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maize hybrids in mega-
environments delineated
using envirotyping techniques
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Maicon Nardino3† and Xuwen Jiang4*

1Hebei Provincial Key Laboratory of Crops Drought Resistance Research, Dryland Farming Institute,
Hebei Academy of Agriculture and Forestry Sciences, Hengshui, China, 2Department of Plant
Science, Center of Agrarian Sciences, Federal University of Santa Catarina, Florianópolis, SC, Brazil,
3Department of Agronomy, Federal University of Viçosa, Viçosa, MG, Brazil, 4Maize Research
Institute, Qingdao Agricultural University, Qingdao, China
Under global climate changes, understanding climate variables that are most

associated with environmental kinships can contribute to improving the success

of hybrid selection,mainly in environmentswith high climate variations. Themain

goal of this study is to integrate envirotyping techniques andmulti-trait selection

for mean performance and the stability of maize genotypes growing in the

Huanghuaihai plain in China. A panel of 26maize hybrids growing in 10 locations

in two crop seasons was evaluated for 9 traits. Considering 20 years of climate

information and 19 environmental covariables, we identified four mega-

environments (ME) in the Huanghuaihai plain which grouped locations that

share similar long-term weather patterns. All the studied traits were

significantly affected by the genotype × mega-environment × year interaction,

suggesting that evaluating maize stability using single-year, multi-environment

trials may provide misleading recommendations. Counterintuitively, the highest

yields were not observed in the locations with higher accumulated rainfall,

leading to the hypothesis that lower vapor pressure deficit, minimum

temperatures, and high relative humidity are climate variables that –under no

water restriction– reduce plant transpiration and consequently the yield. Utilizing

the multi-trait mean performance and stability index (MTMPS) prominent hybrids

with satisfactory mean performance and stability across cultivation years were

identified. G23 and G25 were selected within three out of the four mega-

environments, being considered the most stable and widely adapted hybrids

from the panel. The G5 showed satisfactory yield and stability across contrasting

years in the drier, warmer, and with higher vapor pressure deficit mega-

environment, which included locations in the Hubei province. Overall, this

study opens the door to a more systematic and dynamic characterization of
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the environment to better understand the genotype-by-environment interaction

in multi-environment trials.
KEYWORDS

maize hybrid, mega-environment delineation, genotype-environment interaction,
climatic variables, MTMPS
1 Introduction

Maize (Zea mays L.) is an annual herb belonging to the grass

family Poaceae in botanical classification. With its high-yielding,

diverse uses, and wide adaptability, maize has surpassed rice

(Oryza sativa L.) and wheat (Triticum aestivum L.) as the most

important cereal crop in the world (Haarhoff and Swanepoel,

2018). If the world population grows to 10 billion, it will need

70% more food than can be accomplished today (Hickey et al.,

2019). Maize is estimated to account for more than half of future

cereal demand growth. Thus, there is a huge stream of

innovation for maize breeders when trying to significantly

increase maize productivity in an environmentally sensitive

way (Yan and Tan, 2019). Since 2013, maize has become the

largest crop in China in terms of planting area and production.

China’s maize planting area has exceeded 37 million hectares,

with a total production of more than 215 million tons,

accounting for one-quarter and one-fifth of the world’s maize

area and production, respectively (Hou et al., 2020).

Maize production is divided into springmaize, summermaize,

and autumn maize according to the growth period in China. The

Huanghuaihai (HHH) plain (Figure 1) is the largest concentrated

summer maize planting area in China, accounting for 31.86% and

30.68%of the country’s total area and yield, respectively (Zhai et al.,

2022). The meteorological conditions in the HHH plain are

complex, often encountering high temperatures, heat damage,

cloudy rain and lack of sunshine, and the invasion of various

diseases, which make maize yields vary greatly from year to year

(Wang et al., 2020; Shi et al., 2021; Yue et al., 2022b).

Unencouraging climate change projections suggest that the

temperature increase might be a key factor affecting the drought

risk in HHH (Yue et al., 2022c). This may put at risk the breeding

efforts that generated maize hybrids for this area and increase the

challenges of breeding programs that aim to release new hybrids

(Rizzo et al., 2022). Therefore, there is an urgent need to better

understand the genotype-by-environment interaction (GEI) in this

region to develop and improve climate-resilientmaize hybrids that

are thoroughly evaluated in different locations and years/seasons

before release. This can be one of the most effective ways for

increasing maize production in HHH under new challenges from

climate change. In this context, identifyingclimate-related variables

that are most associated with the variations of hybrids within
02
environments is crucial for defining management and/or

selection strategies for breeding new summer maize hybrids in

the HHH plain region (Yue et al., 2021).

Although the challenge of developing abiotic stress-tolerant

maize hybrids has generated a large literature, most practical

breeding efforts have also focused on breeding for genetic

variation, heritability for grain yield progress under favorable

conditions (Bänziger et al., 2006; Fischer and Edmeades, 2010).

Grain yield and its components are very complex agronomic

traits influenced by genotype (G), environment (E), and their

interactions (GEI). The GEI makes the genotype-to-phenotype

relationship environment-dependent, which makes the selection

of widely adapted hybrids more difficult (Ebdon and Gauch,

2002) and occurs due to the differential response of a given

genotype to a given environment stimulated by both biotic,

abiotic, or an interaction between them (Nardino et al., 2022). In

maize, for example, high temperatures (> 35°C) during flowering

generate a cascade effect that starts with the reduction of

RuBPCase activity by downregulating genes Zm0001d052595

and Zm0001d004894 which limited photosynthesis and

consequently affects maize growth and development (Niu

et al., 2021). As a consequence, maize grain yield (GY) is

reduced mainly by reducing kernel number per ear, a process

associated with carbohydrate metabolic disorders, where a lower

carbohydrate availability leads to kernel abortion under post-

pollination heat stress conditions (Dong et al., 2021; Niu et al.,

2021). Therefore, even if the two environments are strictly

similar (e.g., in terms of soil fertility, average temperatures,

and rainfall precipitation), extreme events can affect the plants

differently, mainly depending on the crop stage they occur.

