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and Xihua Wang1

1Tiantong National Station for Forest Ecosystem Research, School of Ecological and Environmental
Sciences, East China Normal University, Shanghai, China, 2Department of ecology and climate,
Shanxi Academy of Eco-Environmental Planning and Technology, Shanxi, China
The recalcitrant understory fern layer is an important ecological filter for

seedling regeneration, yet how the fern layer influences seedling

regeneration dynamics remains unclear. Here we transplanted 576 seedlings

of four dominant tree species, Castanopsis fargesii, Lithocarpus glaber, Schima

superba and Hovenia acerba, to the treatments of Diplopterygium glaucum

retention and removal under an evergreen broad-leaved forest in eastern

China. We monitored the survival, growth and biomass data of these

seedlings for 28 months, and then used generalized linear mixed models to

evaluate the treatment effects on seedling survival, growth, biomass and root-

shoot ratio. Our results showed that fern retention significantly inhibited the

seedling establishment of all four species. During the seedling development

stage, the seedling relative growth rate of L. glaber decreased under fern

retention, which was not the case for the other three species. Root-shoot ratio

of C. fargesii and L. glaber increased significantly under fern retention. Our

findings provide new evidence of the filtering effect of a recalcitrant fern

understory. Notably, we observed that the response of tree seedlings to the

recalcitrant fern understory was more sensitive in the establishment stage.

Finally, our work highlights that the filtering effect of the recalcitrant fern

understory changes depending on the regeneration stages, and that shade-

tolerant species, C. fargesii and L. glaber were even more affected by fern

disturbed habitats, suggesting that effective management should attempt to

curb forest fern outbreaks, thus unblocking forest recruitment.

KEYWORDS

seedling establishment, ecological filter, biomass allocation, evergreen broad-leaved
forest, Diplopterygium glaucum
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Introduction

Tree seedling regeneration determines forest community

dynamics and is a crucial component in forest restoration and

management (Grubb, 1977; Royo and Carson, 2022), with

symmetric and asymmetric interactions playing important

ecological roles during seedling regeneration stages (Chesson,

2000; Comita et al., 2010; Johnson et al., 2012; Liu et al., 2021).

In forests, understory plants play an important selective role in

determining the fate of tree seedlings, known as ecological filtering

(George and Bazzaz, 1999a; George and Bazzaz, 1999b; Marrs and

Watt, 2006; Meiners, 2014). Dense understories exacerbate the

degree of light attenuation caused by the midstory and canopy

(Harms et al, 2004; Royo et al., 2006), increase soil moisture (George

and Bazzaz, 1999a; Nilsson andWardle, 2005; Liu et al., 2012a) and

soil carbon storage (Lyu et al., 2019). Dense understory layer also

can alter animal activities such as providing shelter for some small

animals or hindering animal access (Royo and Carson, 2008; Nuttle

et al., 2014; Ssali et al., 2019). Ferns are one of vital components in

the understory of forests and can form the recalcitrant understory

layer due to their highly developed root systems, spore reproduction

and cloning strategies (Page, 2002; Young and Peffer, 2010).

Compared with other herbaceous understory layer, recalcitrant

understory fern layer have anti-interference characteristics (e.g.

drought, fire and herbivore tolerant) since developed rhizomes

(Marrs and Watt, 2006; Mehltreter et al., 2010), and allelopathy

characteristic (Bonanomi et al, 2006; Ismail and Chong, 2009; Kato-

Noguchi et al., 2013). Thus, it can persist for long periods of time

and affect tree regeneration. Previously, many studies have found

that the recalcitrant fern layer can inhibit or alter seedling

regeneration by changing the biotic and abiotic environment (e.g.

George and Bazzaz, 1999a; George and Bazzaz, 1999b; Gallegos

et al., 2015; Dietrich et al., 2017; Brock et al., 2018; Ssali et al., 2019).

However, how does the effect of recalcitrant understory ferns on

seedlings change with growth is still far from clear.

