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Improving grain yield potential in rice is an important step toward addressing global food security challenges. The meta-QTL analysis offers stable and robust QTLs irrespective of the genetic background of mapping populations and phenotype environment and effectively narrows confidence intervals (CI) for candidate gene (CG) mining and marker-assisted selection improvement. To achieve these aims, a comprehensive bibliographic search for grain yield traits (spikelet fertility, number of grains per panicle, panicles number per plant, and 1000-grain weight) QTLs was conducted, and 462 QTLs were retrieved from 47 independent QTL research published between 2002 and 2022. QTL projection was performed using a reference map with a cumulative length of 2,945.67 cM, and MQTL analysis was conducted on 313 QTLs. Consequently, a total of 62 MQTLs were identified with reduced mean CI (up to 3.40 fold) compared to the mean CI of original QTLs. However, 10 of these MQTLs harbored at least six of the initial QTLs from diverse genetic backgrounds and environments and were considered the most stable and robust MQTLs. Also, MQTLs were compared with GWAS studies and resulted in the identification of 16 common significant loci modulating the evaluated traits. Gene annotation, gene ontology (GO) enrichment, and RNA-seq analyses of chromosome regions of the stable MQTLs detected 52 potential CGs including those that have been cloned in previous studies. These genes encode proteins known to be involved in regulating grain yield including cytochrome P450, zinc fingers, MADs-box, AP2/ERF domain, F-box, ubiquitin ligase domain protein, homeobox domain, DEAD-box ATP domain, and U-box domain. This study provides the framework for molecular dissection of grain yield in rice. Moreover, the MQTLs and CGs identified could be useful for fine mapping, gene cloning, and marker-assisted selection to improve rice productivity.
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Introduction

Rice is an important cereal crop and provides over 21% of caloric intake for more than half of the global population (Zhang et al., 2014; Vishnukiran et al., 2020; Zhao et al., 2020). Rapid population growth remains a major threat to food security worldwide, thus there is a need to augment efforts to increase the yield potential of rice. Spikelet fertility, panicle number per plant, number of grains per panicle, and thousand-grain weight are key indicators of grain yield and continue to be major targets in breeding programs (Sakamoto and Matsuoka, 2008; Huang et al., 2013; Li et al., 2019). Grain yield is quantitatively inherited and controlled by multiple loci (genes) (Xing and Zhang, 2010; Bai et al., 2012); therefore, it is imperative to ascertain the genetic bases of grain yield to boost rice productivity. With the advancement of QTL mapping, breeders have been able to identify genomic regions influencing complex agronomic traits (Daware et al., 2017) and have expedited the process of improving quantitative traits through marker-assisted selection (Zhang et al., 2010). However, the application of QTLs by breeders in a broader spectrum has major setbacks due to the genetic background of the populations used in QTL mapping and phenotype environment (Arcade et al., 2004; Daware et al., 2017). Therefore, a comprehensive analysis of identified QTLs is required to make these QTLs applicable in rice breeding and to decipher the underlying genetic factors conferring grain yield. Essentially, QTL meta-analysis has been shown to be a reliable and effective instrument (Goffinet and Gerber, 2000).

An integrated meta-QTL analysis uses QTLs from independent trials regardless of their genetic backgrounds, cross types/parents, size of populations, years, and locations to identify consensus QTLs (Goffinet and Gerber, 2000; Arcade et al., 2004; Sosnowski et al., 2012). This approach has been evidenced to reliably refine QTLs location and narrow confidence intervals (CI) which enhance the precision of marker-assisted selection (MAS) and discovery of candidate genes (Martinez et al., 2016; Zhang et al., 2017). Furthermore, a meta-analysis of QTLs attempts to clarify if QTLs encompassing different loci from different studies are the same loci or if they represent the same position on a linkage map of species under study. To date, numerous MQTLs for important agronomic traits have been identified in different crops such as wheat (Acuña-Galindo et al., 2015; Darzi-Ramandi et al., 2017; Soriano and Alvaro, 2019; Liu et al., 2020; Saini et al., 2021; Amo and Soriano, 2022; Miao et al., 2022; Saini et al., 2022; Yang et al., 2021), soybean (Zhao-Ming et al., 2011; Hwang et al., 2016; Qin et al., 2018), maize (Semagn et al., 2013; Wang et al., 2013; Martinez et al., 2016; Chen et al., 2017; Zhao et al., 2018; Kaur et al., 2021), barley (Zhang et al., 2017; Khahani et al., 2019), peanut (Lu et al., 2018), and sorghum (Aquib and Nafis, 2021). However, reports on Meta-QTLs for grain yield in rice under field conditions are limited. More so, the understanding of the molecular basis of QTLs/genes controlling grain yield is insufficient. Sandhu et al. (2021) detected 76 MQTLs governing grain number per panicle, spikelet fertility, and panicle number per plant on 29 QTL studies published from 2000 to 2022. Also, Wu et al. (2016) reported ten MQTLs associated with spikelet fertility on 82 QTL studies from 1996 to 2013. In another study, Khahani et al. (2021) integrated 101 studies in rice and confined these QTLs to meta-QTLs with reduced confidence intervals for use in MAS and discovered candidate genes for future functional validation.

