronis C18 column (250 mm × 4.6 mm, particle size 5 µm)

at 30°C applying the following binary gradient at a flow rate of

800 µL·min-1: 0-10 min, isocratic 83%-95% A (water/formic

acid, 99.8/0.2 [v/v]), 5%-17% B (acetonitrile/formic acid, 99.9/
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0.1 [v/v]); 10-25 min, 17%-20% B; 25-30 min, 20%-30% B; 30-50

min, 30%-50% B; 50-55 min, 50%-70% B; 55-57 min, linear from

70% to 5% B. The detection wavelengths were set to 204 nm for

aucubin, 239 nm for geniposide acid and asperuloside, 247 nm

for protocatechuic acid, 276 nm for catechin and pinoresinol

diglucoside, 264 nm for methyl gallate, genipin and rutin, 325

nm for chlorogenic acid, and 364nm for isoquercitrin, quercetin

and kaempferol. Above 13 compounds were identified

respectively by comparison of the retention time to

corresponding standard, and their contents were determined

according to the external standard method (Supplementary

Table 2 and Supplementary Figure 1).

Standards of aucubin, chlorogenic acid, rutin, methyl gallate,

and kaempferol with purity≧98% were purchased from

Shanghai Anpu Experimental Technology Co., Ltd. standards

of genipin, catechin, and asperuloside with purity = 98% were

from Shanghai Yuanye Bio-technology Co., Ltd. and the

standards with purity = 98% including geniposide acid,

protocatechuic acid, quercetin, and pinoresinol diglucoside

were from Chengdu Manst Bio-technology Co., Ltd.

Isoquercitrin standard with purity = 97% was purchased from

National Institute for the Control of Pharmaceutical and

Biological Products (Beijing, China).
2.5 Identification and quantification

The MS spectra data determined by GC-MS and LC-MS/MS

were firstly converted to analysis base file (Abf) format by ABF

Converter. Initial characteristic features were obtained after peak

detection, peak identification, deconvolution, peak alignment,

filtering, characterization and retention time correction of MS

spectra data by MS-DIAL (V4.38) (Tsugawa et al., 2015). The

main MS-DIAL parameter settings are provided in

Supplementary Table 3. The feature values were removed

when the features were undetected in 80% of the biological

samples, then the extrapolated values were filled using the k-

nearest neighbor algorithm (KNN) (Dunn et al., 2011).

High quality features in QC samples were obtained after

their peak values calibrated comparatively by three algorithms

including Random forest (RF), locally weighted scatter plot

smoothing (LOESS), and support vector regression (SVR). For

GC-MS features, the criterion of optimal algorithm was relative

standard deviation (RSD) of the peak values of the reserved

features below 50% and their quantity proportion in total

features above 70%, and for LC-MS/MS features, the criterion

was RSD below 30% and the proportion above 70%. RF and

LOESS analyses were completed by statTarget R package

(V1.16.1), and SVR analysis was completed by MetNormalizer

R package (V1.0) (Luan et al., 2018; Shen et al., 2019).

The metabolites determined by GC-MS were annotated

basing on the Fiehn database (https://fiehnlab.ucdavis.edu/)

and retention index (retention index, RI) with C8~C40 n-
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alkanes (Lai et al., 2018), and those determined by LC-MS/MS

were annotated basing on Massbank (http://www.massbank.jp),

GNPS (http://gnps.ucsd.edu) and ReSpect (http://spectra.psc.

