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of polyploid plants
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Landscape Architecture, South China Agricultural University, Guangzhou, China, 2Guangzhou
Flower Research Center, Guangzhou, China, 3Mid-Florida Research and Education Center,
Environmental Horticulture Department, Institute of Food and Agricultural Sciences, University of
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Triploid is considered a reproductive barrier and also a bridge in the formation

of polyploids. However, few reports are available in Cymbidium. In this study,

diploid ‘Xiaofeng’, sexual triploid ‘Yuchan’ and ‘Huanghe’ of Cymbidium were

used to evaluate hybridization compatibility of the triploids. Results showed

that the sexual triploids were fertile whether they were used as male or female

parents. ‘Yuchan’ produced male gametes of 1x, 1x~2x, 2x, 2x~3x, and 3x at

frequencies of 8.89%, 77.78%, 6.67%, 3.33%, and 3.33%, respectively; while

‘Huanghe’ produced 3.33% 1x, 80.00% 1x~2x, 8.89% 2x, 5.56% 2x~3x, and 2.22%

3x male gametes. The cross of ‘Xiaofeng’ with ‘Yuchan’ produced progenies

with a wide range of ploidy levels, including one diploid, 34 2×~3× aneuploids,

12 triploids, and one tetraploid, indicating that male gametes produced by

sexual triploid were fertile and could be transmitted and fused with egg cells.

On the other hand, 10 progenies obtained from the cross of ‘Yuchan’ ×

‘Xiaofeng’ were all aneuploids. The cross of ‘Yuchan’ with ‘Huanghe’

produced 40 progenies including three 2×~3× aneuploids, nine 3×~4×

aneuploids, 21 tetraploids, six 4×~5× aneuploids, and one pentaploid,

suggesting that 2x gametes, instead of the unreduced ones played a more

important role in the formation of tetraploids. The survival rates of the hybrids

were all above 80.00%, with the tetraploids at 96.67%. Cytological analysis

revealed that during meiosis of sexual polyploids, two chromosome sets of the

2n gamete were inclined to enter into the same daughter cell, resulting in the

production of 2x gametes. Our results indicate that the triploid cymbidiums are

not reproductive barrier but serve as a bridge in the formation of

polyploid plants.
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Introduction
Polyploidy plays a major role in the evolution and

diversification of plants (Thompson and Lumaret, 1992;

Bretagnolle and Thompson, 1995; Kovalsky et al., 2018). In

natural populations, polyploidy is formed by several different

routes (Ramsey and Schemske, 1998). Among them, sexual

polyploidy through unreduced gametes (2n gametes) is

considered to be the main pathway (Bretagnolle and

Thompson, 1995; Ramsey and Schemske, 1998; Xie et al.,

2022). The union of reduced and unreduced gametes produces

triploids, and the combination of two unreduced gametes forms

tetraploids (Bretagnolle and Thompson, 1995; Husband, 2004).

Owing to the limited chance in the fertilization between

simultaneously formed unreduced male and female gametes,

triploids are usually considered as the intermediate stage in the

formation of stable tetraploids, and this pathway of tetraploid

formation is known as the ‘triploid bridge’ (Ramsey and

Schemske, 1998; Yamauchi et al., 2004; Jike et al., 2020).

Triploids play an important role in polyploidy dynamics of

natural populations (Husband, 2004). For example, 1%

tetraploid progeny were obtained by backcrossing a

spontaneous triploid clone of Populus tremula with a diploid

(Bergstrom, 1940). Henry et al. (2005) reported that triploid

Arabidopsis thaliana plants were fertile and could lead to the

formation of tetraploids because they act as bridges between

euploid types. Schinkel et al. (2017) revealed that a female

triploid produced through unreduced egg cells was the major

cause of polyploidization in Ranunculus kuepferi. In the cross of

2× × 3×[2x] of Chamerion angustifolium, 65% progeny were

triploids and 16% were tetraploids, while 45% triploid progeny

and 35% tetraploid progeny were produced in the cross of 2× ×

3×[4x] (Burton and Husband, 2001). Using triploid as parents,

tetraploids and/or pentaploids were produced through the cross

of triploid × diploid in Hieracium echioides (Peckert and Chrtek,

2006), Phalaenopsis (Zhou et al., 2009), Tulipa (Marasek-

Ciolakowska et al., 2014), and Phegopteris (Nakato and

Masuyama, 2021). Hexaploids were obtained from the selfing

progeny of triploid Phegopteris decursivepinnata (Nakato and

Masuyama, 2021).

A challenge to the formation of higher polyploidy via the

‘triploid bridge’ pathway is the occurrence in aneuploid gametes

which can substantially reduce fertility (Ramsey and Schemske,

1998; Husband, 2004; Duszynska et al., 2019). However,

increasing evidence has suggested that triploids can produce

functional euploid (n = x, 2x or 3x) and aneuploid male gametes

in some species (Ramsey and Schemske, 1998; Diao et al., 2009;

Czarnecki et al., 2014; Kovalsky et al., 2018). Further studies

show that pollen fertility (or percentage of viable pollen) in

triploid plants varies among species and cultivars (Jones and

Reed, 2007; Farco and Dematteis, 2014; Zhang et al., 2017;

Alexander, 2020). Pollen fertilities in some triploid Turnera
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sidoides were found to be greater than 60% (Kovalsky et al.,

2018; Alexander, 2020) and reach up to 80% in triploid

Hydrangea macrophylla (Jones and Reed, 2007) and even 90%

in triploid white poplar plants (Wang et al., 2010).

Another obstacle restricting the role of triploids in polyploid

evolution is ‘triploid block’. Triploid block, which prevents

interploidy hybridization, is characterized by abnormal

endosperm development and seed collapse (Johnston et al., 1980;

Erilova et al., 2009; Koehler et al., 2010; Schinkel et al., 2017; Huc

et al., 2022). It is well known that the endosperm may develop

abnormally in interploidy-intraspecific crosses if the maternal and

paternal genome deviates from 2:1 ratio (Johnston et al., 1980;

Vinkenoog et al., 2003; Haig, 2013). However, some deviations

from this ratio are found to be allowable in certain species as viable

seeds were produced in Zea mays (Lin, 1984), Solanum tuberosum

(Ehlenfeldt and Ortiz, 1995), Arabidopsis thaliana (Scott et al.,

1998), and Peperomia (Friedman et al., 2008).

