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Cucumber powdery mildew
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1College of Agricultural Engineering, Jiangsu University, Zhenjiang, China, 2Key Laboratory of
Modern Agricultural Equipment and Technology, Ministry of Education, Jiangsu University,
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To explore the use of information technology in detecting crop diseases, a

method based on hyperspectra-terahertz for detecting cucumber powdery

mildew is proposed. Specifically, a method of effective hyperspectrum

establishment, a method of spectral preprocessing, a method of selecting

the feature wavelength, and a method of establishing discriminant models are

studied. Firstly, the effective spectral information under visible light and near

infrared is preprocessed by Savitzky-Golay (SG) smoothing, discrete wavelet

transform, and move sliding window, which determine the optimal

preprocessing method to be wavelet transform. Then stepwise discriminant

analysis is used to select the feature wavelengths in the visible and near-

infrared bands, forming the feature space. According to the features, a linear

discriminant model is established for the wave bands, and the average

recognition rate of cucumber powdery mildew is 93% in the whole wave

band. The preprocessing method of terahertz data, the screening method of

terahertz effective spectrum, the selection method of feature wavelength and

the establishment method of classification model are studied. Python 3.8 is

used to preprocess the terahertz raw data and establish the terahertz effective

spectral data set for subsequent processing. Through iterative variable subset

optimization - iterative retaining informative variables (IVSO-IRIV), the terahertz

effective spectrum is screened twice to form the terahertz feature space. After

that, the optimal regularization parameter and regularization solution methods

are selected, and a sparse representation classification model is established.

The accuracy of cucumber powdery mildew identification under the terahertz

scale is 87.78%. The extraction and analysis methods of terahertz and

hyperspectral feature images are studied, and more details of lesion samples

are restored. Hence, the use of hyperspectral and terahertz technology can

realize the detection of cucumber powdery mildew, which provides a basis for

research on the hyperspectral and terahertz technology in detection of

crop diseases.
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Introduction

China has the largest greenhouse area in the world at

present. Cucumber is an important cash crop, and it is widely

planted all over the world (Mao et al., 2022). Cucumber, as a

functional food, has many nutritional values, high antioxidant

capacity and high mineral content. In the process of cucumber

cultivation in greenhouse, the high temperature and humidity

environment in greenhouse can easily lead to diseases (Wang

et al., 2022). Diseases will alter the physiological state of crops

and affect their internal cells, pigment concentrations, moisture

and intercellular gaps. Severe diseases also will threaten the

ecoenvironment and food safety in addition to a decline of crop

yields. Traditional plant disease detection methods rely on

artificial sensory judgment, which calls for rich experience and

observation ability of relevant personnel and is time-consuming.

With the advancement of information technology, disease

diagnosis and identification in target crops can be effectively

conducted through the collection of disease case information

from target crops.

The existing technologies such as machine vision, spectral

detection and machine learning have been extensively studied in

crop disease detection. Nilsson applied near-infrared spectroscopy

fordetectionof rape rot and found thenear-infrared reflectancewas

significantly correlated with rape rot severity (Nilsson, 1977).

Maroua Nouri et al. detected hyperspectral images of healthy or

infected apple tree leaves, and located the lesions of fruit tree leaves

after reflection calibration and registration of hyperspectral images

(Nouri et al., 2018).TarekHMetal. proposedanonlineagricultural

medical expert system based on image recognition and determined

the disease after processing the images captured bymobile or hand-

held devices, thereby helping farmers to solve problems (Habib

et al., 2020). Chia-Lin Chung et al. put forward a method based on

machine vision for nondestructive detection of disease infected or

healthy seedlings, and classified healthy or infected seedlings by

using a scanner and quantifying the shape and color features and

through a support vectormachine (SVM) algorithm, so as to realize

disease detection (Chung et al., 2016). DuXiuyang used a terahertz

time-domain spectral technique and the least squares SVM (LS-

SVM) to detect crop quality (Du et al., 2022). In all, spectral

detection techniques featured by super bands and high resolution

(Nilsson, 1977; Chung et al., 2016; Nouri et al., 2018; Habib et al.,

2020; Wang et al., 2022) can accurately acquire inner spectral

information of crops, and are especially outstanding in deteecting

the absorption spectra of inner components of crops. The terahertz

time-domain spectroscopy (Liu et al., 2020; Du et al., 2022) with

penetrability can reflect crop changes at the terahertz scale from the

transmission level.