riken.jp/) (Tsugawa et al., 2015). Traditional Chinese Medicine

Systems Pharmacology Database and Analysis Platform

(TCMSP) (https://tcmsp-e.com/tcmsp.php) was also used to

screen the active ingredients for traditional Chinese medicine

(TCM) and disease-resistant metabolites in the annotated

metabolites (Li et al., 2022). For large-scale samples, unstable

injection often occurred in the determination of GC-MS, which

could result in variable metabolome data in the biological

duplicates, PCA analysis were carried out to remove 3 outliers

of each collection. The final metabolome data were combined

from the GC-MS and LC-MS/MS after removing repeat

annotated metabolites.
2.6 Statistical analysis

The data set was firstly log standardized, and then averaged to

enhance normality. SOM unsupervised clustering and K-means

were used to perform the chemotype classification by analyzing the

metabolite composition and content, and RF discriminant model

was used to evaluate difference in the chemotypes. The optimal

clustering method and the number of chemotypes classification

were identified by evaluating the classification effect of the two

clustering methods. SOM analysis was carried out by Python 3.6

software, K-means and RF analyses were carried out by R 3.6

software, in which the tree number of RF modle was set to 1,000

(Chavent et al., 2021). Principal component analysis (PCA) was also

used by SIMCA-P (V14.0) software to evaluate the difference in the

germplasms (Saccenti et al., 2014). The differences between certain

chemotype and the other chemotypes were evaluated by OPLS-DA,

in which the values of R2Y(cum) and Q2Y(cum) were used to judge

the validity of the model (Triba et al., 2015). Latent biomarkers of

each chemotype were screened basing on the OPLS-DA results and

using 4 criteria: (1) a variable importance of projection (VIP) value

≥2, (2) a Student’s t-test p value < 0.05, (3) a fold change (FC) value

> 0.5, and (4) a mean decrease accuracy (MDA) value ≥ 2 in the RF

model, and finally the results were shown in volcano plots using R

software (V3.6).

Metabolite co-expression network was constructed to

explore potential correlations between metabolites and leaf

morphological traits using WGCNA by R package (V1.70),

and a visual correlation network between key metabolite and

leaf morphological traits was construct using Cytoscape software

(V3.7.0) (DiLeo et al., 2011). RF regression model using

metabolites in the key module as independent variables and

leaf morphological traits as dependent variables was developed,

in which the predictability was evaluated by determination

coefficient R2. In addition, leaf morphological trait-related

markers were screened according to the variable importance

measured in the RF model (Dan et al., 2021). Finally, leaf
frontiersin.org
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morphological traits were predicted by least absolute shrinkage

and selection operator (LASSO) regression using the non-

targeted metabolome data (Xu et al., 2017).
3 Results

3.1 Data correction and
metabolite annotation

TIC plots of typical QC samples of GC-MS and LC-MS/MS

untargeted metabolomics assays were shown in Supplementary

Figure 2. For both GC-MS and LC-MS/MS mass spectra data of

E. ulmoides leaves, RF model was more optimal and suitable for

QC calibration than the LOESS and SVR algorithms according

to the employed criterions, and 85.38%, 82.25% and 71.94% of

the total features were eserved in QC samples determined by

GC-MS, ESI+ and ESI- mode of LC-MS/MS, respectively

(Supplementary Table 4 and Supplementary Figure 3). Totally

7,438 initial characteristic features, including 5,910 high quality

features, were obtained from GC-MS mass spectra data, and

30,881 and 15,553 initial characteristic features, including 27,526

and 14,633 high quality features, were obtained from LC-MS/MS

mass spectra data in the ESI+ and ESI- mode, respectively

(Supplementary Table 4). In addition, RSD of the internal

standard ribitol by GC-MS determination was 30.84%, and

that also showed the calibrated results were stable and reliable

after QC calibration by RF model (Supplementary Figure 3).

For metabolite annotation, 209 and 891 metabolites were

annotated from the GC-MS and LC-MS/MS determination,

respectively, and finally 1,100 metabolites were annotated in

leaves of 193 E. ulmoides core collections after metabolome assay

(Supplementary Tables 5, 6). The metabolites broadly classified into

18 categories according to KEGG database, the top 6 of which were

flavonoids, organic acids, amino acids, phenylpropanoids, lipids,

and terpenoids, accounting for 14%, 11%, 11%, 10%, 8%, and 8% of

the total metabolites, respectively (Figure 1). 120 active ingredients

were identified among the annotated metabolites through the

TCMSP database. In addition, 85 disease-resistant metabolites

were identified and functioned to at least one disease

(Supplementary Table 7), with 10, 30, 19, 43, 23, and 38

metabolites of effects on anti-cancer/tumor, anti-diabetic, anti-

cardiovascular, anti-hypertensive, anti-atherosclerotic, and anti-

thrombotic, respectively. The above information indicated that E.

ulmoides leaves were rich in medicinal health substance and could

be excellent raw material for pharmatical use.
3.2 Chemotype classification

A matrix consisted of 193 samples ×1,100 metabolites was

used to classify the potential chemotypes of E. ulmoides leaves.
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According to K-Means gap statistic, the whole collections were

suitable to divide into 4, 5, and 6 groups by K-Means cluster, and

incomplete coincidently, similar results were obtained by SOM

cluster (Figure 2A). To determine which one was the optimal

classification method, discriminant RF model was employed to

evaluate the results of K-Means and SOM basing on the content

of the annotated metabolites. 75% of the 193 core collections

were selected as the training set for constructing the prediction

model, and the other 25% as the independent set for cross

validation. Four chemotypes classified by SOM clustering was

considered an optimal result, for the average prediction accuracy

of the training set and independent set were highest in the RF

model, respectively reaching to 92.52% and 91.30% (Table 1).