Orchids are plants belonging to the family Orchidaceae that

are prized by their ornamental and medicinal value. There are

27,801 recognized species that are globally distributed with the

exception of Antarctica (Vilcherrez-Atoche et al., 2022). Orchids

have been used as models for studying plant evolutionary

processes and adaptability to different environmental

conditions. Polyploidy plays an important role during the

evolution of orchids as sequence analyses showed that whole-

genome duplication (WGD) occurred widely in orchids,

including Apostasia shenzhenica (Zhang et al., 2017; Zhang

et al., 2021), Cymbidium ensifolium (Ai et al., 2021),

Dendrobium chrysotoxum (Zhang et al. , 2021), and

Phalaenopsis (Cai et al., 2015). A recent study showed that

triploids clustered in an intermediate position between

diploids and tetraploids in Zygopetalum mackayi (Moura et al.,

2020). In the Nigritella nigra group, nuclear and plastid marker

analysis showed that tetraploid N. nigra subsp. austriacais

somewhat differentiated from the triploid subsp. Nigra at

nuclear as well as plastid loci. The fusion of an unreduced egg

cell from subsp. Nigra with a haploid microgamete from

Gymnadenia conopsea gave rise to Gymnigritella runei

(Hedren et al., 2018). In Phalaenopsis, diploids, triploids,

pentaploids, and aneuploids were produced from the crosses

of diploid × triploid or triploid × diploid. Triploids, tetraploids,

octoploids, and aneuploids were identified in triploid ×

tetraploid crosses, while no hybrids were obtained from the

cross of triploid × triploid (Zhou et al., 2009). Nevertheless, it is

generally acknowledged that polyploids can be formed via

polyspermy, unreduced gamete , hybridizat ion and

endopolyploidy in orchids (Okamoto et al., 2017; Vilcherrez-

Atoche et al., 2022); but it is still unclear how each of these

pathways contributes to the polyploidization in orchids.

Cymbidium Sw. is one of the most important orchids

consisting of 74 species that are epiphytic, lithophytic, terrestrial

or sometimes rarely leafless saprophytic (Ning et al., 2018; Thakur

and Dutt, 2021). Among the terrestrial species, C. sinense, C.
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ensifolium, C. goeringi, and C. kanran are the most popular

flowering ornamental plants and widely cultivated for their

beauty and fragrance (Huang et al., 2012). Our previous research

identified 2n gamete occurrence in cultivated cymbidiums (Zeng

et al., 2020). Hybridization among selected cultivars or species

produced five triploid and two tetraploid progenies. Two of five

triploids were propagated through in vitro culture and evaluated in

shaded greenhouse for their aesthetic value. Results showed that

they had improved ornamental traits displayed by rounder flowers

with wider sepal, petals, and lips compared to the diploids. The

occurrence of more triploids than tetraploids was intriguing. Since

orchids do not have endosperm, triploid block due to the

endosperm balance could not be great concern. Besides, triploid

plants can be easily propagated through in vitro culture (Zeng et al.,

2020). The higher frequency in triploid occurrence, the improved

ornamental traits, and little concern over the triploid block

prompted us to further analyze 2n gamete occurrence in

cymbidiums and the implication of triploids as a bridge in the

formation of polyploid plants.

The objectives of this study were to examine microsporogenesis

and microgametogenesis behaviors of two sexual triploids,

determine their pollen type and fertility, evaluate their crossability

with either diploids or triploids, and analyze ploidy levels and the

survival rates of their progenies. Results showed that the union of

2x gametes, which were derived from the unreduced gamete, was

probably the key pathway for the formation of tetraploids through

‘triploid bridge’. Our studies with cymbidium demonstrated the

importance of triploids in the formation of polyploid plants.
Materials and methods

Plant materials

A total of seven cultivars were used in this study (Supplementary

Figure S1). Two of them, ‘Yuchan’ and ‘Huanghe’, were sexual

triploids. The remaining ‘Xiaofeng’, ‘11-65-1004’, ‘13-44-5’, ‘12L-

2018-2’, and ‘Gongfenjiaren’ were diploids. Plants were grown in a

shaded greenhouse under a light intensity of 120 µmol·m-2·s-1,

temperature ranging from 15°C to 30°C, and relative humidity

varying from 70 to 80% at the Experimental Farm of South China

Agricultural University, Guangzhou, China. At anthesis, the

following studies were performed with selected cultivars.
Cytological observations of
microsporogenesis and
microgametogenesis

Microsporogenesis and microgametogenesis were observed

using the method described by Zhu et al. (2014). The pollinia of

‘Yuchan’, ‘Huanghe’, and ‘Xiaofeng’ at different formation and

developmental stages were collected and fixed at 4°C for 12-24
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hours in fresh prepared Carnoy’s solution. They were then

transferred to 70% ethanol and stored at 4°C. The fixed pollinia

were placed on a slide; after surface dried with filter paper, two

drops of improved carbolic acid fuchsin or 4,6-diamidino-2-

phenylindole (DAPI) [2 µg.ml−1 DAPI, 1% Triton X-100 (v/v),

and 1% sucrose (w/v)] staining solution were added, they were

crashed with a forceps, and stained in the dark at room temperature

for 5 min. A cover glass was applied and squeezed with pencil

eraser, the slide was observed and photographed under either light

or UV illumination with ZEISS microscope. For observation of each

microsporogensis stage per hybrid progeny, at least nine slides were

observed where three slides and 100 microsporocytes as a replicate.