The responses of tree seedlings to the recalcitrant understory

fern layer may vary with regeneration stage. After seedlings

emerge, seedling regeneration is usually divided into the

establishment and development stage (Grubb, 1977; De Steven,

1991; Kitajima et al., 2000), with seedlings at different stages

having different microhabitat and resource requirements (Liu

et al., 2021). The seedling establishment stage is a survival

bottleneck since it fragility to many abiotic (e.g. soil texture,

temperature or moisture) and biotic (predation or pathogen

infection) environments (Kitajima et al., 2000; Royo and

Carson, 2008; Liu et al., 2012b; Nuttle et al, 2014; Bagchi et al.,

2014). After seedlings established, their survival rate will reach a

relative stationary phase and transfer to growth (Grubb, 1977). As

the seedlings develop, they needmore resources (e.g. nutrients and

light) to maintain growth (Kobe and Vriesendorp, 2011; Lin et al.,

2014; Liu et al., 2017; Boonman et al., 2020). Correspondingly, the

cover provided by recalcitrant understory ferns alters the

microhabitat and increases resource competition between
Frontiers in Plant Science 02
seedlings (George and Bazzaz, 1999b; Montgomery et al., 2010;

Gaudio et al., 2011). For example, a dense fern understory and its

litter cover changes the physical environment, influencing

temperature, humidity and surface illumination (George and

Bazzaz, 1999a; Liu et al., 2012a; Ssali et al., 2019). Bracken fern

(Pteridium aquilinum) alters the soil environment creating an

inorganic N-rich environment (DeLuca et al., 2013). Therefore,

fern cover that generates a particular microhabitat and resource

environment would change the original responses of seedling

regeneration, reflected by seedling survival rate, growth rate and

biomass allocation (e.g., root-shoot ratio).

Light condition is considered to be the most important abiotic

factor affecting seedling regeneration (George and Bazzaz, 1999a;

George and Bazzaz, 1999b; Gaudio et al., 2011; Liu et al., 2017; De

Lombaerde et al., 2019; Liu et al., 2021).Many studies have found that

the dense understory fern layer would greatly inhibit the regeneration

of heliophile pioneer specie as the dense ferns create a low-light

environment, but instead favors the regeneration of shade-tolerant

tree species (Gallegos et al., 2015; Ssali et al., 2017; Brock et al., 2018;

Ssali et al., 2019). For example, in a South-West Ugandan forest, Ssali

et al. (2019) found that bracken (P. aquilinum) hinders the

establishment of pioneer species but favours the germination of

late-successional (more shade tolerant). In the montane forest,

Bolivia, Gallegos et al. (2015) found that bracken (P.

arachnoideum) can facilitate the seedling recruitment of Clusia and

potentially other shade-tolerant tree species. Both of these studies

were carried out in more open forests including a coniferous forest or

disturbed forest (Gallegos et al., 2015; Dietrich et al., 2017; Ssali et al.,

2019), thus the response of tree seedlings to the recalcitrant

understory fern layer in closed forest is still unclear.

D. glaucum is one of the most widely distributed fern species

throughout temperate and tropical Asia and often forms large

pure colonies (Kato-Noguchi et al., 2013). It can grow up to 2

meters in height and extends the recalcitrant understory in

natural forests (Song and Wang, 1995). In this study, we set

fern retention and removal treatments of D. glaucum understory

in a closed subtropical evergreen broad-leaved forest (EBLF) in

eastern China. In total we transplanted 576 seedlings of 4 local

dominant tree species, Castanopsis fargesii, Lithocarpus glaber,

Schima superba and Hovenia acerba to the experimental

treatments. We collected seedling survival, growth, and

biomass data for each of the four tree species to answer two

questions: (1) Whether tree seedling demography responded to

the recalcitrant fern layer varied across the seedling stages? (2)

Was there any species or trait-dependent effects?
Materials and methods

Site description

This study was conducted in the Tiantong National Forest

Park in the Zhejiang Provence in eastern China (29°48′ N, 121°
frontiersin.org
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47′ E). This region has a subtropical monsoon climate and

receives an average of 1374 mm of rainfall each year. The hot-

humid-summer occurs from June to August and the cold-dry-

winter occurs from December to February. Mean annual

temperature is 16.2°C, with a monthly maximum temperature

of 28.1 °C and minimum of 4.2 °C (Song and Wang, 1995). The

soil type is Acrisol, with a medium-heavy loam texture, and the

organic layer is approximately 5 cm thick, with a pH ranging

from 4.4 to 5.1 (Liu et al., 2021). This region supports EBLF, in

which forests are dominated by species in the Fagaceae,

Theaceae and Lauraceae families (Yang et al., 2016). Due to its

proximity to the Tiantong Temple, a historic site dating back

more than 1,700 years, the forest has been well preserved.