Topological mapping maps of SOM showed the projection

of the metabolome dataset from high-dimension to low-

dimension. For topological mapping maps of four chemotypes

classified by SOM, 7 × 7 rectangular topology was selected as the

final output layer after 100 iterations of training on the data

matrix, in which the minimum quantization error and topology

error were taken as training termination criteria. In the obtained

topological mapping plots, Figure 2B showed that four modules

were classified in the samples and similar patterns were

expressed in the same group, Figure 2C showed the

distribution patterns of the samples and variables, with weight

vector of the node representing the variables mapped to the node

and the fan charts in the grids representing the sample size in the

weight vector, Figure 2D showed the variable allocations in each

grid node, with even allocations in the grid nodes representing

accurate classification of the corresponded groups, Figure 2E

showed the distances between the grid nodes and its adjacent

nodes, with the distances lengthening followed to the difference

in the nodes increasing. Finally, the 193 collections were

classified into four leaf chemotypes, and for each chemotype,

consisted of 58, 69, 39, and 27 collections, respectively

(Supplementary Table 8).
FIGURE 1

Categories of the annotated metabolites in leaves of E. ulmoides.
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3.3 Chemotype comparison

The separation and similarity across the chemical groups

were examined using PCA model, in which 12 principal

components were obtained that accounting for 42.6% of the

total variance. PC1, PC2, and PC3 accounted for 10.70%, 8.16%,

and 5.91% of the total variance, respectively. In the score plot of

PC1 and PC2, chemotypes III and chemotype IV were well

separated but chemotype I and chemotype II showed partial

overlap, while in the score plot of PC1 and PC3 (Figure 3), each

chemotype was evidently separated. However, no evident

correlation was observed between the leaf chemotypes and

their geographical origins in the PCA plots. Four supervised

OPLS-DA models were constructed to measure the differences

between a specific leaf chemotype and the other three

chemotypes. From the results of ranking test in each group,

values of R2Y and Q2 of the model after Y replacement were
Frontiers in Plant Science 06
lower than those of the original model as conducting the

replacement validation (Figure 3 and Supplementary Table 9),

and that indicated the employed OPLS-DA models had good

robustness and each classified leaf chemotype was of

special characteristic.
3.4 Chemomarkers screening

VIP values, P-values, FC values, andMDA values were used to

build the criteria of chemomarkers screening. A total of 103

markers were screened in the four chemotypes, in which 30, 23,

43, and 23 markers corresponded to chemotype I, chemotype II,

chemotype III, and chemotype IV, respectively. In addition, 20,

17, 33, and 17 markers were found exclusive to the chemotype I,

chemotype II, chemotype III, and chemotype IV, respectively, and

that suggested these chemomarkers were divergent and could be
TABLE 1 Evaluation of the chemotypes classified by SOM and K-means by RF model.

Number of classification

Average prediction accuracy of SOM
classification (%)

Average prediction accuracy of K-Means
classification (%)

Training set Independent set Training set Independent set

4 chemotypes 92.52 91.30 89.04 89.36

5 chemotypes 89.19 86.96 82.35 89.36

6 chemotypes 79.73 84.78 80.27 89.36
B C

D E

A

FIGURE 2

Chemotype classification by K-Means cluster and SOM cluster. (A) Number of clusters K via the K-means gap statistic. (B) Topological mapping
plot of the SOM cluster. (C) Distribution patterns of the samples and variables of the SOM cluster. (D) Variable allocations in each grid node of
the SOM cluster. (E) Distance of neighboring grid nodes of the SOM cluster.
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effective in indicating the chemotypes (Figure 4 and