There were three replications for each hybrid progeny. For

examining each microgametogensis stage of the hybrid progenies,

at least ninety pollens were observed with thirty pollens as a

replicate. The observations also had three replications. The

percentage of meiosis abnormalities and each male gamete type

were calculated as follows: (1) the percentage of meiosis

abnormalities = (the number of abnormal microspore mother cell

in a replicate/100) × 100% and (2) the percentage of each male

gamete type = (the number of certain male gamete type in a

replicate/30) × 100%.

For the calculation of dyad and triad occurrence, ten vision

fields were photographed at 40× magnitude for each slide, one slide

was regarded as a replicate, and each material was replicated three

times. The frequencies of dyad and triad incidence were calculated

according to the formula: FDy(%) = (Number of dyads/total

microspore count observed)) ×100; FTr(%) = (Number of triads/

total spore count observed) ×100.
Pollen viability determination

Pollinia of ‘Yuchan’ or ‘Xiaofeng’ were collected from the

flowers that had opened for one day and placed on a slide. After

two or three drops of 0.05% of 2, 3, 5-triphenyltetrazolium

chloride solution were added, the pollinia were crashed with a

forceps and kept in the dark at room temperature for 2-3 h. A

coverslip was applied, and the slide was observed and

photographed under photomicroscope (OlympusIX71, Japan).

Pollen grains with red color were regarded as viable. About 1,000

pollens were counted per slide, one slide was regarded as a

replicate, and three slides per cultivar were observed. The pollen

fertility was calculated according to the formula: The pollen

fertility (%) = (the number of stained pollen grains/total number

of pollen grains observed) × 100.
Hybridization, seed germination, seedling
production and transplanting

Methods of hybridization, seed germination, seedling

production and transplanting were described previously (Zeng
frontiersin.org
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et al., 2020). A total of 11 pairs of hybridization were made using

the seven cultivars. The numbers of pollinated flowers and

capsules produced from the pollinations were recorded, and

fruit setting rates were calculated. Seeds harvested from the cross

of ‘Yuchan’ × ‘Xiaofeng’, ‘Xiaofeng’ × ‘Yuchan’, and ‘Yuchan’ ×

‘Huanghe’ were germinated in vitro. The protocorm like body or

rhizome obtained from a seed was propagated, and test-tube

seedlings were produced (Zeng et al., 2020). After the seedlings

reached about 5 cm in height, they were used for identification of

ploidy levels. When the seedlings were about 8 cm in height, they

were removed from test tubes, rinsed with tap water, briefly air

dried, and transplanted into small black plastic planting bags

(100 mL). Each bag was filled with a substrate comprised of

small pine bark (1 cm in length) and peat in a 3:1 ratio based on

volume, one seedling per bag. Potted seedlings were grown in the

aforementioned shaded greenhouse and fertigated with a

Hyponex (N–P2O5–K2O; 20–20–20) solution every 10 d. After

6 months of growth, they were transplanted into 2.6 L bags filled

with the pine bark and granite substrate and grown in another

shaded greenhouse under a light intensity of 300-400 µmol·m-

2·s-1. A slow-release fertilizer (N–P2O5–K2O; 20–20–20) was

applied to each bag at 3-4 g each in March and September,

respectively. Meanwhile, a solution containing 0.1% KH2PO4

(w/v) was sprayed monthly during growing season. Initially, a

total of 90 seedlings from each hybrid were transplanted, and

they were arranged as a randomized complete block design with

three replicates. After 10 months of transplanting, the number of

surviving seedlings were recorded, and the survival rate was

calculated according to the formula: The survival rate (%) = (the

number of seedlings survived in a replicate/30) × 100.
Flow cytometry analysis

The ploidy level of hybrid progenies was measured by flow

cytometry (Cui et al., 2009; Zeng et al., 2020). For each

individual, young leaves, about 0.5 cm2, were placed in a one-

off culture dish. After adding 0.4 mL of PartecHR-A extract, the

leaves were chopped quickly with a blade, following by adding

1.6 mL of Partec HR-B (DAPI, 4,6-diamidino-2-phenylindole)

solution as DNA staining agent. The mixture samples were

filtered through 30 mm Partec Celltrics microporous

membrane, stained in darkness for 5 min and analyzed by

Partec flow cytometer using CyView8.5 software (PartecGmb

H, Munster, Germany). The DNA histograms of nuclei from

each sample were produced.
Chromosome counts

In order to further verify ploidy level of the hybrid

progenies, the number of chromosomes in root tip cells was

accounted by squash method (Zhou et al., 2009). The root tips
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of in vitro grown seedlings and fixed in Carnoy’s solution,

which was consisted of 95% ethanol and glacial acetic acid in

a 3:1 ratio based on volume, at 4°C for 12~24 h. The fixed

material was washed with distilled water for 2~3 times, and

then acidulated with 1 mL concentration of 1 mol·L-1 HCl in a

constant temperature water bath at 60°C for about 8 minutes.

The dissociated root tips were immersed in distilled water for

30 min, then stained with improved carbolic acid fuchsin

staining solution, crushed with tweezers. The debris was

discarded, and the sample was covered with a coverslip and

observed at 100 × magnification using a photomicroscope

(OlympusIX71, Japan). A digital camera system (Nikon) was

used for photography. For each plantlet, at least 20 cells were

observed. If more than 90% of the cells had a constant

chromosome number, the chromosome number of the

seedlings was confirmed. As diploid Cymbidium has

somatic chromosome numbers of 40, we defined that

chromosome numbers of 41-59, 61-79, and 81-99 were

aneuploid of 2×~3 ×, 3×~4×, and 4×~5×, respectively.
Statistical analysis

All data were subjected to analysis of variance using

Microsoft Office Excel 2019 and SPSS 26.0 (IBM Corporation,

Somers, NY). When significance occurred, means were

separated by Duncan’s multiple range test at P< 0.05 level.
Results

Triploid pollen viability and hybridization
compatibility

The intention of making the 11 crosses (Table 1) was to

assess the hybridization compatibility of two sexual triploids

‘Yuchan’ and ‘Huanghe’. As a result, capsules were obtained in

all 11 cross combinations, and all capsules obtained had seeds.