This technique is widely applied into disease identification of

field crops, but rarely used into detection of greenhouse plant

diseases or detection at different scales, especially in disease

recognition. Cucumber is a common widely-planted crop in the
Frontiers in Plant Science 02
facility environment and highly caters to customers. In this study,

cucumber was selectively investigated and a hyperspectral -

terahertz method for detection of cucumber powdery mildew

was explored.
Materials and methods

Sample culture

Cucumber was cultivated and sampled in the Venlo

greenhouse of College of Agricultural Engineering, Jiangsu

University in Zhenjiang of Jiangsu Province. Cucumber of

“Jinyou 1” (provided by the cucumber research institute in

Tianjin Academy of Agricultural Sciences, Tianjin, China) was

bred soil-less from April to July 2019 in perlite. The average

greenhouse air temperature was 21.6 ℃ (the range was from

11.32 to 37.73 ℃). The relative humidity of the greenhouse was

84.3%RH. The nutritive medium was a standard Hoagland

composition. Upon the onset of cucumber powdery mildew,

the front and back of leaves either showed nearly-round or

continuous white powdery spots, and in severe cases, leaves will

scorch and crisp. Totally 140 samples were acquired mainly

through artificial collection, including 70 healthy samples and 70

powdery mildew samples.
Data collection

A hyperspectral imaging system (Shanghai Wuling

Photoelectric Technology Co., LTD) consisting of a visible

light camera (VS, 390.8-1050.1 nm), a near-infrared camera

(NIR, 871.6-1766.3 nm), an ImspectorN17E spectrometer,

OLES30 lens, a direct- current adjustable light source, a glass

fiber symmetrical line light source, a loading platform, a self-

walking displacement platform, a stepping motor controller, a

computer and a display was used here (Figure 1). Spectra of

samples were recorded at the visible light band and the near-

infrared band, and spectral data were stored in the three-

dimensional form (x,y,l) (Figure 1B). Presampling experiment

was conducted prior to data acquisition. The hyperspectral

imaging exposure time was 15 ms, the scanning rate was 1.32

mm/s, and the peak reflection intensity of leaf presampling

images was 3000, which together ensured the clearness and

non-distortion of images.

A TS7-400 Terahertz time-domain spectroscope (Advantest,

Japan) was used here (Figure 2A). This instrument was

customized and optimized in terms of crop bioinformatical

detection, which improved the precision and enlarged the area

of samples from 3 to 225 cm². Hence, this instrument satisfied

the requirements for detecting most crop samples in the

laboratory environment. The spectroscope can measure the
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absorption or transmission spectra at the frequency of 0-3.9

THz, and covered 1311 frequency ranges, with precision of 0.2

mm, signal-to-noise ratio of 5000 and spectral resolution of 3.8

GHz. The terahertz time-domain spectroscope consists of a

terahertz measuring unit control system (keyboard, mouse, PC

workstation) and a terahertz measuring unit (Figure 2).

Spectra data and terahertz data were acquired from the ill

samples and healthy samples collected from the greenhouse by

using the hyperspectral imaging system (including near-infrared

and visible light bands) and the terahertz time-domain

spectroscope. Disease-related data were acquired from several

lesion areas of each ill leaf and specifically, the average spectral

value and average terahertz value were determined from 5×5

uniformly- distributed pixels. For the healthy samples, each
Frontiers in Plant Science 03
healthy leaf was divided into three parts (upper, middle and

lower), and then several areas (each 5×5 pixels) from each part

were detected to get the average spectral value. Totally 140

cucumber samples were collected, including 70 samples with

powdery mildew and 70 healthy samples.
Analysis of spectral data and modeling

The hyperspectral data of healthy or ill cucumber leaves were

preprocessed by Savitzky-Golay (SG) smoothing, disperse

wavelet transform, and move sliding window. The valid

spectra screened out from the original spectra were compared

to select the optimal preprocessing algorithm according to the
A

B

FIGURE 1

Hyperspectral imaging system. (A) Visible-near infrared hyperspectral equipment. (B) Visible-near infrared hyperspectral data acquisition.
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preprocessed spectral curves and coefficient of determination

(R2). The hyperspectral feature wavelengths were extracted and

discriminated by using stepwise discriminant analysis (SDA).