However, the distribution of a local fern species, D. glaucum

gradually began to dominate the understory from the patch

distribution (Figure S1), and persisted for 30 years, even as the

forest canopy almost closed (Song and Wang, 1995; Chen

et al., 2010).
Experimental design

The field experimental site was set in a natural EBLF with a

recalcitrant D. glaucum understory, with D. glaucum covering

> 85% and ranging in height from 0.9 m to 1.1 m. In this

experiment, we set three blocks in the similar slope position,

and each block (30 m × 30 m) was split into two treatments:
Frontiers in Plant Science 03
“Fern removal” and “Fern retention” with 1.5 m buffer area in

between each treatment (Figure 1). Two treatments were set at

parallel slope to aviod resource diffference by up and down

slope. In the removal treatment, the D. glaucum and its litters

were completely removed and other plants were kept intact.

New colonized or germinated ferns were cut at regular

intervals. For underground fern rhizomes, we did not remove

to avoid soil disturbance. The retention treatment was not

modified. All free-standing trees with diameters at breast

height (DBH) ≥ 5 cm were tagged, measured and identified

to the species level for all plots. The basic community and

environmental information for each of the six split plots is

listed in Table S1.

Four local dominant species were selected to test the effect of

fern understory on seedling survival and growth dynamics

(Table S2). S. superba (Theaceae), L. glaber (Fagaceae) and C.

fargesii (Fagaceae) are the dominant tree species of EBLFs in this

region and within our plots (Wang et al., 2007; Yang et al., 2011).

H. acerba (Rhamnaceae) is a deciduous pioneer tree species, and

often regenerates in forest gaps (Song and Wang, 1995). All

seedlings were grown in a greenhouse. For each species, 144

healthy, uniformly sized new germinated seedlings were

transplanted in June 2015 (24 seedlings × 2 split plots × 3

blocks × 4 species = 576 samples). The transplanted newly

germinated seedlings of each species were distributed

randomly. The transplanted seedlings were separated by 0.5 m

in order to avoid the influence of each other.
FIGURE 1

Layout of the treatments of the understory fern layer.
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Data collection

This experiment was divided into two stages: the seedling

establishment stage and seedling development stage. The field

seedling establishment stage was defined as the first year after

transplantation based on previous research on seedling

dynamics in Tiantong National Forest Park (Liu et al., 2021).

Thus, we measured the initial height of each seedling after

transplantation in June 2015, and we recorded seedling

survival status and measured seedling height in June 2016. In

October 2017, considering as the development stage, we re-

censused seedling survival status and height. Then, we took out

the surviving seedlings from each plot and divided them into

aboveground (stem and leaves) and underground (root) pieces.

The entirety of the seedlings were dried to constant weight in

70°C and weighed.

In addition, we collected physical environmental conditions

in all split plots in same time (Table S3).We collected leaf area

index of the understory (understory LAI) and ground surface

(surface LAI) in each plot by LAI-2200 (LI-COR, USA) in the

center of the plot above 2 m and 0.2 m high. We collected soil

temperature and water content by Em50 (METER, USA) in the

summer (June) and winter (December) of 2016.
Data analyses

To measure the seedling survival, growth, biomass

accumulat ion, and aboveground and underground

development status, we calculated the survival rate (Psurvival)

and relative growth rate (RGR) of each species’ seedlings in both

the establishment and development stages, and total biomass

(Btotal) and root shoot ratio (Rr/s) of alive seedlings at the end of

experiment (Poorter et al., 2012) using the following formulas:

Psurvival = Ni=Ni−1 (1)

Where Psurvival is the seedlings survival rate in the plot, Ni is

the number of living seedlings in ith census in the plot; Ni-1 in (i-

1)th census in the plot.

RGR = ( lnHi − lnHi−1)=(Ti − Ti−1) (2)

Where RGR is the relative growth rate of living seedlings in

the plot (Liu et al., 2017).Hi is height of seedling in i th census in

the plot; Hi-1 in (i-1) th census in the plot. Ti is number of

months from i th census to seedling transplanted; Ti-1 from (i-1)

th census.

Btotal = Baboveground + Bunderground (3)

Rr=s = Bunderground=Baboveground (4)

Where Btotal and Rr/s are the total biomass and root shoot ratio

of living seedlings at the end of the experiment. Babovegorund
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i s the b iomass o f aboveground l iv ing seed l ings ;

Bunderground belowground.