The seeds collected from the crosses of ‘Yuchan’ × ‘Xiaofeng’,

‘Xiaofeng’ × ‘Yuchan’, and ‘Yuchan’ × ‘Huanghe’ were

geminated normally in vitro, and the seedlings grew vigorously

(Supplementary Figure S2). These results suggested that sexual

triploid Cymbidium had high hybridization compatibility and

could be used as male or female parent for hybridization.
Ploidy levels of hybrid progenies

The ploidy levels of progenies derived from the crosses of

‘Yuchan’ × ‘Xiaofeng’ and ‘Xiaofeng’ × ‘Yuchan’ were analyzed by

DNA flow cytometry and root tip chromosome count (Figure 1).

Results showed that among 10 identified progenies of ‘Yuchan’ ×
frontiersin.org
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‘Xiaofeng’, nine were aneuploids of 2×~3×, and one was the

aneuploid of 3×~4×. In the reciprocal cross of ‘Xiaofeng’ ×

‘Yuchan’, the percentages of aneuploid of 2×~3×, diploid (2×),

triploid (3×), and tetraploid (4×) in the hybrid progenies were

70.8%, 2.1%, 25.0%, and 2.1%, respectively (Table 2).

The ploidy levels of hybrid progenies from the cross of

‘Yuchan’× ‘Huanghe’ were shown in Figure 1 and Table 2. They

were aneuploids of 2×~3×, 3×~4×, and 4×~5×; tetraploid, and

pentaploid. The proportion of tetraploid was the highest,

accounting for 52.5%, followed by aneuploids of 2×~3×,

3×~4×, and 4×~5× with proportions of 7.5%, 22.5%, and

15.0%, respectively. The proportion of pentaploid was the

lowest (2.5%). The occurrence in higher proportion of

tetraploid in the triploid × triploid cross suggested that the

cross between triploids was probably a main avenue for

producing polyploids with higher ploidy levels in the

natural population.
Types of male gamete and pollen fertility

In order to further understand how tetraploids were formed

through ‘triploid bridge’, the types of male gametes and their

fertilities were examined in sexual triploid and diploid parents.

Results showed that ‘Yuchan’ and ‘Huanghe’ produced 1x, 2x, 3x
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(unreduced gamete) and aneuploid male gametes (Figures 2B–L;

Supplementary Figure S3). The proportion of 1x~2x aneuploid

gametophytes was 77.78% and 80.00% in ‘Yuchan’ and

‘Huanghe’, respectively (Table 3), which proved that the main

type of male gamete produced by triploids was aneuploidy. The

occurrence of 1x and 2x male gametes with a rather high

proportion in sexual triploids suggested that the unreduced

gamete was inclined to enter into the same daughter cell

during meiosis, thus resulting in the formation of 2x male

gamete (Figure 2J).

Diploid ‘Xiaofeng’ produced aneuploid gametes with

chromosome number less than 20 (<1x), reduced male

gametes (1x), aneuploid with chromosome number between 20

and 40 (1x–2x), and unreduced male gametes (2x) at 18.89%,

72.22%, 7.78%, and 1.11%, respectively (Table 3), which

suggested that the main type of male gamete produced by

‘Xiaofeng’ was the reduced male gamete (1x).

The viability of pollen was investigated using 2, 3, 5-

triphenyltetrazolium chloride staining method. Results

showed that 67.88% pollen grains of ‘Yuchan’ were stained

in red, indicating their viability (Figures 3A2, 3, 4). Similarly,

73.32% pollen grains of ‘Xiaofeng’ were viable (Figure 3A1).

Besides, some pollen grains with different ploidy levels were

also stained in red, suggesting that all types of male gametes

were fertile or partial fertile (Figures 3A3, 4). Moreover,

there was no significant difference in the percentage of

s ta inab le pol lens between the dip lo id and sexual

triploid (Figure 3B).
Meiotic abnormalities during
microsporogenesis

Microsporogenesis of ‘Yuchan’, ‘Huanghe’, and ‘Xiaofeng’

were observed in order to gain a better understanding of

cytological mechanisms behind the formation of different

types of male gametes (Figure 4; Table 4 and Supplementary

Figures S4, S5). The results indicated that meiotic

abnormalities included meiosis asynchrony, lagging

chromosomes, chromosome bridges, and abnormal

orientation of spindles during the microsporogenesis.

Univalents, bivalents, trivalents, and multivalents were

observed at diakinesis of ‘Yuchan’ (Figure 4A). At metaphase

I, there were 33.0% and 24.5% microspore mother cells of

‘Yuchan’ and ‘Xiaofeng’, respectively at either diakinesis or

pachytene stage (Figure 4B; Table 4). Those microspore mother

cells probably missed the meiosis I (Figure 4C) but proceeded

with normal meiosis II (Figure 4D), which resulted in the

formation of dyads (Figure 4E). Lagging chromosomes were

noticed at every stage of meiosis from metaphase I to telophase

II (Figures 4H, I, K, L). Chromosome bridges were found
frontiersin.org
TABLE 1 Fruit setting rates of 11 crosses made by using sexual
triploid cultivars as one ortwo parents in Cymbidium.