The correct interpretation of GEI effects in multi-

environment trials (METs) can help to select genotypes with

high-yielding and stable under different environmental

conditions, and even select special genotypes for a certain

environment (Vaezi et al., 2019; Alizadeh et al., 2022). During

breeding practice, breeders often measure many traits related to

yield and are faced with the problem of selecting stable and

superior genotypes based on multiple traits. The multi-trait

stability index (MTSI) has been successfully used for selecting

superior genotypes based on multiple traits (Koundinya et al.,

2021; Singamsetti et al., 2021; Farhad et al., 2022; Lima et al.,

2022; Padmaja et al., 2022), and has a tremendous potential to
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combine morpho-physiological and yield traits aiming at

selecting hybrids under optimal and stress conditions (Balbaa

et al., 2022).

Identifying hybrids that rise to the top in terms of multiple

criteria from a set of evaluation sites is important but does not

contribute significantly to new insights into maize evaluation

research. Choosing an ideal genotype (stable across all

environments) may ignore specific adaptations, mainly under

the climate changes in view (Lopes et al., 2015). Therefore,

identifying mega-environments that include locations that share

similar long-term weather patterns can be an alternative to

better explore the GE interaction in favor of better selection

gains, mainly in a region/environment with high variations

among the locations/seasons (Costa-Neto et al., 2021a).

In this sense, the main goal of this study is to use

envirotyping techniques to delineate mega-environments

across the Huanghuaihai plain in China, and to select superior

hybrids within each mega-environment that are stable across the

cultivation years based on multi-trait. Overall, this study

provides new insights into a more systematic and dynamic

characterization of the test environments, helping breeders to

make better strategic decisions toward an effective multivariate

selection in maize breeding programs.
2 Materials and methods

2.1 Plant materials, locations, and
experimental design

The experimental material consisted of 26 maize genotypes

including one local check hybrid, Zhengdan 958 (Table 1). This

study was carried out in ten environments (Figure 1) across five
Frontiers in Plant Science 03
provinces ranging from middle temperate zone to the warm

temperate zone, at an elevation from 18 to 235 m above mean

sea level spreading across the states of Hebei, Shandong,

Anhui, Henan, and Hubei during 2019-2020. The field

experiment used a randomized complete block design with

three replicates. The seeds of each tested genotype were

provided by Dryland Farming Institute, Hebei Academy of

Agriculture and Forestry Sciences, and healthy and coating

seeds were selected for this study before sowing. The plot at

each location was composed of 5 rows with 0.6 m spacing

between rows, and the area of each plot had 20.1 m2 in size. The

planting density of each genotype was strictly controlled at 7.5

plants m-2, and the field management applied during the

experiment was similar to the management practiced

by farmers.
2.2 Morphological data recording

A total of 9 yield-related agronomic traits were recorded in

this study. Agronomic traits viz., grain yield (GY, t ha-1) was

manually harvested from the middle three rows, adjusting the

moisture to 14% and converting the unit to tons per hectare;

grain moisture content (GMC, %), measured from each plant at

each plot; plant height (PH, cm), measured from the base of the

root to the top of the tassel; ear height (EH, cm), measured from

the base of the root to the stalk of the ear; ear length (EL, cm),

measured from the line up 10 ears, and dividing the data

obtained by 10; ear row (ER), counting the total number of

rows in each ear; bare tip length (BTL, cm), measured from the

top part with no grains (if any) to the part with grains; grain

weight per ear (GWE, g) and 100-seed weight (HSW, g) (Yue

et al., 2022a).
FIGURE 1

Geographical information of the 10 test locations for the trials conducted during 2019 and 2020. The ellipses show the four delineated mega-
environments (ME) based on long-term (20 years) climate information.
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2.3 Statistical Analysis

2.3.1 Mega-environment delineation
Aiming at defining mega-environments with a similar long-

term pattern of climate characteristics, we used the function

get_wheater() function from the R package EnvRtype (Costa-

Neto et al., 2021b) to download a 20-year (2001-2020), daily-

basis weather data for 19 environmental covariables (EC)

(Table 2). For each year, we considered the period between May

and October, which cover the maize growing season in the studied

locations. EnvRtype is a very practical package that downloads and

processes remote weather data from “NASA’s Prediction of

Worldwide Energy Resources” (NASA/POWER, https://power.

larc.nasa.gov/). Experimental results show that NASA/POWER

can be used as a source of climatic data for agricultural activities

with reasonable confidence for regional and national spatial scales

(Monteiro et al., 2018). A correlation analysis between

NASA/POWER data and observed data at Shenzhou location

(Supplementary Figure S1) showed a high concordance for

temperature variables and sunshine duration (r > 0.91, P< 0.01),

and relativehumidity (r=0.88,P<0.01). For rainfall precipitation, a

lower agreement (r > 0.54, P< 0.01) was observed. For the
Frontiers in Plant Science 04
accumulated rainfall precipitation, NASA/POWER tended to

overestimate the real observed precipitation.

The 19ECobserved in each locationwere used to create the called

envirotype covariable matrix W that was further used to compute

environmental kinships using the function W_matrix() of the

EnvRtype package (Costa-Neto et al., 2021b) as proposed by (Costa-

Neto et al., 2021a). To better capture the temporal variation of the

environmental information across months of the year, six monthly

periods were considered (May-October). Therefore, each one of the

2280 variables (20 years × 19 variables × 6 periods = 2280) has become

an envirotype descriptor of environmental relatedness. Finally, quality

control was done by removing covariables that exceeded ±3SD, where

SD is the standard deviation of the covariables across environments

(Costa-Neto et al., 2021a). Then, using the W (10 rows × 2280

columns) matrix, we calculated an enviromic kernel (equivalent to a

genomic relationship), using the function envkernel() of theEnvRtype

package (Costa-Neto et al., 2021b), as follows:

KE =  
WW 0

trace WW 0ð Þ=nrow Wð Þ
where KE is the enviromic-based kernel for the similarity

between environments and W is the matrix of envirotype
TABLE 1 Basic information of the 26 tested maize hybrids.