The feature images were processed analytically using gray

extraction and pseudo-color rendering.

The terahertz data were first comprehensively extracted, and

then a terahertz feature space was constructed by combining

iteratively variable subset optimization (IVSO) and iteratively

retaining informative variables (IRIV). A disease classification

and identification model was built using a sparse representation

classifier (SRC). The feature images were processed and analyzed

by referring to the hyperspectral processing algorithm.

Data processing and classification modeling were

accomplished on Matlab 2020a. Regression was conducted on

SPSS. Feature image extraction and analysis were finished on the

image processing software Python 3.8.
Results and discussion

Preprocessing of hyperspectral data and
terahertz data

The spectral preprocessing algorithm can be selected

according to the research target and spectrum type (Qin et al.,

2020). Owing to spectral errors induced by the external
Frontiers in Plant Science 04
environment or instruments, the collected data are often

mixed with random noises, which decrease the data accuracy.

Hence, spectra were preprocessed by SG smoothing, wavelet

transform, or move sliding window. These three algorithms were

compared by listing the processing results of a part of

samples (Figure 3).

On the spectral curves processed by SG 7-point smoothing

or 9-point smoothing, the strikes and shapes were similar to the

original images, but some parts were distorted after noise

processing, indicating noises were introduced there. Though

moving-window can filter a part of noises, the processed

curves are less disperse than the curves processed by wavelet

transform and become partially overlapped, even with sharp tips

in some of the data. As for disperse wavelet transform, the

processed spectra are smooth, showing evident peaks and

valleys, and the samples are not overlapped or concentrated

and reserve the original features and rules. Together with the

fitting in Table 1, the R2 of disperse wavelet transform is the

highest (0.9964 and 0.96882). In all, disperse wavelet transform

showed the best preprocessing effect and hence was adopted

before feature extraction to preprocess the data acquired

from cucumbers.

Different from hyperspectral data, the terahertz time-

domain spectra were stored in the form of comma separated

texts for each dot and background in single documents. Hence,

the data of single folders was comprehensively extracted. The
A

B

FIGURE 2

Terahertz time domain spectral system. (A) Terahertz experimental equipment. (B) Terahertz spectral data acquisition.
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terahertz data were synthesized by Pandas in Python 3.8, which

supports big data operation, into single documents for

subsequent processing.
Model building based on visible-near
hyperspectral features

The key problem of hyperspectral imaging is to extract

feature information from redundant spectral data and thereby
Frontiers in Plant Science 05
to decrease the time and resource costs in subsequent processing.

Hyperspectral data are located in a high-dimension space, and

the data in each band can be considered as a feature. Hence,

major subbands should be extracted from the spectral bands. In

this study, n (n<491) subimage cubes were extracted from totally

491 valid bands covering visible light and near-infrared light and

used as features.

SDA, a pattern recognition algorithm, is capable of

extracting valid features from redundant spectral data (Chai

et al., 2010). The cucumber leaf samples in the training set were

processed by SDA in visible light (401.91 to 773.95 nm) and

near-infrared light (1050 to 1703.40 nm). Finally, 9 visible light

feature bands at 401.91, 403.14, 411.75, 429.01, 452.51, 549.19,

567.55, 645, and 669.31 nm were obtained, which were marked

as R401.91, R403.14, R411.75, R429.01, R452.51, R549.19, R567.55, R645,

and R669.31 respectively (Figure 4A). Two near-infrared feature

bands at 1395.186 and 1626.012 nm were obtained, which were

marked as R1395.186 and R1626.012 respectively (Figure 4B).

With the feature band spectral parameters, the powdery

mildew samples and healthy samples were processed by distance

discriminant analysis, which led to the discriminative models in

Tables 2 and 3 respectively. Based on these linear discriminative
TABLE 1 Comparison of R-square (R2) after preprocessing.