To estimate the effect of the recalcitrant D. glaucum

understory on seedling survival, we built generalized liner

mixed-effects models (GLMMs) with binomial errors for

transplanted seedlings of each species in the establishment and

development stages. Due to location of experiment in three

random blocks, we set blocks and its containing plots as random

parts of the GLMMs. Additionally, light condition and initial

height of seedlings influences seedling survival (Comita and

Hubbell, 2009; Lin et al., 2014), thus in addition to the

explanatory variable of treatment method, each GLMM

included understory LAI of each split plot and initial height of

each seedling as explanatory variables. The utilized model with

random effects can be specified as:

Yijk e binomial(1, pijk) (5)

logit(pijk) = ½a + b1 � xFern + b2 � xHeight : L + b3

� xLAI :U �fixed:part + ½majj=k + majk�random:part (6)

Where Yijk is 1 if seedling i is alive in the plot j of block k and

0 otherwise, pijkis the survival probability of focal seedling

(equation 5). In the fixed part, a and b refer to an intercept

and a vector of coefficients of explanatory variables x,

respectively. xFern indicates the explanatory variables of fern

retention vs fern removal treatments for the recalcitrant D.

glaucum understory. xHeight.L and xLAI.U indicate the

explanatory variables of log-transformed height of seedling i in

last census and LAI of plot j in the understory. The random part

has two levels, first level is a with random effect within each split

plot j belonging to block k and seconds within block k

(equation 6).

To estimate the effect of recalcitrant D. glaucum understory

on living seedling growth, we built liner mixed-effects models

(LMMs) for living seedlings of each species in the establishment

and development stages. The fixed and random portions of these

LMMs are the same as in equation 6. The model with the

random effects can be specified as:

RGRijk = ½a + b1 � xFern + b2 � xHeight : L + b3

� xLAI :U �fixed:part + ½majj=k + majk�random:part (7)

Where RGRijk is relative growth rate of seedling i in plot j of

block k.

To estimate the effect of recalcitrant D. glaucum understory

on biomass accumulation and aboveground/underground

growth pattern of living seedlings, we also built LMMs similar

to equation 7, with the dependent variables as biomass (Bijk) and

root shoot ratio (Rijk) of alive seedling.

All the continuous variables were normalized by subtracting

the mean of the variable and dividing by the standard deviation.

All analyses were conducted in R 4.1.1 (R Development Core
frontiersin.org
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Team, 2021). The GLMMs and LMMs were fit using the “glmer”

and “lmer” functions of “lme4 1.1–13” package (Bates

et al., 2013).
Results

Seedling survival between fern retention
and removal

After 28-months of monitoring, L. glaber had the highest

seedling survival rate (66.7%) in the removal treatment,

followed by S. superba (63.9%), H. acerba (51.4%) and C.

fargesii (38.9%). In the retention treatment, S. superba had

the highest survival rate (32.7%), then H. acerba (29.2%), C.

fargesii (16.4%), and finally L. glaber (14.5%) (Table S4). In the

establishment stage, the seedling survival rate of all species in

the removal treatment was significantly higher than that of

those in the retention treatment (Figure 2A). In the

development stage, there was no significant difference in

seedling survival rate between the two treatments for all four
Frontiers in Plant Science 05
species (Figure 2A). Additionally, the seedling initial height of

S. superba had a significant positive effect (P<0.05) on seedling

survival in both the establishment and development stages,

while the effect of seedling initial height of L. glaber was only

significant in the development stage (P<0.01) (Figure 2B).

Meanwhile, the seedling survival rate of C. fargesii and H.

acerba in establishment stage increased with increasing

understory LAI (LAI.U) (Figure 2B).
Seedling growth between fern retention
and removal

In the establishment stage, there were no significant

difference in seedling relative growth rate between the two

treatments for all four species (Figure 3A), while initial height

of seedlings had a significant negative effect on seedling relative

growth rate in all four species (Figure 3B). In the development

stage, L. glaber’s seedling relative growth rate in the retention

treatment was significantly lower than in the removal treatment

(P<0.05) (Figure 3A).
A

B

FIGURE 2

The difference in survival rate of seedlings between retention and removal treatments in establishment and development stages (A), and the
corresponding estimator of explanatory variables in generalized linear mixed-effects models (B). Fern in B refers to the effect of retention
treatment vs removal treatment; Height.L refers to the log-transformed height of seedling in the last census; LAI.U is the leaf area index of the
plot in the understory. The error bars in B represent 1.96*se around estimator in generalized linear mixed models. Blue and red points in B
indicate parameter estimates significantly different from zero at the alpha = 0.05 level.
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Seedling biomass allocation between
fern retention and removal