Supplementary Table 10). For chemotype I, the chemomarkers

mainly belonged to flavonoids and phenylpropanoids, and three

terpenes of 20 content up-regulated chemomarkers were TCM
Frontiers in Plant Science 07
active ingredients. Chemotype II contained the only lactone

marker, linderalactone, also identified as active ingredients for

TCM and disease-resistant metabolites, and contained the only

indole marker, indoline. For chemotype III, the chemomarkers
B C

D E

A

FIGURE 4

Screened chemomarkers of the four chemotypes. (A) Chemomarkers of chemotype (I) (B) Chemomarkers of chemotype II. (C) Chemomarkers
of chemotype III. (D) Chemomarkers of chemotype IV. (E) Venn plot of the chemomarkers in four chemotypes.
B

C D E

A

F

FIGURE 3

Comparisons of the four classified chemotypes. (A) The four chemotypes compared by PC1 and PC2 of PCA model. (B) The four chemotypes
compared by PC2 and PC3 of PCA model. (C) Comparisons between chemotype I and the other chemotypes by OPLS-DA model.
(D) Comparisons between chemotype II and the other chemotypes by OPLS-DA model. (E) Comparisons between chemotype III and the other
chemotypes by OPLS-DA model. (F) Comparisons between chemotype IV and the other chemotypes by OPLS-DA model.
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were almost terpenes, lipids, and organic acids, and three of 31

content up-regulated chemomarkers were TCM active ingredients

and one up-regulated chemomarkers belonged to disease-resistant

metabolites. For chemotype IV, the chemomarkers were mainly

phenolics and phenylpropanoids, and contained one up-regulated

chemomarkers belonged to the active ingredients for TCM.

RF model was employed to evaluate the accuracy of the

chemomarkers in distinguishing the chemotype. Average

prediction accuracy of the training set and independent test

set for the four chemotypes were 92.52% and 84.78% with AUC

value of the independent set 0.972, and specially, the prediction

accuracy for chemotype III reached to 100% (Supplementary

Table 11). Therefore, the results from RF model also showed the

chemomarkers were steady to classify the leaf chemotypes of

E. ulmoides.
3.5 Target validation of the chemotypes
by 13 metabolites

Contents of 13 important metabolites of E. ulmoides leaves

frequently followed in previous studies were determined in 193 core

collections, as spot checks on the non-targeted results of the

chemotype classification and chemomarker screening. Except for

three metabolites, methyl gallate, pinoresinol diglucoside, and

genipin, 10 metabolites showed similar varied tendency in each

chemotype basing on the comparisons between results of the non-

targeted and targeted determination (Supplementary Figure 4).

Specifically, isoquercitrin and kaempferol, chemomarkers of the

chemotype I, aucubin and chlorogenic acid, chemomarkers of the

chemotype III , their contents in the non-targeted results were down

regulated in they indicated chemotypes when comparing to the
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other types and that was observed exactly consistent with the

targeted results by HPLC determination.
3.6 Morphological markers of
the chemotypes

LASSO model was used to predict the leaf morphological traits

basing on contents of 1,100 metabolites, to assess the correlations

between leaf metabolites and morphological traits, and examine the

feasibility of screening morphological markers. Average

predictability of the 13 morphological traits was 0.3566. The top

four predictive values were 0.5694, 0.5502, 0.4954, and 0.3914,

respectively, corresponding to leaf dentate number (LDN),

chlorophyll reference value (CRV), leaf perimeter (LP), and

specific leaf dry weight (SLDW) (Figure 5), which indicated a

certain degree of associations between the metabolites and

morphological traits in E. ulmoides leaves. Significant differences

were observed by ANOVA in four leaf morphological traits

referring to SLFW, CRV, leaf dentate height (LBH), and leaf

thickness (LT) among the four leaf chemotypes. The average

values of SLFW and CRV were highest in chemotype II, and

value of LBH was highest in chemotype III, while value of LT

was highest in chemotype IV after multiple comparisons

(Supplementary Table 12).

Nine metabolite modules contained 601 metabolites were

obtained by WGCNA between 1100 metabolites and 13

morphological traits, then a correlation heat map was made

between the modules and the morphological traits (Figure 6A).