Preprocessing R2 (401.9-
773.95nm)

R2 (1050.1-
1703.40nm)

7-point SG
smoothing

0.9871 0.9823

9-point SG
smoothing

0.9747 0.9761

wavelet transform 0.9964 0.9882

move sliding
window

0.993 0.9809
A B

D

E F

G

I

H

J

C

FIGURE 3

Spectral tlas of some cucumber disease amples under different preprocessing methods of hyperspectral data. (A) Visible original spectrum,
(B) Visible spectrum SG7 point smoothing, (C)Visible spectrum SG9 point smoothing, (D) Visible spectrum discrete wavelet transform, (E) Visible
spectrum moving window sliding, (F) Near infrared original spectrum, (G) Near infrared spectrum SG7 point smoothing, (H) Near infrared
spectrum SG9 point smoothing, (I) Near infrared spectrum discrete wavelet transform, (J) Near infrared spectrum moving window sliding.
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models, the samples in the training set were discriminatively

tested. The correct discriminating rates of cucumber powdery

mildew were 100% and 98% respectively (Tables 4 and 5).

However, since the discriminative models were based on the

training set, the identification effect may be exaggerated. For

model validation, 40 extra datasets of healthy or powdery

mildew cucumber samples were used as testing sets, and the

correct identification rates in model validation were 95% and

93% respectively (Tables 4 and 5).
Model building based on terahertz
spectral features

Like hyperspectra, the terahertz time-domain spectra also

contain feature bands that are highly correlated with crop

healthy and ill states. Herein, IVSO was used to reduce the

dimensions of the whole valid terahertz spectra, which resulted
Frontiers in Plant Science 06
in lower-dimension terahertz data that were highly correlated

with the healthy and ill statuses of cucumber crops. These data

were used into identification model establishment.

Before disease identification modeling, IVSO was used to

reduce the dimensions of the whole valid terahertz spectra, which

resulted in lower-dimension terahertz data that were highly

correlated with the healthy and ill statuses of cucumber crops.

These data were used into identification model establishment.

From the valid terahertz spectral datasets, IVSO was used for the

first time to screen out feature bands that were highly correlated the

healthy and ill states of cucumber (Yun et al., 2014). IVSOwas run

on Matlab. Before running, relevant parameters of IVSO were set.

The WBMS sampling times were set as the number of valid

terahertz wave bands (631), the cross-validation pattern was

default (10-fold), and the number of potential subset variables

was 10. Results of IVSO were shown in Figure 5.

Figures 5A, B illustrates the root mean square error of cross-

validation (RMSECV) of the partial least squares (PLS) model
A

B

FIGURE 4

Feature wavelength distribution. (A) Visible light. (B) Near infrared.
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during the running of IVSO, and the curve of terahertz subband

number changing with number of iterations, respectively.

Clearly, RMSECV declined rapidly during the first 3 iterations,

then minimized in the 8th iteration and gradually rose after that

(Figure 5A). This was because IVSO during early iterations can

remove abundant irrelevant variables and interfering variables.

The decreased number of variables during late iterations

mistakenly removed some useful variables, leading to the

gradual rise of RMSECV during late iterations. The results of

IVSO show the minimum RMSECV is 0.097, the optimal

number of iterations is 8, and the number of feature bands is

108. The number of valid bands drops by 82.88% from the initial

631 valid bands, and at this moment, the number of feature

dimensions is still large. Hence, IRIV was used to secondarily

screen the terahertz feature bands. Relative to the single use of

IRIV (Wang et al., 2015), the data at the terahertz feature bands
Frontiers in Plant Science 07
screened out by IVSO, IRIV, or IVSO-IRIV were used as the

training sets in PLS regression. The algorithm results of the

feature bands as-selected were evaluated using the RMSECV and

R2 of cross-validation. The number of feature bands in cucumber

samples decreases to 28, RMSECV declines to 0.087, and R2 rises

to 0.913 (Table 6), indicating modeling precision is improved

and the number of irrelevant variables is decreased.

Based on the feature bands as-screened, the distributions of

feature bands selected by IVSO, IRIV, and IVSO-IRIVwere plotted

(In Figure 6). Clearly, IVSO-IRIV effectively removed irrelevant

variables and interfering variables. The terahertz bands selected by

IVSO-IRIV are concentrated in 0.2-1.5 THz. After cucumber crops

are infected by powdery mildew, the internal components (e.g.

water, proteins, pigments) all will be altered to some extent. These

components in this wave band are correlated with the penetrating

ability of terahertz. Hence, from the feature bands selected by

IVSO-IRIV, feature images were extracted, and a Terahertz-based

disease identification model was built.