Code Genotype Parentage Plant height (cm) Ear height (cm) Origin Maturity Input requirements

G1 Xianyu335 PH6WC×PH4CV 286 103 Liaoning Medium High

G2 Hengyu1702 H1027×HC705 255 98 Hebei Medium Medium

G3 Hengyu7182 H103×H102 245 87 Hebei Early Low

G4 Jiuheng517 H103×H92 243 78 Hebei Early Low

G5 Huanong138 B105×J66 281 102 Beijing Medium High

G6 Hengyu1587 H58×H59 254 101 Hebei Medium Medium

G7 Denongli988 Wan73-1×M518 280 120 Shandong Late High

G8 Xundan29 X313×X66 258 117 Henan Medium High

G9 Hengyu7188 HB4×H88 260 97 Hebei Medium Low

G10 Hengyu321 H14×H13 275 115 Hebei Medium Medium

G11 Hengyu1182 H11×H82 268 109 Hebei Early Low

G12 Heng110 H58/H59 242 82 Hebei Early Low

G13 Liyu16 953×L91158 264 123 Hebei Late High

G14 Denghai662 DH371×DH382 272 98 Shandong Late Medium

G15 Heng9 H1027×H765 244 79 Hebei Early Medium

G16 Zhengjie1 L112×Lx9801 259 92 Shandong Medium High

G17 Nongle988 NL278×NL167 250 113 Henan Late High

G18 Lianchuang5 CT07×Lx9801 270 106 Henan Early High

G19 Tunyu808 T88×T172 253 110 Tianjin Medium High

G20 Zhengdan958 Z58×C7-2 250 110 Henan Late Low

G21 Meiyu5 758×HC7 255 107 Henan Early Medium

G22 Lile66 C28×CH05 270 108 Henan Late High

G23 Liyu86 L5895×L5012 267 114 Hebei Medium High

G24 Hengdan6272 H462×H72 261 126 Hebei Medium Medium

G25 Weike702 WK858×WK798-2 252 107 Henan Late High

G26 Shengrui999 S68×S62 250 107 Henan Medium Medium
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descriptors. To identify mega-environments, a hierarchical

clustering (average method) was applied to KE .

Finally, to visually understand the relationships between

environmental variables and their association with the location

study, we conducted a Principal Component Analysis (PCA)

with a two-way table with the average values for the

environmental variables (columns) for each location (rows).

A biplot was produced with the function fviz_pca_biplot()

from the R package factoextra (Kassambara and Mundt, 2020).

2.3.2 Environmental typology of the trials
To characterize the climate data observed during the

experimental period, we used the function env_typing() of the R

package EnvRtype to create environmental typologies based on

quantilic limits of the 19 EC (Table 2) collected between the sowing

andharvestingofeachtrial.Tobettercapture the temporalvariationof

the environmental information across crop development, the crop

cycles were divided into five main phenological stages in days after

sowing (DAS): 0-14 (Initial growing); 15-35 DAS (leaf expansion I,

V4-V8); 36-65 DAS (leaf expansion II, V8 - VT); 66-90 DAS

(flowering); and 91-120 (grain filling). For each YEAR-ME-stage

combination, frequency distributionswere computed considering the

quantiles 0.01, 0.25, 0.50, 0.75, 0.975, and 0.99; with this, extreme

values (e.g., high temperatures) can be identified.

2.3.3 Variance component analysis
To estimate the effect of the respective influences of ME and

year on the genotype behavior, for each trait we fitted a linear

random-effects model (only intercept as fixed) was fitted using
Frontiers in Plant Science 05
the lmer() function from the lme4 R package (Bates et al., 2015),

according to the following model:

yijkn = m + Gi +Mj + Yk + GMij + GYik +MYjk + GMYijk

+ REPn j : kð Þ + ϵijkn

where yijkn is the trait scores of i-th genotype observed in the

n-th replicate, which is nested within the j-th mega-environment

of the k-th year; m is the grand mean; Gi , Mj , and Yk are the

main effects of genotype, mega-environment, and year; GMij is

the interaction effect of genotype and mega-environment; GYik is

the interaction effect of genotype and year; MYjk is the

interaction effect of mega-environment and year; GMYijk is the

interaction of genotype, mega-environment, and year; REPn(j:k)
is the effect of the replicate n (assumed to be the combination of

location and blocks) nested within the mega-environment and

year; and ϵijkn is the random error associated to yijkn . Variance

components and genetic parameters were estimated using

Restricted Maximum Likelihood, REML (Dempster et al.,

1977). Significance testing for random effects was done by the

likelihood ratio test (LRT) comparing a complete model (with all

terms) and a model without the term under test. The broad-

sense heritability on a genotype-mean basis (H2) was computed

as the ratio between genotypic variance (s2
G) and variance of a

genotype mean (s2
P), as follows (Yan, 2014; Schmidt et al., 2019).

H2 =
s2
G

s2
P
=

s2
G

s2
G +

s2
GY
K +

s2
GM
J +

s2
GMY
JK + s2

ϵ

oK
k=1

N

TABLE 2 List of environmental covariables used in the study.

Source Environmental factor Unit

Nasa POWERa Insolation Incident on a Horizontal Surface MJ m−2 day−1

Downward Thermal Infrared (Longwave) Radiative Flux MJ m−2 day−1

Extraterrestrial radiation MJ m−2 day−1

Wind speed at 2 m above the surface of the earth m s−1

Minimum air temperature at 2 above the surface of the earth °C day −1

Average air temperature at 2 above the surface of the earth °C day −1

Maximum air temperature at 2 above the surface of the earth °C day −1

Dew-point temperature at 2 m above the surface of the earth °C day −1

Relative air humidity at 2 above the surface of the earth %

Rainfall precipitation mm day −1

Calculatedb Temperature range °C d−1

Potential Evapotranspiration mm d−1

Deficit by precipitation mm d−1

Vapor Pressure Deficit kPa d−1

Slope of saturation vapor pressure curve Kpa °C d−1

Effect of temperature on radiation-use efficiency –

Growing Degree Day °C day−1

Actual duration of sunshine hour

Daylight hours hour
fr
aEstimated from NASA orbital sensors (Sparks, 2018); b processed using concepts from Allen et al. (1998) and Soltani and Sinclair (2012).
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Where J, K, and N are the numbers of mega-environments,

years, and combinations of location/blocks, respectively. s2
G,  

s2
GY ,  s2

GM , and s2
GMYare the variances of GEN, GEN×YEAR

interaction, GEN×ME interaction, and the GEN×YEAR×ME

interaction, respectively; s2
ϵ is the residual variance. An H2

close to 1 means that any observed differences among the

genotypic effects are completely due to genetic differences; On

the other hand, an H2 close to 0 means that observed genotypic

differences, are due to either genotype-by-environment

interactions or experimental errors (Yan, 2014). Finally, we

compute the accuracy (Ac) as follows:

Ac   =
ffiffiffiffiffiffi
H2

p

Both the percentage of the variance of phenotypic mean

values (considering each term of the random-effect model) and

the percentage of the variance of a genotype mean (contribution

of each component to the s2
P) were presented as filled bar plots.