For chemotype I, 17 of 20 up-regulated chemomarkers were

included to the yellow metabolite module that closely positive

correlated with leaf length (LL) in the heat map, and that
FIGURE 5

Average predictability of the 13 morphological traits by LASSO model.
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implicated LL was one of the potential morphological markers of

chemotype I. Analogously, for chemotype II, III, and IV, CRV,

LBH and LT were their corresponded potential morphological

markers, respectively, after examining the correlations between

morphological traits and chemomarkers through the MEbrown

module, the MEblue module, the MEgreen module, the MEpink

module, and the MEyellow module (Supplementary Table 13).

Five flavonols (quercetin 3-(6″-acetylglucoside), quercetin-
3-O-beta-glucopyranoside, quercetin-3-O-pentosidine,

isoquercitrin, and kaempferol-3-O-glucoside) and three

phloretic glycosides delphinidin, petunidin-3-O-glucoside,
Frontiers in Plant Science 09
and cyanidin-3-O-alpha-arabinoside, were significantly

negative correlated to LL after further correlation analysis

between six key metabolite modules and eight morphological

traits (Figure 6B and Supplementary Table 14). In addition,

quercetin-3-O-pentosidine and isoquercitrin were of high

importance degrees when their contents analyzed as

dependent variables in RF regression analysis with LL, leaf

area (LA), and leaf perimeter (LP), and that also suggested the

three traits could be the morphological markers denoting the

cont en t s o f the two metabo l i t e s in E . u lmo ide s

leaves (Figure 6C).
B C

A

FIGURE 6

Correlation between the metabolites and the morphological traits of E ulmoides leaves. (A) Heat map of the correlations between the modules
obtained by WGCNA and the morphological traits. (B) Correlation analysis between 377 metabolites in six key metabolite modules and eight
morphological traits. (C) IncMSE% in the RF regression for 25 metabolites in the Memagenta module. (LL, Leaf length; LTWR, Length to width
ratio of leaf; LDH, Leaf dentate height; LDW, Leaf dentate width; LDN, Leaf dentate number; LW, Leaf width; LA, Leaf area; CRV, Chlorophyll
reference value; LP, Leaf perimeter; LT, Leaf thickness; SL, Stipe length; SLFW, Specific leaf fresh weight; SLDW, Specific leaf dry weight).
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4 Discussions

E. ulmoides has been considered of limited intraspecific

variation as a monocotyledonous tree species of single family

and single genus (Li et al., 2018a), and limited genetic diversity

in the breeding are concerned by many E. ulmoides researchers.

Accurate evaluation of the chemical composition and

chemotype classification of germplasm resources could

effectively expand the genetic base, promote the breeding

potential and accelerate the directed breeding of E. ulmoides.

Related studies had been conducted in diverse tea populations

(Yu et al., 2020). Chemical components in different tissues of

E.ulmoides including leaves, seeds and barks had been

determined by ultra-high-performance liquid chromatography-

tandem time-of-flight mass spectrometer (UHPLC-QTOF/MS)

untargeted metabolomics, and finally 2,373 metabolites were

identified in total (Chen et al., 2022). Besides, the dynamic

metabolic models for leaf growth and development of E.ulmoides

were constructed by integrated uses of widely targeted

metabolomics and transcriptomics (Li et al., 2019). However,

few studies employed metabolomics to wholly determine and

evaluate the germplasm collections of E.ulmoides, expect of a

recent study on the core collections of male flower (Liu et al.,

2020). In present study, 1100 metabolites were determined by

GC-MS and LC-MS/MS untargeted metabolomics in 579

samples, which sketched a comprehensive and explicit

metabolite map of E. ulmoides leaves. The chemical variations

in different collections were systematically displayed, and that

provided holistic approaches and laid important foundations for

germplasm resource evaluation, leaves quality control, metabolic

regulation and directed breeding of E. ulmoides.

Recently, advanced machine learning algorithms including

SOM and deep belief networks (DBN) were increasingly

employed to deal with the high dimensional data in plant omics

studies. As an unsupervised artificial neural network, SOM soft

clustering was of high generalization ability and outperformed the

K-means hard clustering in clustering similar characteristic data in

regions of same network topology by self-organized learning space

distribution of the eigenvectors (Crespo et al., 2020). RF was a

compositive supervised learning method and could be regarded as

an extension of the decision tree, which proceeded classification and

regression of high dimensional data without dimension reduction

and measured the relative importance of variables to the

classification results, and that made it of clear advantages in

processing large datasets (Chavent et al., 2021). OPLS-DA model

was effective in examining the similarities or differences in specified

groups, and performed internal and external validation to evaluate

the effectiveness of the constructed model (Triba et al., 2015). The

comprehensive use of the SOM, RF and OPLS-DA in chemotype

classification of E. ulmoides leaves through analyzing matrices of

complex sample size and metabolite quantity offered highly reliable
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and accurate results that were superior to K-means classification