After the modeling, the processed data were inputted into the

sparsity and dictionary learning toolbox SPAMS of Maltab (Wang

and Cheng, 2020). A healthy model (positive samples) and an ill

model (negative samples) were built, forming two training sets. Two

redundant dictionary sets of the two training sets were constructed.

Then each type of samples in the training sets were used to build
TABLE 2 Discriminant model of cucumber powdery mildew.

Type Discriminant model (visible light)

Powdery
mildew

Y1 = 128.824+956.526×R401.91-1045.165×R403.14+175.970×R411.75+159.199×R429.01+101.282×R452.51+77.351×R549.19+764.589×R567.55+322.834×R645-
824.859×R669.31

Healthy Y2=-104.507+1477.119×R401.91-1627.834×R403.14+305.193×R411.75+110.316×R429.01+465.589×R452.51+507.035×R549.19+198.567×R567.55-623.447×R645

+37.900×R669.31
TABLE 3 Recognition model of cucumber powdery mildew in near
infrared band.

Type Discriminant model (near infrared)

Powdery mildew Y1 = -283.955-0.153× R1395.186+0.301×R1626.012

Healthy Y2 = -283.955-0.153× R1395.186+0.301×R1626.012
TABLE 4 Recognition results of cucumber powdery mildew (visible light).

Type Sample number Number of correct recognition Rate of correct recognition/%

Training set Test set Training set Test set Training set Test set

Powdery mildew 50 20 50 17 100 94

Healthy 50 20 50 18 100 96

Total 100 40 100 36 100 95
TABLE 5 Recognition results of cucumber powdery mildew (near infrared).

Type Sample number Number of correct recognition Rate of correct recognition/%

Training set Test set Training set Test set Training set Test set

Powdery mildew 50 20 48 16 98 92

Healthy 50 20 48 17 98 94

Total 100 40 100 36 98 93
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redundant sub-dictionaries, and thereby discriminative dictionaries

were built. Appropriate regularization parameter was chosen to

optimize the redundant dictionaries. Namely, the effects of the

regularization parameter on the models were evaluated using the

parameters of 10-fold cross- validation. The optimal regularization
Frontiers in Plant Science 08
parameter was determined to be 0.1. The sparse algorithms

included orthogonal matching pursuit (OMP) and accelerated

proximal gradient (APG). As l increased, the result of 10-fold

cross-validation decreased (Figure 7). This was because as the

regularization parameter increased, the dictionaries were more
FIGURE 6

Terahertz characteristic wavelength distribution.
A B

FIGURE 5

IVSO operation results. (A) RMSECV change curve in each iteration of cucumber sample. (B) THz band number change curve in each iteration of
cucumber sample.
TABLE 6 Comparison of model results for terahertz feature wavelength selection.

Type Algorithm RMSECV R2 Number of feature bands

Cucumber IVSO 0.097 0.895 108

IRIV 0.153 0.847 36

IVSO-IRIV 0.096 0.913 28
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sparse, and the number of relevant features declined, leading to the

drop of classification accuracy. For different regularization

algorithms, the identification accuracy of SRC models is 88.89%

and 87.78%.
Analysis of hyperspectral and terahertz
feature images

Due to the large number of feature bands, we selected visible

light band 669.31 nm and near-infrared band 1395.186 nm as

two examples to process and analyze cucumber powdery

mildew. Figures 8A-C shows the gray feature images at 669.31

nm of powdery mildew samples and healthy samples extracted

from the hyperspectral images. Ill areas can be identified from

the gray images, but the details are still insufficient. Thus, the

gray images can be reconstructed into pseudo-color images,

which can better identify more other details. Upon the infection

by crop diseases, the surface and interior of crops are damaged to

different degrees, and the optical reflection on crop surface also

differs. To more precisely extract the lesion areas, we

reconstituted the gray images of spectra into pseudo-color

images by using a density stratification method. Into the

hyperspectral extraction system built by Python, a transform

function was added, and the intervals were appointed as light

intensity distribution within 0-4096. With this method, pseudo-

color images containing more details were obtained. Finally,

pseudo-color images at visible light bands corresponding to

669.31 nm were obtained after image transformation

(Figures 8B-D). Based on analysis of distributive scales of light
Frontiers in Plant Science 09
intensity, the light intensity of lesion areas is distributed from

1000 to 1500, and that of healthy areas is distributed near 500.