2.3.4 Mean performance and stability of
single trait

Genotype selection was performed within each delineated

ME aiming at selecting genotypes that combine desired

performance within the ME and are stable across years; such a

genotype would be desired by both farmers and breeders. First,

for each ME, the average performance of the I genotypes in the K

years (�Yik) was computed. Then, the Wricke’s Ecovalence (Wi )

was used as a measure of the genotypic stability across the years

and was computed as follows:

Wi = o
K

k=1

�Yik − �Yi : − �Y: k + �Y::ð Þ

Genotypes with low values of Wi have smaller deviations

from the mean across years being then more stable. To account

for both mean performance and stability (MPSi) of genotypes,

we adapted the concept of the WAASBY index, which is based

on the weighted average of absolute scores from the singular

value decomposition of the matrix of best linear unbiased

prediction (BLUP) for the GEI effects generated by a linear

mixed-effect model (LMM) and response variable (Olivoto et al.,

2019a), by replacing the weighted average of absolute scores

(WAASB) with Wi as stability measure, since to compute

WAASB at least two Interaction Principal Component Axes

are needed. The MPSi was computed as follows:

MPSi =
rYi � qYð Þ + rWi � qsð Þ

qY + qs

where MPSi is the superiority index for genotype i that

weights between mean performance and stability; qY and qs are
the weights for mean performance and stability, respectively; rYi

and rWi are the rescaled values for mean performance Yi and

stability (Wi) , respectively of the genotype i. Here, we used

qY=70 and qs=30 to account for a higher weight for mean
Frontiers in Plant Science 06
performance, since selecting highly stable hybrids that do not

perform well is not desired. The rescaled values were computed

as follows:

rYi = rWi =
nma − nmi
oma − omi

� oi − omað Þ + nma

where nma and nmi are the new maximum and minimum

values after rescaling; oma and omi are the original maximum

and minimum value, and oiis the original value for the response

variable (or ecovalence value) for the genotype i. ForWi and the

traits GMC, PH, EH, and BTL in which lower values are desired,

we used nma = 0 and nmi = 100. So, the genotype with the lowest

mean and lowest Wi would have rYi =100 and rWi =100 after

rescaling. For, GY, EL, ER, GWE, and HSW in which higher

values are desired, we used nma = 100 and nmi = 0. After

rescaling all the traits, a two-way table rMqp with q rows

(genotypes) and p columns (traits) was created. In rMqp, each

column has a 0–100 range that considers the desired sense of

selection (increase or decrease) and maintains the correlation

structure of the original set of variables (Olivoto and Nardino,

2021). Additionally, to show how the ranking of genotypes is

altered depending on the weight for mean performance and

stability, for each ME we planned 21 scenarios changing the qY/
qs ratio, as follows: 100/0, 95/5, 90/10,…, 0/100. To assist with

intuitive interpretation, a heat map graph was produced. To

compute these indexes we used the function mps() and wsmp()

of the R package metan (Olivoto and Lúcio, 2020).
2.3.5 Mean performance and stability of
multiple traits

To account for the mean performance and stability of

multiple traits, we used the function mgidi() of the metan R

package to compute the multi-trait mean performance and

stability index (MTMPS). The MTMPS is based on the

concept of the Multi-trait stability index, MTSI (Olivoto et al.,

2019b). The only difference between MTMPS and the MTSI is

that in this study the MTMPS was computed considering the

Wricke’s Ecovalence (Wi ) rather than the WAASB index. First,

an exploratory factor analysis was computed with rMqp to group

correlated variables into factors and compute the factorial scores

for each genotype, as proposed by Olivoto and Nardino (2021):

X = m + Lf + ϵ

where X is a p×1 vector of rescaled observations; m is a p×1

vector of standardized means; L is a p×f matrix of factorial

loadings; f is a p×1 vector of common factors; and e is a p×1

vector of residuals, being p and f the number of traits and

common factors retained, respectively. Initial loadings were

obtained considering only factors with eigenvalues higher than

one. After varimax rotation criteria (Kaiser, 1958) final loadings

were obtained and were used to compute the genotype scores, as

follows:
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F = Z ATR−1� �T

where F is a q×f matrix with the factorial scores; Z is a q×p

matrix containing the standardized (zero mean and unit

variance) rMqp; A is a p×f matrix of canonical loadings, and R

is a p×p correlation matrix between the MPS values. q , p , and f

represent the number of genotypes, traits, and retained

factors, respectively.

Considering the rescaled values in rMqp, the ideotype would

be the genotype that presents 100 for all analyzed traits; in other

words, is the one that has the better performance and stability for

all the analyzed traits. Thus, the ideotype was defined by a (1×p)

vector I such that I=[100,100,…,100] . The genotype ranking

was based on the Euclidean distance computed with the scores of

each genotype to the score of the ideotype, as follows:

MTMPSi = of
j=1(Fij − Fj)

2
h i0:5

Where MTMPSi is the multi-trait mean performance index

of the ith genotype, Fij represents the jth scores of the ith

genotype, Fj represents the jth scores of the ideotype. The

genotypes with the lowest MTMPS values were closer to the

ideotypes and thus showed high mean performance and better

stability in the evaluated traits.
2.3.6 Selection differentials
For each mega-environment, we assumed a selection

intensity of ~23% (six selected hybrids). The selection

differential in the percentage of population mean (DS%) was

then computed for each trait as follows:

DS% = (Xs − Xo)=  Xo � 100

Where Xs and Xo are the mean phenotypic value of the

selected genotypes and population mean, respectively.

2.3.7 Statistical software
All statistical analyses in this study were performed using the

R software 4.1.0 (R Core Team, 2022) with the packages and

functions mentioned in each method.
3 Results

3.1 Environmental kinships and typology

3.1.1 Historical data
Based on 20 years of climate information considering 19

environmental covariables, four mega-environments (ME) were

delineated (Figure 2). The ME1 included only one location

(Yicheng). The ME2 included Suixi, Jieshou, and Nanyang.

The ME3 included Handan, Gaocheng, Shenzhou, and

Dezhou; The ME4 included Jinan and Laizhou (Figure 2). The
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grouped ME were geographically close (Figure 1), suggesting

that there is a relevant variation in the climate variables among

the locations.