generally used in previous studies. However, for the classification

principles, standards, and naming rules for specific chemotype have

not been unified, the present classification of the leaf chemotype

based on the content of metabolites just confirmed that chemical

differentiations existed in the classified groups. The formulations of

classification standards, naming rules and sub-divisions of the

present classification should be given priority and issued in future

research. Similar to the results frommale flowers of E. ulmoides (Liu

et al., 2020), collections belonged to the leaf chemotypes did not

corresponded to their geographical distributed regions, indicating

the variation in the leaf chemotypes might originate from intra-

population variation and were broadly consistent with the genetic

variations of E. ulmoides collections (Wuyun et al., 2018).

One or several metabolites can be used as biomarkers to identify

collections belonged to specific chemotype, morphological type or

genotype in the plant germplasm resource, and even to some

biological processes, for instance, hybrid advantage of yield can be

predicted by metabolites levels in the tyrosine metabolic pathway

(Dan et al., 2021). 103 chemomarkers mostly belonged to

terpenoids, flavonoids, phenolic glycosides, and lipids were

screened on basis of values of VIP, p, and FC, and additionally,

variable importance in RF model. Differences in the plant

chemotypes might not be displayed in metabolites composition

but also in morphological, growing and developmental traits. To

chemotypes formation of Tanacetum vulgare, it was concluded that

the number and diameter of flower heads, flowering period, and

pollen nutritional quality were the significant indicators (Eilers et al.,

2021). The morphological markers of the E. ulmoides leaf

chemotypes were screened by hunting the correlations between

the chemomarkers and morphological traits. The integrated

application of chemomarkers and morphological markers will

contribute to identify the chemotype of germplasm resources, and

accelerate the efficiency in E. ulmoides breeding.

Correlation analysis between certain metabolites and extrinsic

traits was important for understanding the molecular mechanisms

of phenotypic variation (Chen et al., 2016). The genetic relationship

between metabolism and phenotype in wheat had been revealed by

combined analysis of metabolite-growth trait correlations and

quantitative trait locus (Shi et al., 2020). Besides, the grain shape

and stress resistance of rice was regulated by rice glycosyltransferase

GSA1 modulating the phenanthrene metabolism (Dong et al.,

2020). The predictability of metabolites values to LDN, CRV, LP,

and SLDW of E. ulmoides reached to 0.5694, 0.5502, 0.4954, and

0.3914, respectively, by LASSO. This is comparable to the results

from recombinant inbred line (RIL) in 145 wheat, with the

predictability to grain per spike and plant height reaching to 0.51

and 0.46 by LASSO (Shi et al., 2020). In addition to significant

negative correlations were observed between the content of

isoquercitrin from target determination and the external traits

such as LL, the contents of quercetin-3-O-pentosidine and
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isoquercitrin were closely correlated to LL, LA, and LP by RF

regression analysis, and these results indicated quercetin derivatives

might take an important role in the development of leaf shape of

E. ulmoides.
5 Conclusions

A set of GC-MS and LC-MS/MS non-targeted metabolomics

methods including sampling processing, metabolite extraction

and determination, metabolite annotation and quantification,

and data calibration was established for leaves of E. ulmoides,

providing a basis for disclosing the metabolic diversity and

variation, chemotype classification, and biomarkers screening

for the germplasm resource. 1,100 metabolites belonged to 18

categories and contained 120 active ingredients for TCM and 85

disease-resistant metabolites were identified in leaves of 193 core

collections of E. ulmoides. The integrated uses of unsupervised

SOM, supervised OPLS-DA, and RF statistical methods were

suitable to process classification and markers screening basing

on the non-targeted metabolomics data. 103 chemomarkers

corresponding to four established leaf chemotypes of E.

ulmoides were screened, and the morphological markers linked

to the leaf chemotypes were examined. Quercetin derivatives

may influence the growth and development of the leaf shape of

E. ulmoides, and that require further studies to confirm.
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