Cross combina-
tion (♀ × ♂)

Year No. of flowers
Pollinated

No. of capsules
obtained

‘Yuchan’ (3×) ×
‘Xiaofeng’ (2×)

2018 1 1

‘Xiaofeng’ (2×) ×
‘Yuchan’ (3×)

2018 2 2

‘Yuchan’ (3×) ×
‘Huanghe’ (3×)

2018 1 1

‘Xiaofeng’ (2×) ×
‘Yuchan’ (3×)

2019 1 1

‘11-65-1004’ (2×) ×
‘Yuchan’ (3×)

2019 1 1

‘Yuchan’ (3×) × ‘13-44-
5’ (2×)

2020 1 1

‘Yuchan’ (3×) × ‘12L-
2018-2’ (2×)

2020 1 1

‘Yuchan’ (3×) ×
‘Gongfenjiaren’ (2×)

2021 7 7

‘Gongfenjiaren’ (2×) ×
‘Yuchan’ (3×)

2021 7 7

‘Yuchan’ (3×) ×
‘Yuchan’ (3×)

2021 2 2

‘Huanghe’ (3×) ×
‘Yuchan’ (3×)

2021 2 1
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during anaphase I and telophase I, II (Figures 4J–L), which

might lead to the formation of aneuploid male gametes and

micronuclei (Figure 4M). The abnormal orientation of spindles

was observed during metaphase II, including tripolar spindle

(Figure 4N) and fusion spindle (Figure 4O), which resulted in
Frontiers in Plant Science 06
the formation of triads (Figure 4P) and dyads (Figure 4E). The

percentage of lagging chromosomes and chromosome bridges

in sexual triploids was significantly higher than that in diploid.

As a result, a higher percentage of aneuploid male gametes

occurred in sexual triploids (Table 4).
A

B

D

E

F

G

I

H

J

K

L

C

FIGURE 1

Ploidy identification of hybrid progenies. 1. In vitro cultured seedlings; 2. Chromosome numbers in a root tip cell; 3. Flow cytometry histogram of
leaf tissue (arrow represents plant ploidy). (A) ‘Xiaofeng’ (diploid, 2n = 2× = 40). (B, C) Hybrid progenies of ‘Yuchan’ × ‘Xiaofeng’: (B) ‘18-21-8’
(aneuploidy, 2n = 50), (C) ‘18-21-10’ (aneuploidy, 2n = 75). (D–G) Hybrid progenies of ‘Xiaofeng’ × ‘Yuchan’ where (D) ‘18-50-1’ (diploid, 2n = 2× =
40), (E) ‘18-50-86’ (aneuploidy, 2n = 48), (F) ‘18-50-125’ (triploid, 2n = 3× = 60), and (G) ‘18-50-140’ (tetraploid, 2n = 4× = 80). (H–L) Hybrid
progenies of ‘Yuchan’ × ‘Huanghe’ where (H) ‘18-24-50’ (aneuploidy, 2n = 56), (I) ‘18-24-33’ (aneuploidy, 2n = 72), (J) ‘18-24-15’ (tetraploid, 2n =
4× = 80), (K) ‘18-24-1’ (aneuploidy, 2n = 93), and (L) ‘18-24-172’ (pentaploid, 2n = 5× = 100).
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TABLE 2 Ploidy level of hybrid progenies resulted from crosses with sexual triploid Cymbidium.

Cross combinations(♀ × ♂) Total no. of plantlets evaluated No. of plantlets with specified ploidy level

2× 2×~3× 3× 3×~4× 4× 4×~5× 5×

‘Yuchan’ (3×) × ‘Xiaofeng’ (2×) 10 0 9 0 1 0 0 0

‘Xiaofeng’ (2×) × ‘Yuchan’ (3×) 48 1 34 12 0 1 0 0

‘Yuchan’ (3×) × ‘Huanghe’ (3×) 40 0 3 0 9 21 6 1
Frontiers in Plant Science
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FIGURE 2

Types of male gametes in diploid and triploid cymbidiums. (A–F) represent early microspore stage where (A) The aneuploidy gamete of
‘Xiaofeng’: x-2 = 18 (arrow) and (B–F) The gamete of ‘Yuchan’: (B) 1x gamete: x = 20 (arrow), (C) Aneuploidy gamete: x+10 = 30 (arrow), (D) 2x
gamete: 2x = 40 (arrow), (E) Aneuploidy gamete: 2x +2 = 42 (arrow), and (F) Unreduced gamete: 3x = 60 (arrow). Bar = 10 mm. Additionally, (G–
L) represent mature pollens stained with 4, 6-diamidino-2-phenylindole (DAPI): (G) Dyad (arrow), (H) Triad (arrow), (I) Tetrad with the same size
of nuclei (arrow), (J) Tetrad with two large (arrow) and two small nuclei (arrowhead), (K) Tetrad with one large (arrow) and three small nuclei
(arrowhead), and (L) Tetrad with three large (arrow) and one small nuclei (arrowhead). Bar = 50 µm.
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Statistical analysis of survival rate of
plantlets with different ploidy levels

To determine the survivability of plantlets, the survival rates

of plantlets with different ploidy levels grown in the shaded

greenhouse were evaluated. The survival rate of tetraploid plants

was 96.67%, which was significantly higher than that of triploids.

Interestingly, the survival rates of 2×~3× and 3×~4× aneuploid

plants were also significantly higher than that of triploids. There

was no significant difference in the survival rate between 4×~5×

aneuploid and triploid plants (Figure 5).
Discussion

Polyploidization is considered as an important evolutionary

force. The most common mechanism of polyploid origin is

believed to be through production of unreduced gametes (Clo
Frontiers in Plant Science 08
et al., 2022). There are two main models explaining the pathways

of polyploid formation in diploid populations: (i) frequency-

dependent minority cytotype exclusion (Levin, 1975; Husband,

2000) and (ii) the ‘triploid bridge’ hypothesis (Ramsey and

Schemske, 1998; Burton and Husband, 2001; Husband, 2004;

Peckert and Chrtek, 2006; Schinkel et al., 2017). According to the

‘triploid bridge’ hypothesis, triploids are first formed via the

union of reduced and unreduced gametes. Subsequently,

backcrosses of triploids to diploids or crosses between triploids

can generate tetraploids (Bretagnolle and Thompson, 1995;

Ramsey and Schemske, 1998). In the present study, we

documented that sexual triploid cymbidiums produced

functional 1x, 2x, 3x, and aneuploid gametes after backcross to

diploids or through the cross between triploids. We further

showed the triploid cross resulted in the formation of tetraploids

at a high percentage and also pentaploids. Our results

demonstrate that the sexual triploids act as a bridge for

efficiently producing tetraploid and even polyploid with higher

ploidy level in Cymbidium.
TABLE 3 Type and proportion (%) of male gametes in diploid and sexual triploid cymbidiums.