The extraterrestrial radiation (RTA), daylight hours (N), and

deficit by precipitation (PETP) were the climate variables that

most contributed to the environment scores (Supplementary

Figures S2-6). The PCA biplot (Figure 3A) shows that ME1 is

mainly characterized by having higher rainfall precipitation,

relative humidity, and deficit by precipitation (higher deficit

means more available water). The ME2 has the higher values for

downward thermal infrared (Longwave) radiative flux. Contrary

to ME1, ME3 has higher values for vapor pressure deficit and

temperature range, meaning a drier environment (Figure 3A).

The higher differences in the vapor pressure deficit of ME3 are

specially observed from May to August (Supplementary Figure

S6). The ME4 is mainly characterized by having a lower average

temperature and consequently a small accumulation of growing

degree days (Figure 3A).

The slope of the saturation vapor pressure curve, average

temperature, and minimum and maximum temperature was

positively associated. Temperature range and vapor pressure

deficit were positively correlated but negatively correlated with

relative humidity and precipitation, whereas potential

evapotranspiration was strongly and positively correlated with

extraterrestrial radiation (Figure 3A).

3.1.2 Two years of trials
Figure 3B and C show the PCA biplot with the climate

variables and MEs for the trials conducted in 2019 and 2020,

respectively. It can be seen a high temporal (seasonal) effect, with

different correlation patterns between the climate variables in the

two years. For example, in 2019, rainfall precipitation and vapor

pressure deficit were positively correlated whereas in 2020 were

negatively correlated. This suggests that the interaction genotype

x ME x year would have an important contribution to the

phenotypic variance. In this case, identifying superior

genotypes within ME that are stable across the years would be

of great interest. Overall, ME1 had higher yields and rainfall

precipitation. The higher temperatures were observed in ME2

and the ME3 had the higher values for vapor pressure deficit and

the lower deficits by precipitation (Figure 3D).

In ME1 during 2019, most parts of the days in the flowering

and grain filling stages have vapor pressure deficit between 1.29

kPa d-1 and 3.33 kPa d-1. In this same ME in 2020, the vapor

pressure deficit was smaller, with values ranging from 0.24

kPa d−1 and 0.804 kPa d−1 during ~50% of the days in the

flowering and grain filling stages. Although 2019 presented on

average lower precipitation (Figure 3B), the ME1 presented the

higher deficit by precipitation, with positive values for almost ⅓

of the days during leaf expansion. In grain filling, for example,

~60% of the days had deficits that ranged from−7.54 mm day−1

to 31.5 mm day−1 (Figure 4A).
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3.2 Variance components analysis

The likelihood ratio test of the deviance analysis revealed a

significant (P ≤ 0.01) genotype effect for all the traits, except for

GY and BTL (Table 3), suggesting good prospects of selection

gains for most of the studied traits. The GEN × ME × YEAR

interaction was significant for all the traits, with the highest

contributions to the phenotypic variance of BTL, EH, ER, and

PH (Figure 5A). The results suggests that those morphological

traits are dependent on how the genotypes respond to different

environmental stimuli. The ME × YEAR interaction was

significant (P ≤ 0.01) for GMC and GY, suggesting that the

contrasting climate variables observed across the two years

affected the ME differently. Thus, it is reasonable to perform

the selection within each ME. Overall, the REP (ME×YEAR)

effect was significant for all the traits and was the component

with the highest contribution for the phenotypic variance of GY.

This high contribution likely comes from the implicit effect of

location, since the location and complete blocks were combined

to serve as replicates within each mega-environment. Here,

although showing a high contribution, the location effect is not

of primary interest, since the main goal is to identify superior

genotypes within each mega-environment.

The broad-sense heritability on the genotype-mean basis

(H2) ranged from 0.324 (GY) to 0.896 (ER and PH) (Table 3).

For the traits GY and BTL the H2 was less than 0.5, which means

that the genotypic component accounted for less than 50% of the

variance of a genotype mean (Figure 5B). For these traits, most

of the variance of the genotype mean was due to both GEN ×ME

and GEN × ME × YEAR interactions. The greater contributions

of interaction terms for these traits compared to the other ones
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reinforces that the phenotype-genotype relationship of this traits

is strictly environment-dependent, which makes more difficult

the selection of widely adapted hybrids and indicates that the

selection within delineated mega-environments would provide

better gains.
3.3 Correlation between traits in each
mega-environment

Supplementary Figure S7 shows the phenotypic correlations

among the studied traits within each mega-environment over

the two years. Overall, PH and EH were positively correlated

with each other across all the MEs. Negative correlations were

observed between PH and HSW, suggesting that taller plants

have a lower density of grains. In ME1 and ME3 a negative

correlation between GY and BTL (r = −0.13 and r = −0.12,

respectively) was observed. For ME2 and ME3, a positive

relation between GY and BTL was observed. These changes in

the relationships in the different ME resulted in a low degree of

Mantel’s correlation between the matrices (Supplementary

Figure S8) (Guillot and Rousset, 2013). Therefore, this

supports the use of a multi-trait index within each ME to take

into account the different correlation structures.
3.4 Selection differentials for mean
performance and stability

The selection considering the multiple traits resulted in

different hybrids being selected in each ME (Figures 6 and 7).
FIGURE 2

Heat map showing the delineated mega-environments considering the similarity based on 20 years of information for 19 environmental covariables.
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A B
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FIGURE 3

Biplot for the principal component analysis between environmental variables. (A) long-term pattern data (average of 20 years of climate
information); (B) observed climate variables in the trials during 2019; (C) observed climate variables in the trials during 2020; (D) average
information of the two years of trials. The variables are: grain yield (GY), genotype variance within mega-environment (var); average air
temperature (TMED, °C d-1); minimum air temperature (TMIN, °C d-1); maximum air temperature (TMAX, °C d-1); dew-point temperature
(T2MDEW, °C d-1) at 2 m above the surface of the earth at 2 m above the surface of the earth; total rainfall precipitation during the crop cycle
(PRECTOT, mm); daily temperature range (TRANGE, °C d-1), deficit by precipitation (PETP, mm d-1); air relative humidity (RH, %), potential
evapotranspiration (ETP, mm d-1); slope of saturation vapor pressure curve (SVP, Kpa °C d-1); vapor pressure deficit (VPD, kPa); Effect of
temperature on radiation-use efficiency (FRUE); Growing Degree Day (GDD, °C day−1); Actual duration of sunshine (n, hours); Daylight hours (N,
hours); Wind speed at 2 m above the surface of the earth (WS, m s−1); Extraterrestrial radiation (RTA, MJ m−2 day-1); Downward Thermal Infrared
(Longwave) Radiative Flux (DTIRF, MJ m−2 day-1); Insolation Incident on a Horizontal Surface (SIHS, MJ m−2 day−1).
A