The seedling biomass of C. fargesii in the retention treatment

was significantly lower than in the removal treatment (P<0.05),

while the initial height of seedlings had a significant positive

effect on seedling biomass in all four species (Figure 4A). The

root shoot ratio of C. fargesii and L. glaber was significantly

higher in the retention treatment than in the removal treatment

(P<0.05) (Figure 4), while, the root shoot ratio of C. fargesii

decreased with understory LAI (Figure 4B).
Discussion

The recalcitrant fern layer strongly inhibited tree seedling

regeneration in our subtropical forest. Our study showed that

fern retention significantly inhibited the seedling survival of all

four species in establishment stage but not for development

stage. All four species seedlings grew better in plots where ferns

were removed than in plots where ferns were present, but the
Frontiers in Plant Science 06
intensity varied among species. Specially, the significant results

of RGR, total biomass or root-to-shoot ratio were found in both

shade tolerant species C. fargesii and L. glaber.

The response of seedling regeneration to the recalcitrant

understory fern layer differed among regeneration stages. At the

establishment stage, the seedling survival of all four species was

significantly inhibited by the D. glaucum layer, and there was no

significant difference in the RGR of each species between the

retention and removal treatments (Figures 2, 3). This result

demonstrates the consistent effect of D. glaucum understory on

different tree species seedlings. In general, because seedlings in

the establishment stage are extremely sensitive to microhabitat

(Gilbert et al., 2001; Murphy et al., 2017; Kuang et al., 2017; Liu

et al., 2021), newly germinated seedlings suffer the highest

mortality during establishment (Murphy et al., 2017; Kuang

et al., 2017), and only a fraction of seedlings can establish

through this demographic bottleneck for populations (De

Steven, 1991; Gurevitch et al., 2006). Furthermore, the D.

glaucum layer formed a disturbed microhabitat which further

intensified the demographic bottleneck (Figure S1) due to the

sensitivity of newly germinated seedlings to microhabitat
A

B

FIGURE 3

The difference in relative growth rate of living seedlings between retention and removal treatments in establishment and development stages
(A), and the corresponding estimator of explanatory variables in linear mixed-effects models (B). Fern in B refers to the effect of retention
treatment vs removal treatment; Height.L refers to the log-transformed height of seedling in the last census; LAI.U is the leaf area index of the
plot in the understory. The error bars in B represent 1.96*se around estimator in linear mixed models. Blue and red points in B indicate
parameter estimates significantly different from zero at the alpha = 0.05 level.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1033731
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Liu et al. 10.3389/fpls.2022.1033731
changes (Royo et al., 2006; Gallegos et al., 2015). In our study,

the D. glaucum layer significant changed the soil temperature in

the winter, the water content in the summer, and especially

surface light in both seasons (See Table S3). The fern understory

reduced light levels with surface LAI equaling 3.84 in the

removal treatment compared to 9.13 in the retention

treatment (Table S3). Other research has shown that light

availability has a significant positive effect on early-stage

seedling survival (Liu et al., 2021). Therefore, we conclude that

the large environmental variations caused by the fern layer

limited seedling survivals for all tree species.

In contrast, at the development stage, the fern layer did not

significantly inhibit the survival rates of all of transplant species,

but it did significantly effect the RGR of L. glaber (Figures 2, 3).

As seedlings establish, seedlings may have adapted to the existing

environment and seedling mortality stabilized (Figure S2).

Seedlings move to the development stage by absorbing above-

and below ground resources (Grubb, 1977). Due to the different

effects of resource competition with the fern layer, the filtering

effect of the fern layer will be reflected in the difference in the

seedling relative growth rate in the development stage (George
Frontiers in Plant Science 07
and Bazzaz, 1999b; Strengbom et al., 2004; Song et al., 2012; De

Lombaerde et al., 2019). According to our results, seedlings

showed different reflections under the recalcitrant fern layer

between the establishment and development stage.

It is worth to mentioning that initial height had a significant

influence on some species’ seedling growth and survival

(Figures 2, 3). It is generally believed that taller established

seedlings can obtain more light resources and thus have a growth

advantage (Liu et al., 2017). However, in our study, only two

species showed a significant positive effect of height on seedling

survival at the development stage, and, opposingly 4 species

show a negative effect of height on seedling RGR at the

establishment stage. This may indicate that survival is most

important for seedlings during the establishment stage because

more resources are allocated to survival with a high initial height

that actually reduces the relative growth rate. These results

demonstrate the indirect temporal differentiation of the

filtering effect on seedling regeneration.