Parents The proportion of gamete (%)

<1x 1x 1x~2x 2x 2x~3x 3x

‘Yuchan’ 0.00 ± 0.00b 8.89 ± 3.85b 77.78 ± 5.09a 6.67 ± 3.33a 3.33 ± 3.33a 3.33 ± 3.33a

‘Huanghe’ 0.00 ± 0.00b 3.33 ± 0.00b 80.00 ± 10.00a 8.89 ± 1.92a 5.56 ± 3.85a 2.22 ± 1.92a

‘Xiaofeng’ 18.89 ± 3.85a 72.22 ± 1.92a 7.78 ± 3.85b 1.11 ± 1.92b 0.00 ± 0.00b 0.00 ± 0.00a
fro
Values represent mean ± standard error. Different letters behind the values within the same column indicate significant difference among cultivars based on Duncan’s multiple range test at
P < 0.05 levels.
A B

FIGURE 3

Pollen fertility of ‘Xiaofeng’ and ‘Yuchan’. (A) Pollen stained with 2, 3, 5-triphenyltetrazolium chloride: Pollen grains of (1) ‘Xiaofeng’ and (2)
‘Yuchan’, (3) ‘Yuchan’ pollens showed dyad (arrow) and tetrad with two small nuclei (small arrowhead) and two big nuclei (big arrowhead), and
(4) ‘Yuchan’ pollens with triad (arrow). Bar=50 mm. (B) The percentage of stained pollens of ‘Xiaofeng’ and ‘Yuchan’, the same letter above the
bars indicates no significant difference between cultivars analyzed by Duncan’s multiple range test at P< 0.05 level.
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The production of functional x, 2x, 3x, and aneuploid

gametes is important for triploids to fulfil the role as a bridge

(Burton and Husband, 2001; Peckert and Chrtek, 2006;

Marasek-Ciolakowska et al., 2014; Li et al., 2017; Zhang et al.,

2017; Trankner et al., 2020). The percentages in occurrence of

different types of gametes depended on plant species, origin of

triploids, and gamete types (Marasek-Ciolakowska et al., 2014;

Geng et al., 2019; Trankner et al., 2020). In general, there was a

low frequency in occurrence of x, 2x, and 3x gametes but a high

frequency with aneuploid gametes in triploids. For example, the

percentages of x, 2x, and aneuploid gametes produced by triploid

Datura stramonium were 2.6%, 1.2%, and 96.2%, respectively

(Satina and Blakeslee, 1937) and by triploid Pennisetum glaucum

were 1.85%, 1.85%, and 96.3%, respectively (Dujardin and

Hanna, 1988). The percentages of x and 2x in autotriploid

cucumber were 1.44% and 1.44% (Diao et al., 2009). Our

results primarily concurred with the above reports and showed

that the percentages of x, 2x, 3x, and aneuploid male gametes in

‘Yuchan’ were 8.89%, 6.67%, 3.33%, and 81.11%, respectively
Frontiers in Plant Science 09
and in ‘Huanghe’ were 3.33%, 8.89%, 2.22%, and 85.56%

(Table 3). The occurrence of 2x gametes in triploids is critical

as it allows to the establishment of balanced tetraploid progenies

from 3x-4x (Vuylsteke et al., 1993; Ramsey and Schemske, 1998;

Ramanna and Jacobsen, 2003) or 3x-3x crosses demonstrated in

this study.

Duo to the formation of functional gametes, triploids may

produce tetraploid offspring through backcrosses with diploids or

crossing with other triploids (Husband, 2004). In Hieracium

echioides, the cross of 2× × 3× resulted in largely diploid

progenies (92%); while in the cross of 3× × 2×, 56% hybrids were

tetraploids, and the cross of 3× × 3× produced 60% tetraploids, 26%

pentaploids, and 7% hexaploids (Peckert and Chrtek, 2006). In

Tulip, one tetraploid and four pentaploids were produced in 3× ×

2× crosses. In contrast, no tetraploids were obtained in 2× × 3× and

3× × 3× crosses (Marasek-Ciolakowska et al., 2014). In Populus,

however, a cross of 2× × 3× produced 4% tetraploid hybrids (Wang

et al., 2017). In Echinacea purpurea, tetraploids were generated in

both 2× × 3× and 3× × 2× crosses (Li et al., 2017), while in
FIGURE 4

Meiotic abnormalities of sexual triploid ‘Yuchan’. (A) Univalent (big arrow), bivalent (small arrow), trivalent (big arrowhead), and multivalent (small
arrowhead) observed at diakinesis. (B) Metaphase I, microspore mother cells at pachyten (arrow) or diakinesis (arrowhead) stage were observed.
(C) Telophase I: microsporocyte failed to carry out meiosis I (arrow). (D) Telophase II: microsporocyte that missed meiosis I but proceeded with
normal meiosis II (arrow), which resulted in the formation of dyad (arrow) (E). (F–I) Lagging chromosomes (arrow) at metaphase I, anaphase I,
telophase I, and metaphase II. (J) Chromosome bridge (arrow) at anaphase (I). (K) Lagging chromosomes (arrow) and a chromosome bridge
(arrowhead) at anaphase II. (L) Lagging chromosomes (arrow) and a chromosome bridge (arrowhead) at telophase II. (M) Tetrad stage: indicating
micronucleus (arrow). (N) Metaphase II: tripolar spindles (arrow). (O) Metaphase II: fused spindles (arrow). (P) Tetrad stage, indicating triad
(arrow). Bar = 20 mm.
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Phegopteris decursivepinnata, both tetraploid and pentaploid were

formed in the 3× × 2× cross (Nakato and Masuyama, 2021). These

results showed that tetraploids were produced more frequently in

crosses of 3× × 2× and 3× × 3× than that of 2× × 3×. Our results
Frontiers in Plant Science 10
indicated that albeit tetraploids were formed in combinations of

diploid × triploid, however, the frequency (2.08%) was low. On the

contrary, the percentage of tetraploids in the hybrids of triploid ×

triploid was very high (52.5%), suggesting that hybridization
TABLE 4 Meiotic abnormalities in cymbidium ‘Yuchan’, ‘Huanghe’, and ‘Xiaofeng’.