B

FIGURE 4

Relative frequency for each envirotype for vapor pressure deficit (A) and deficit by precipitation (B) observed in the studied and mega-
environments across distinct crop stages and years of trials.
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Overall, two hybrids were selected only for specific MEs,

suggesting a narrow adaptation of such hybrids in such ME

(Figure 7). Only two hybrids (namely, G23 and G25) were

selected in three ME (ME1, ME2, and ME4). This suggests

that these hybrids present a wide adaptation, performing well in

different environments.

For all the MEs, four factors (FA) were retained, explaining

76.07%, 73.77%, 78.09%, and 73.64% of the total variance for

ME1, ME2, ME3, and ME4, respectively (Supplementary Table

S2). Given the different correlation structures (Supplementary

Figure S7), different traits were included in each FA within each

ME (Supplementary Table S3).

The multi-trait selection resulted in a success rate in

selecting traits with desired selection differentials (SD) of

~77% (7 out of 9 traits) in ME1, ME2, and ME3, and ~44% (4
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out of 9 traits) in ME4 (Figure 8). The six selected maize hybrids

(ranked by MTMPS) within ME1 were G10, G23, G22, G6, G25,

and G5 (Figure 6A). In ME2, the selected hybrids were G25, G4,

G23, G2, G21, and G26 (Figure 6B). In ME3 the selected hybrids

were G5, G11, G6, G4, G15, and G9 (Figure 6C). For ME4, G15,

G25, G21, G26, G18, and G23 were selected (Figure 6D).

The SD for BTL was negative for all ME except ME1. For GY

positive SD that ranged from 3.81% in ME3 to 6.17% in ME4

were observed (Figure 8; Supplementary Figures S9-12;

Supplementary Table S3). Considering the stability over the

two cultivation years, negative SD was observed for most of the

studied traits (Figure 9). For GY, negative SDs were observed in

all the ME, with lower values for ME3 and ME4. These results

show that the selected hybrids stand out as having satisfactory

mean performance (average GY ranging from 10.38 Mg ha-1 in
TABLE 3 Variance components for the main effect of genotypes (s 2
G), mega-environments (s 2

M ), cultivation year (s 2
Y ), and their interactions

estimated for nine traits assessed in 26 maize hybrids.

Source of variation BTLa EH EL ER GMC GWE GY HSW PH

s2
G 0.050ns 50.028** 0.211** 0.859** 1.357** 39.221* 0.038ns 1.770** 199.780**

s2
M 0.000ns 0.000ns 0.053ns 0.000ns 0.000ns 104.484ns 0.000ns 0.000ns 96.522ns

s2
Y 0.000ns 27.351ns 0.083ns 0.016ns 9.488* 55.866ns 0.000ns 0.000ns 31.061ns

s2
GM 0.048ns 0.000ns 0.219** 0.078ns 0.000ns 26.481ns 0.059ns 0.250ns 0.000ns

s2
GY 0.00 ns 4.622ns 0.000ns 0.000ns 0.000ns 10.899ns 0.000ns 0.000ns 4.833ns

s2
MY 0.000ns 30.248ns 0.000ns 0.000ns 2.738** 0.000ns 0.453* 0.000ns 11.210ns

s2
GMY 0.353** 59.987** 0.311** 0.484** 1.011** 77.715** 0.355** 0.852** 128.617**

s2
REP(M :Y) 0.135** 98.436** 0.657** 0.138** 4.033** 300.744** 1.521** 12.844** 108.140**

s2
ϵ 0.472 126.749 1.337 1.194 9.136 464.349 1.185 9.817 274.329

s2
P 0.117 61.950 0.327 0.959 1.636 68.744 0.117 2.103 222.846

Hb
2 0.433 0.808 0.646 0.896 0.830 0.571 0.324 0.842 0.896

Ac 0.658 0.899 0.804 0.946 0.911 0.755 0.569 0.918 0.947
fronti
aBTL, bare tip length; EH, ear height; EL, ear length; ER, ear row; GMC, grain moisture content; GWE, grain weight per ear; GY, grain yield; HSW, 100-seed weight; and PH, plant height.
bBroad-sense heritability on the mean-basis.
*P ≤ 0.05; **P ≤ 0.01 (See the P-values in Supplementary Table S1); ns P > 0.05.
A B

FIGURE 5

Percentage of the variance of phenotypic mean values (A) and percentage of the variance of a genotype mean (B).
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ME4 to 12.08 Mg ha-1 in ME1) with better stability across

contrasting cultivation years.
3.5 Ranking the mega-environments

Figure 10 shows the genotype plus genotype-by-

environment (GGE) biplot showing the ranking of the

delineated mega-environments relative to an ideal mega-

environment. Considering the average yield in each ME, the

ME1 (which included only Yicheng) is closer to the “ideal”

environment. On average, the yield in ME1 was 11.4 Mg ha-1

(Supplementary Figures S13-14). On the contrary, ME4

presented lower average yields (9.8 Mg ha-1), appearing far

from the score of the “ideal” environment (Figure 10).
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4 Discussion

4.1 Seasonal effects impacted the mega-
environments differently

The 10 environments included in this study were categorized

into 4 mega-environments (ME) by which the similarity was

assessed on an “omics” scale of 19 environmental covariables

with long-term (20 years) weather data (Figure 2). These results

support previous studies that also identified the complex

climatic conditions in HHH (Tao et al., 2017).

The two years of trials had contrasting climate characteristics

(Figures 3B,C),whichmaybe the source of the significant (P<0.05)

ME×YEAR interaction for GY (Table 3; Supplementary Table S1).