Environmental stress of the recalcitrant understory fern

alters the seedling biomass allocation of tree species. In our

study, alive seedlings of two Fagaceae evergreen species, L. glabe
A

B

FIGURE 4

The difference in biomass and root/shoot ratio of living seedlings between retention and removal treatments in establishment and development
stages (A), and the corresponding estimator of explanatory variables in linear mixed-effects models (B). Fern in B refers to the effect of retention
treatment vs removal treatment; Height.L refers to the log-transformed height of seedling in the last census; LAI.U is the leaf area index of the
plot in the understory. The error bars in B represent 1.96*se around estimator in linear mixed models. Blue and red points in B indicate
parameter estimates significantly different from zero at the alpha = 0.05 level.
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and C. fargesii, were more influenced by ferns with the root

shoot ratio significantly higher in the retention treatment than in

removal treatment (Figure 4), meaning more biomass was

allocated to the roots. According to the “balanced growth

hypothesis” (Shipley and Meziane, 2002), plants will allocate

relatively more biomass to roots if the limiting factor for growth

is below ground (e.g. nutrients, water), whereas they will allocate

relatively more biomass to shoots if the limiting factor is above

ground (e.g. light) (Poorter et al., 2012). Therefore, our results

suggests that D. glaucum may affect alive seedling growth more

through subsurface competition than above ground light

interception in our study area.

Our research results are consistent findings that show the

recalcitrant understory fern layer acts as an ecological filter

(George and Bazzaz, 1999a; George and Bazzaz, 1999b; Royo

et al., 2006; Wright et al., 2012; Ssali et al., 2019; Beltran et al.,

2020). For example, the reduced survival rate of two treatments of

L. glaber was 2.3 times that of H. acerba (Table S4 and Figure 2)

and the RGR of L. glaber seedlings in the development stage had a

significant negative effect under the fern treatment but this was

not the case for other species(Figure 3). However, from our results

on relative growth rate (L. glabe, Figure 3), total biomass (C.

fargesii, Figure 4), root shoot ratio (L. glabe and C. fargesiii,

Figure 4) and seedling height (L. glabe and C. fargesii, Table S5),

two shade tolerant species, ferns showed stronger inhibiting effects

on L. glabe and C. fargesii than on the two shade intolerant or

moderate species which is inconsistent with previous studies of

bracken (Gallegos et al., 2015; Ssali et al., 2019). These studies

suggest that bracken ameliorates contain harsh abiotic conditions

which increasing the probability of shade-tolerant tree species’

seedling recruitment because brackens are dominat in areas

degraded by fires (Gallegos et al., 2015) or by mixed disturbance

(Ssali et al., 2019). In contrast, the recalcitrant D. glaucum layer in

our study is distributed in closed forests (more than 778

individuals per hectare with mean dbh from 14.9 cm -19.1 cm,

see Table S2). Accordingly, the dense fern layer may not

ameliorate, but instead worsen the suitability of shade-tolerant

species L. glabe and C. fargesii. For shade intolerant or moderate

species, the environment under the closed canopy is not suitable

no matter whether ferns are distributed or not, leading to no

significant difference between the retention and removal

treatments. Therefore, because shade-tolerant species was

inhibited by the fern layer and shade-intolerant species are not

inherently adapted to the environment of closed forests, natural

regeneration would be extremely difficult and requires artificial

forest management.
Conclusion

Understanding the effect of the recalcitrant understory fern

on natural regeneration requires thorough knowledge of how

tree seedlings will respond at different times and growth
Frontiers in Plant Science 08
parameters. Our study provides evidence of the ecological

filtering effect of a recalcitrant understory fern, D. glaucum, in

a subtropical forest. Furthermore, the ecological filter effect on a

species can vary between seedling regeneration stages, but the

seedling survival for all species is inhibited significantly during

establishment stage with some species showing significant lower

relative growth rates in the fern retention area. Future studies

should include more regeneration stages such as seed dispersal,

seed germination for fully understanding the influence of

recalcitrant understory fern layer on the forest renewal

process. Moreover, shade tolerant tree species were more

inhibited by fern disturbed areas in closed forest. From the

perspective of forest health and management, we need to take

measures to curb forest fern outbreaks which would help

unblock the forest regeneration process.
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