Stage Percentage of abnormal behavior during meiosis (%) Parents

‘Yuchan’ ‘Huanghe’ ‘Xiaofeng’

Metaphase I Meiotic asynchrony 33.00 ± 5.00a – 24.5 ± 6.36a

Lagging chromosomes 5.00 ± 1.00a – 1.33 ± 0.57b

Anaphase I Lagging chromosomes 21.50 ± 3.54a 16.00 ± 1.41a 5.50 ± 0.71b

Chromosome bridges 4.50 ± 0.71a 2.00 ± 1.41ab 0.5 ± 0.71b

Telophase I Lagging chromosomes 25.67 ± 2.89a 12.50 ± 3.54b 2.5 ± 0.71c

Meiotic asynchrony 26.00 ± 6.08ab 32.33 ± 0.58a 18.00 ± 1.41b

Metaphase II Lagging chromosomes 8.33 ± 1.15a 7.50 ± 0.71a 4.00 ± 1.41b

Tripolar spindles 7.00 ± 1.00a 5.50 ± 0.71ab 3.00 ± 1.41b

Fused spindles 1.67 ± 0.58a 0.67 ± 0.58ab 0.00 ± 0.00b

Anaphase II Lagging chromosomes 26.67 ± 3.06a 19.33 ± 1.53b 16.33 ± 2.52b

Chromosome bridges 9.33 ± 1.53a 5.33 ± 0.57b 0.00 ± 0.00b

Telophase II Lagging chromosomes 16.67 ± 1.53a 15.33 ± 2.31ab 12.33 ± 0.47b

Chromosome bridges 6.33 ± 1.53a 1.33 ± 0.58b 2.67 ± 0.94b

Meiotic asynchrony 30.67 ± 0.58a 21.67 ± 2.08b 12.00 ± 2.83c

Tetrad period Micronuclei 8.30 ± 1.53a 8.67 ± 1.53a 3.00 ± 1.00b

Dyad 3.93 ± 0.06a 2.42 ± 0.09b 1.40 ± 0.33b

Triad 3.76 ± 0.04a 3.33 ± 0.54a 0.58 ± 0.19b
fro
“-” indicates that data were not collected. Values represent mean ± standard error. Different letters within the same row indicate significant differences among cultivars based on Duncan’s
multiple range test at P< 0.05 level.
FIGURE 5

Survival rates of hybrid seedlings with different ploidy levels after being transplanted to plastic bags containing a substrate and grown in a
shaded greenhouse. Bars represent standard error, and different letters on the top of bars indicate significant difference in survival rates among
hybrid progenies analyzed by Duncan’s multiple range test at P< 0.05 level.
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between sexual triploids could be a principal way of producing

tetraploid through ‘triploid bridge’ in Cymbidium.

In theory, triploids are sterility due to the unbalanced

meiotic chromosome segregation, which resulted in the

production of aneuploid gametes (Kohler et al., 2010; Wang

et al., 2017; Zhang et al., 2017). But in practice, a lot of triploids

can produce functional euploid gametes, especially for x and 2x

gametes in different proportions, which can be used as male or

female parent in cross breeding programs (Lim et al., 2003;

Hayashi et al., 2009; Zhou et al., 2009; Nakato and Masuyama,

2021). Why does a triploid produce euploid gametes and why is

it regarded as a bridge in polyploid evolution? Thus far, little

information is available to the questions. Here we propose a

hypothesis of coordinate actions of unreduced gamete to address

the questions: During meiosis of a sexual polyploid, two

chromosome sets of the 2n gamete are inclined to be assorted

to a daughter cell, resulting in the production of 2x gamete, such

a chromosome behavior during meiosis mainly depends on the

genetic relationship of the parents who provide the chromosome

set. When the genetic relationship is very close, such as sexual

autopolyploid, the main chromosome pairing configuration at

diakinesis is trivalent (sexual autotriploid) or quadrivalent

(sexual autotetraploid); when the genetic relationship is far

different, such as sexual allopolyploid, the main chromosome

pairing configuration is a univalent and a bivalent (sexual

allotriploid) or two bivalents (sexual allotetraploid). In fact, the

meiotic configuration 8I+8II+2III was the most common in two

natural triploid populations of Campuloclinium macrocephalum,

and their pollen fertilities were 44.74 and 52.69%, respectively

(Farco and Dematteis, 2014). Similar results were obtained in

allotriploid P. alba × P. berolinensis ‘Yinzhong’ (Wang et al.,

2017). Lavia et al. (2011) reported that the main chromosome

paring configuration in sexual autotriploid Arachis pintoi was

trivalent, and the pollen grain viability was 42.47%. Ramanna

et al. (2003) reported that most Alstroemeria interspecific F1
hybrids of Chilean-Brazilian species simultaneously produced

2n male and female gametes; and all the F2 progeny plants,

which were resulted from self-pollination of the F1 hybrids, were

typical allotetraploids. Additionally, most of them formed 16

bivalents and a small proportion formed multivalents during

metaphase I stages of meiosis. Triploids that originated through

the fusion of 2n × n gametes of the same taxon showed more

regular meiotic behavior and higher fertility than triploids from

the contact zone of diploids and tetraploids or triploids of hybrid

origin (Kovalsky et al., 2018). Natural Dactylis polyploids

exhibited successful chromosome pairing during meiosis,

whereas artificial polyploids did not, suggesting that there was

a selection for sexual fertility in order to stabilize meiosis in

natural polyploids (Lumaret and Retired, 1988). Our results

indicated that both sexual triploids ‘Yuchan’ and ‘Huanghe’

produced x and 2x male gamete (Figure 2J) with 2x gamete

frequencies at 6.67% and 8.89%, respectively, and the percentage

of viable pollen was 67.88% in ‘Yuchan’. These results further
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proved that two chromosome sets of the 2n gamete were inclined

to be assorted to a daughter cell. However, due to the

sophisticated origin of 2n gamete and sexual triploid, the

chromosome paring configuration was not typical and the

occurrence percentage of 2x and x gametes was not high.