In ME1, for example, a highly distinct pattern of vapor pressure
A B DC

FIGURE 6

Genotype ranking and selected genotypes for the multi-trait mean performance and stability index (MTMPS) considering a selection intensity of 25%
within ME1 (A), ME2 (B), ME3 (C), and ME4 (D). The red and black circles represent selected and unselected genotypes in their respective environments.
FIGURE 7

Veen plot showing the selected genotypes in each ME.
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deficit, minimum and maximum air temperatures across the crop

cyclewereobserved in the twocultivationyears.While in2019most

of the flowering period in ME1 had a high vapor pressure deficit

(Figure 4A) and maximum temperatures between 34.5°C and °C

39.3°C (Supplementary Figure S15A), 2020 had milder

temperatures and a smaller vapor pressure deficit. This approach

can leverage plant ecophysiology knowledge aiding to identify the

main sources of the genotype-environment interaction to select

stress-resilient hybrids (Costa-Neto and Fritsche-Neto, 2021;

Resende et al., 2021; Carcedo et al., 2022).

In warm weather, the loss of water by evapotranspiration is

greater than in colder weather. On average, ME1 experienced

higher values of vapor pressure deficit, which by combining

relative humidity and temperature into a single quantity

(Penman and Keen, 1948) is an accurate measure for predicting

plant transpiration (Seager et al., 2015). Surprisingly,ME12019was

the most productive environment with an average yield of 1.2 Mg

ha-1 greater than the yield observed in 2020 at the same location
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(Supplementary Figure 13). The high yields in such environments

lead to the hypothesis that the deficit by precipitation (Figure 4B),

mainly during grain filling, was not sufficiently high to cause the

limited transpiration rate trait, frequently expressed in some

hybrids under high vapor pressure deficit and water-limited areas

(Shekoofa et al., 2016). As a C4-metabolism plant, maize has a

higher temperature optimum for photosynthesis than C3 plants

due to the operation of a CO2-concentrating system that inhibits

Rubisco oxygenase activity (Berry and Bjorkman, 2003). Previous

studies have shown that maize net photosynthesis is only inhibited

at leaf temperatures above 38°C and that the maximum quantum

yield of photosystem II is relatively insensitive to leaf temperatures

up to 45°C (Crafts-Brandner and Salvucci, 2002). When leaf

temperature is increased gradually, rubisco activation and net

photosynthesis acclimate by the expression of a new activase

polypeptide. This acclimation may have occurred in ME1 since

maximum air temperatures > 32°C were observed for most of the

days since leaf expansion and may explain why this environment
FIGURE 8

Selection gains for mean performance considering the selection within each ME.
FIGURE 9

Selection gains for stability considering the selection within each ME.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1030521
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yue et al. 10.3389/fpls.2022.1030521
presented a high yield even with ~75% of the flowering period

experiencing temperatures >34.5 °C(SupplementaryFigureS15A).

Another climate variable that can explain the higher yield of

ME1 in 2019 is the minimum temperatures. In 2020, ~75% of

the days during the grain filling stage had minimum air

temperatures below 19.2°C (Supplementary Figure S15B),

which resulted in a negative correlation between GY and

minimum temperature (Figure 3C). Previous studies have

shown that temperatures below 20°C rose abruptly the redox

state of the primary electron acceptor of photosystem II (QA),

and increase the non-photochemical quenching of chlorophyll

fluorescence, suggesting a restriction in electron transport in

such conditions (Labate et al., 1990; Sowiński et al., 2020).
4.2 Higher precipitation does not ensure
higher yields

Overall, the environments in 2020 presented accumulated

rainfall during the experiment greater than 500 mm, researching

~920 mm in ME1 (Supplementary Figure S16). As a result, these

environments showed a higher deficit by precipitation (positive

deficits mean more water availability), and a lower vapor

pressure deficit (Figure 4B). Unexpectedly, higher yields were

not observed in such environments. In Jieshou, for example, the

average yield was 2.6 t ha-1 smaller in 2020 compared to 2019,

even with rainfall precipitation ~2.4-fold higher, with 387 mm in

2019, and 917 mm in 2020 (Supplementary Figure S16).
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A possible explanation for the lower yields observed in

environments with higher water availability may be related to

the restricted plant transpiration in such cases. Water moves

from the soil into plant roots, and by negative pressures within

the xylem due to capillary forces in the cell walls, to the leaves.

The water, warmed by the sun, turns into vapor passing out

through stomata, at the same time that allows absorption of CO2

to photosynthesize (Taiz and Zeiger, 2010). The propulsive force

of this process is regulated by the difference in the concentration

of water vapor between the intercellular spaces of the leaves and

the external atmospheric mass; the energy of this process is

provided by the amount of radiation available. In ME1 during

2020, for example, ~87% of the grain filling period presented

relative humidity greater than 70% (Supplementary Figure

S15C). In addition, the wind speed in such a location had the

lowest average (0.20 m s-1). The combination of high relative

humidity and lower wind speed might have dramatically

reduced plant transpiration. While limitation on transpiration

at high vapor pressure deficit is a promising trait that could be

incorporated into breeding programs to improve drought

tolerance in maize (Yang et al., 2012), lower yield under

elevated air relative humidity may be related to the hindered

acquisition of mineral nutrients, mainly those supplied to plant

roots by mass flow (NO3
−, Ca+2, and Mg+2), considering the

transpiration-driven mass flow concept (Cramer et al., 2009).
4.3 Envirotyping helped to better
understand the genotype-
environment interaction

The significant GEN×ME×YEAR interaction suggests the

complex interaction of the genotypes with contrasting

environments on the trait phenotypic expression. Similar

reports were also observed in previous studies (Kamutando

et al., 2013; Mebratu et al., 2019; Yue et al., 2020; Singamsetti

et al., 2021). Along with the global changes in climatic variables

over the past decades, there is a growing consensus that future

food production will be threatened by environmental conditions

(Ceglar and Kajfež-Bogataj, 2012; Steward et al., 2018).

Therefore, knowledge about the influence of climatic variables

on maize yield and genotypic variation within a certain

environment is particularly necessary. Among the climatic

factors investigated, temperature, vapor pressure deficit, deficit

by precipitation, and relative humidity were key environmental

factors to distinguish yield across different environments, which

in turn affects GE interactions (de Araujo et al., 2019).