Moreover, some tiny differences that cannot be distinguished by

human eyes on gray images are evident on the pseudo-color

images, so that the features in lesion areas can be interpreted

and extracted.

In Figure 9, with the same method, the features at near-

infrared band 1395.186 nm were extracted and reproduced into

pseudo-color images. Then distributions of healthy areas and

lesion areas at the same light intensity scales were plotted, which

returned more obvious features compared with the gray images.

Unlike the hyperspectral images, terahertz images have

higher signal-to-noise ratio. Generally, frequency- domain

amplitude imaging is adopted, and the signal value at a certain

frequency selected from a frequency domain with large signal-

to-noise ratio, and a frequency corresponding to the reference

signal are chosen, and their ratio is regarded as a pixel value. In

this way, the time-domain spectral data are converted by Fourier

transform into frequency-domain data, which are used into

imaging. Based on the designing clue of hyperspectral feature

extraction, the terahertz feature images were extracted and

plotted into images according to signal intensity. Finally,

cucumber powdery mildew gray images at 1.05 THz were

obtained (Figures 10A-C). The gray images demonstrate the

outlines of ill samples, but cannot fully display the details.

Therefore, given the advantages of false color images in

displaying details, we obtained false color images by using

frequency-domain intensity (Figures 10B-D). The gray images

demonstrate the features of cucumber powdery mildew and

tomato mosaic at the terahertz scale. However, the gray
FIGURE 7

Influence of regularization parameters on recognition accuracy.
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A B

DC

FIGURE 8

Characteristic images of visible light at 669.31nm: (A) Cucumber powdery mildew; pseudo-color images of (B) cucumber powdery mildew and
(D) healthy cucumber samples; (C) Healthy samples of cucumbers.
A B

DC

FIGURE 9

NIR characteristic images at 1395.186nm. (A) cucumber powdery mildew; pseudo-colour images of (B) cucumber powdery mildew and (D) healthy
cucumber samples; (C) Healthy samples of cucumbers.
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images are limited by low resolution and incomplete outlines

and details. On the contrary, the false color images can recover

the differences of crops in lesion areas and healthy areas

according to the intensity of colors.
Conclusions

The cucumber powdery mildew detection method based on

hyperspectra and terahertz spectra underlies the disease

detection in other facility crops. Starting from visible light and

near-infrared bands, firstly wavelet transform was selected to be

the optimal preprocessing algorithm. Then SDA was chosen to

screen out feature wavelengths and to build detection models. As

a result, the feature wavelengths under whole bands were

obtained to constitute a feature space, and thereby linear

discriminative models were established. The linear

discriminative models were validated using the testing sets,

and the recognition rate of cucumber powdery mildew was

93%. Based on terahertz time-domain spectroscopy, terahertz

data were comprehensively preprocessed on Python, which

improved the efficiency of subsequent data analysis. The

terahertz feature space construction by IVSO-IRIV was

determined, and SRC was tested. Thereby, an SRC model of

cucumber powdery mildew was set up. Then the optimal

regularization parameter was selected, and the effects of two

regularization algorithms (OMP and APG) on model
Frontiers in Plant Science 11
performances were compared. According to the evaluation

criteria of disaggregated models, the identification accuracy of

cucumber powdery mildew at the terahertz scale was 87.78%.

Based on feature bands, a simple feature extraction system was

established and used to uncover more details from the

hyperspectral and terahertz feature images. In the future, the

sample space should be enlarged, and more-precise

identification models and multi-information fusion algorithms

should be studied.
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FIGURE 10

Terahertz characteristic images of cucumber powdery mildew: Feature grayscale images of (A) Sample 1 and (C) Sample 2; pseudo-colour
rendering of (B) Sample 1 and (D) Sample 2.
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