Nevertheless, due to the occurrence in 2n gametes, triploids

play an important role in polyploid evolution.

Our results indicated that in the cross of 2× × 3×, 25%

hybrids were triploids, which was similar to the results in Tulip

(Marasek-Ciolakowska et al., 2014) and Populus (Wang et al.,

2017). These triploids were probably formed by the fusion of a

2x male gamete produced by the triploid with a haploid female

gamete from the diploid or originated from the fusion of a

haploid male gamete from the triploid with unreduced female

gamete from the diploid. A tetraploid was also obtained in the

cross of 2× × 3×, which was likely formed by the fusion of an

unreduced male gamete (3x) produced by the triploid with a

haploid female gamete from the diploid or originated from the

fusion of 2x male gamete from the triploid with unreduced

female gamete from the diploid. In the cross of 3× × 3×, 52.5%

progenies were tetraploids, and these tetraploids probably

originated from the fusion of an unreduced gamete produced

by one parent with a haploid gamete from the other or the fusion

of two 2x gamete from the parents. Similar results were reported

in H. echioides where 3× × 3× produced 60% tetraploid (Peckert

and Chrtek, 2006). Because of the low percentage of occurrence

in euploid gametes in triploid, the aneuploid gametes might play

an important role in the production of tetraploids. The possible

pathways of producing tetraploids through ‘triploid bridge’ in

Cymbidium are illustrated in Figure 6.

A long-standing problem in polyploid breeding is triploid

block, which is a reproductive barrier caused by malfunction of

endosperm. The endosperm supports the development of the

embryo by providing nutrients for its growth, and the genetic

relationship between the endosperm and the embryo is

important for higher plants evolution (Johnston et al., 1980;

Koehler et al., 2010; Stoute et al., 2012; Huc et al., 2022). In the

majority of plants, the maternal and paternal chromosome

dosages in the endosperm are considered to be critical for seed

development and fertility (Vinkenoog et al., 2003; Koehler et al.,

2010; Schinkel et al., 2017). However, orchid seeds have

rudimentary embryo and lack of endosperm (Yeung, 2017;

Chen et al . , 2018). Seed germination and seedling

establishment depend on the successful interaction between

protocorms and mycorrhizal fungi either in vitro or ex vitro,

thus endosperm is not a limiting factor affecting seed

germination (Chugh et al., 2009; Xu et al., 2011; Yeung, 2017;

Yeh et al., 2019; Bhatti and Thakur, 2022). Our study showed

that hybrid seeds derived from the crosses of 3× × 2×, 2× × 3×,

and 3× × 3× were well developed and able to germinate normally

on culture medium. Plantlets with different ploidy levels grew

healthy in greenhouse. Thus, triploid block is not a concern in

Cymbidium as sexual triploids can produce seeds through
frontiersin.org

https://doi.org/10.3389/fpls.2022.1029915
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2022.1029915
hybridization with appropriate parents and the seeds can

readily germinate.

Cymbidium is a renowned genus in the orchid family that

distributed in tropical and subtropical areas of Asia, Papua New

Guinea, and Australia (Ai et al., 2021). It exhibits distinctive

ecological diversification and occurs in terrestrial, epiphytic,

lithophytic, and saprophytic life forms (Yukawa and Stern,

2002; Ning et al., 2018). The cross compatibility between

different species was reported to be high, and even an

increasing number of interspecific and intergeneric hybrids has

been obtained through artificial pollination (Li et al., 2014;

Ogura-Tsujita et al., 2014; Joffard et al., 2022). These

interspecific hybrids have a high percentage in occurrence of

2n gametes and have been successfully employed to create sexual

polyploids in breeding programs (Zeng et al., 2020; Kondo et al.,

2022). However, because of reproductive isolation caused by

geographical, temporal, and spatial isolations, the interspecific

hybrids are rare in nature. The triploid crossability and 2n

gamete formation demonstrated in the present study may

represent a viable way for creating new polyploid cymbidium

through hybridization.
Conclusion

As far as is known, this is the first investigation of the

crossability of sexual triploids in cymbidiums. Our study

documented that both triploid ‘Yuchan’ and ‘Huanghe’ were

fertile and able to be used as male or female parents in cross

breeding. Sexual triploid cymbidiums produced fertile male

gametes of 1x, 1x~2x, 2x, 2x~3x, and 3x. The production of 2x

male gametes could be resulted from the probability that two
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chromosome sets of the 2n gamete were inclined to enter into

the same daughter cell during meiosis. The cross of diploid ×

triploid generated diploid, triploid, and tetraploid with

frequencies at 2.1%, 25.0%, and 2.1%, respectively. The cross

of triploid × triploid produced tetraploid and pentaploid hybrids

with proportions of 52.5% and 2.5%, respectively. The survival

rate of tetraploid was significantly higher than that of triploid.

Our results indicate that the triploid cymbidiums are not

reproductive barrier but act as a bridge in the formation of

polyploid plants. A hypothesis of coordinate actions of

unreduced gamete was proposed to explain why sexual

triploids produce 1x and 2x euploid gametes. Further research

with more sexual polyploids including auto and allopolyploids,

along with the use of genomic in situ hybridization (GISH)

should be conducted to test this hypothesis.
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FIGURE 6

Possible pathways for producing tetraploid through ‘triploid bridge’. (A) and (B) represent possible pathways in the cross of 2××3×. (C-G)
represent possible pathways in the cross of 3××3×. The size of ellipse represents ploidy level of gamete, the larger the size is, the higher the
ploidy level is.
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