Growing resilient crops with consistent yield performance in

unpredictable and complex weather changes is critical to

ensuring food security. Given the large scale of production,

high degree of mechanization, and developed biotechnology,

coupled with measures and technical means such as reasonably

dense planting, scientific fertilization, biological pest control,
FIGURE 10

GGE biplot showing ranking of test mega-environment relative
to an ideal test mega-environment.
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and water-saving irrigation, the maize yield level of Unites States

of America has long been among the highest in the world (~10.5

Mg ha-1). China’s maize yield in 2020 was 6.35 Mg ha-1 which

was 60% of the US yield level (Guo et al., 2021). Given the huge

difference in corn production between China and the United

States, how to select and breeding excellent corn hybrids that

adapt to the climate characteristics of different ecological regions

is the key to ensuring the healthy and stable development of

China’s corn industry (Yue et al., 2022b). Since the 1960s, the

Dryland Farming Institute, Hebei Academy of Agriculture and

Forestry Sciences has been focusing on the breeding of new high-

yield and stable maize hybrids and the multi-environment trials

of summer maize in the HHH Plain, making full use of foreign

germplasm resources to improve local germplasm. A series of

excellent summer maize hybrids were selected and bred.

Here, we provided evidence that using envirotyping techniques

to define mega-environments based on climate variables may help

breeders to better understand the genotype-by-environment

interaction. Several studies define mega-environments based on

the genotypes’ response in a single year (Singh et al., 2019;Mushayi

et al., 2020; Enyew et al., 2021), but since the environmental pattern

that defines the genotype responsemay change significantly across

years (Figure 4), this may lead to mistaken recommendations. In

most studies that evaluate genotypes across multiple locations and

years, the average yield across years is used to fill a two-way table

(genotypes x locations) that is further used inAMMIorGGEbiplot

analysis (Shojaei et al., 2022). Here, wehave shownhow integrating

multi-trait selection for mean performance (within mega-

environments) and stability (across years) with detailed

environmental typology may be useful to identify specific

adaptations (such as tolerance to warmer environments),

increasing the sustainability of breed programs mainly under the

climate changes in view (Lopes et al., 2015). Therefore, our results

can leverage plant ecophysiology knowledge aiding in identifying

the primary sources of the genotype-environment interaction in

plant breeding programs (Costa-Neto and Fritsche-Neto, 2021;

Resende et al., 2021). The use of this approach becomes particularly

interesting due to the dynamism and exhaustivity of the data

available (climate information available for all points of the

globe) that make it possible to replicate the procedure anywhere,

anytime, and the possibility of including additional information

such as soil proprieties, crop management, companion organisms,

and crop canopy (Xu, 2016).
4.4 The multi-trait selection provided
desired gains for most of the
studied traits

To the best of our knowledge, this is the first introduction of

the term multi-trait mean performance and stability index

(MTMPS). The MTMPS can be seen as an adaptation of the

MTSI (Olivoto et al., 2019b) where several parametric and non-
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parametric stability measures (beyond the WAASB) can be used.

Similar to the MTSI, genotypes that have lower values of

MTMPS are assumed to have better mean performance and

stability based on the set of accessed traits. Multi-trait stability

index has recently been employed as a robust tool to assist the

selection of elite genotypes based on the mean performance and

stability of various variables. Some examples include the

selection of resistant soybean genotypes to drought and

salinity (Zuffo et al., 2020), bread wheat ideotypes for

adaptation to early sown conditions (Farhad et al., 2022),

barnyard millet lines for shoot fly resistance (Padmaja et al.,

2022), drought tolerant chickpea genotypes (Hussain et al.,

2021), pea lines adapted to autumn sowings in broomrape-

prone Mediterranean environments (Rubiales et al., 2021), and

maize inbred lines under optimal and drought stress conditions

(Balbaa et al., 2022).

A key factor in using the MTMPS is choosing an adequate

qY/qs ratio for each trait, which will likely change the genotype

ranking. By plotting the genotype ranks in several scenarios of

qY/qs ratio (Supplementary Figure S17) it is possible to identify

groups of genotypes with similar performance regarding stability

and productivity. For example, in ME1, G10 and G23 (selected

by the MTMPS) remained well-ranked regardless of the qY/qs
ratio. This suggests that they have both high yield and

satisfactory stability. On the other hand, G8 remained poorly

ranked either considering only the mean performance or

stability (Supplementary Figure S17). The poor performance

for GY –and possibly for all the other traits–made this genotype

the last ranked within ME1 (Figure 6A). In our case, highly

stable hybrids across years could be identified as those that are

better ranked when qY/qs tends to 0. One example in ME1 would

be G21, which was the top-ranked when only stability was

considered in the MPS (Supplementary Figure S17).

Here, we found that the use of the MTMPS provided desired

gains for the mean performance and stability for most of the

studied traits (Figures 8 and 9) and that the selection within

mega-environments with similar climatic patterns may provide

satisfactory gains. The use of MTMPS is expected to grow

rapidly among breeders helping to identify hybrids that

combine desired mean performance and stability for

important traits. For example, envirotyping and morpho-

physiological and yield traits accessed [eg., Balbaa et al.

(2022)] can be combined to identify stress-adaptive traits with

a high yield and helps to better understand the genotype-by-

environment interaction.
5 Conclusions

Considering 20 years of climate information and 19

environmental covariables, we identified four mega-

environments (ME) for maize cultivation in the Huanghuaihai

plain in China. Overall, most of the studied traits were
frontiersin.org
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significantly affected by genotype × mega-environment × year

interaction. The vapor pressure deficit, maximum temperature,

relative humidity, and deficit by precipitation were the climate

variables that most contributed to the envirotyping. This provides

relevant evidence that evaluating maize stability and adaptation to

mega-environments using single-year, multi-environment trials

may provide misleading recommendations. Counterintuitively,

higher yields were not observed in the environments with

higher accumulated rainfall precipitation. We provide strong

pieces of evidence that vapor pressure deficit, minimum

temperatures, and relative humidity may be climate variables

that –in environments with no water restriction–, have a

relevant control on the plant transpiration and consequently,

yield. Utilizing the MTMPS approach in this study led to

identifying six different selected hybrids in each mega-

environment, with higher stability and prominent mean

performance for most of the studied traits. G23 and G25 were

selected within three out of the four mega-environments, being

identified as stable. The G5 shows satisfactory yield and stability

across contrasting years in the drier, warmer, and with higher

vapor pressure deficit mega-environment, which included

locations in the Hubei province. To the best of our knowledge,

this is the first study that integrated envirotyping techniques and

multi-trait selection for mean performance and stability, opening

the door to a more systematic and dynamic characterization of the

environment to better understand the genotype-by-environment

interaction in multi-environment trials.
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