This study performed a comprehensive meta-QTL analysis examining QTLs for spikelet fertility (SF), panicle number per plant (PN), grain number per panicle (GNP), and 1000-grain weight retrieved from 47 QTL studies published between 2002 and 2022 in 101 biparental populations evaluated across diverse environments and under field condition. The main objective of this study was to conduct meta-QTL analysis and identify stable and robust MQTLs and candidate genes (CGs) to aid rice breeding through MAS and enhance molecular dissection of grain yield targeted at improving the yield potential of rice.



Materials and methods

To enhance understanding, a schematic flow chart has been drawn and presented in Figure 1, which illustrates the approach adopted in executing this study. Further description of these steps is as ensued:




Figure 1 | Schematic work flow and the result of the present study.




Literature review and data collection on QTLs

A comprehensive bibliographic survey for QTLs associated with spikelet fertility (SF), grain number per panicle (GNP), number of panicles per plant (PN), and thousand-grain weight (TGW) published from 2002 to 2022 was conducted using Google Scholar (https://scholar.google.com/), PubMed (http://www.ncbi.nlm.nih.gov/pubmed), and Gramene QTL database platform (http://archive.gramene.org/qtl/) (Table 1 and Supplementary Table 1). The information gathered in each study during QTL compilation was as ensued: (i) Linked markers of individual QTLs, (ii) Position (cM) of QTLs on genetic map, (iii) size and type of mapping population, (iv) phenotypic variance explained (R2) value of each QTLs, and (v) LOD scores of individual QTLs. The original identities of all QTLs were maintained for ease of analysis.


Table 1 | Summary of QTL studies utilized for meta-QTL analysis.





Consensus map construction and QTL projection

The LPMerge in R package programming was used to build the reference map (Endelman and Plomion, 2014). The most comprehensive and high-density genetic map with different marker types developed by Wu et al. (2016) was selected. Further, some of the markers flanking the QTLs reported in individual studies were also incorporated into the reference map. The marker names were checked to ensure consistency and avoid duplication on the consensus map. The initial QTLs were projected using BioMercator v4.2.3 software (Sosnowski et al., 2012) (https://versailles.inra.fr/Tools/BioMercator-v4) based on the approach described in (Chardon et al., 2004). Before QTL projection, 95% confidence interval (CI) was determined using the following formulas:

	

	

	

for backcross (BC) and F2, double haploid (DH), and recombinant inbred line (RIL), where N represents the size of the mapping population and R2 is the phenotypic variance explained by individual QTLs (Darvasi and Soller, 1997; Guo et al., 2006). 3% and 10% were used for QTLs that lack LOD scores and R2 values. All QTLs with adequate information required by the software were projected onto the consensus/reference map.



Analysis of meta-quantitative trait loci (MQTLs)

Analysis of Meta-QTL was performed using BioMercator v4.2.3 (Sosnowski et al., 2012). For analysis, two approaches were used, considering the amount of QTLs in each chromosome. When the number of QTLs on each chromosome is ≤ 10, the method reported by Goffinet and Gerber (2000) was used; if the number of QTLs on each chromosome is greater than 10, the method proposed by Veyrieras et al. (2007) was utilized. Firstly, the lowest Akaike information criterion (AIC) value was selected as the best fit model. Secondly, the best fit model was considered significant in identifying MQTL from the following: AIC3, AIC, Bayesian information criterion (BIC), average weight of evidence (AWE), and corrected AIC. Based on the five criteria, the lowest value was selected to obtain MQTLs with their respective genetic positions (cM), confidence intervals (CI), and percent membership of initial QTLs to each MQTL. Using Rice SNP-seek database, all MQTLs identified in this study were verified with Genome-wide Association study results related to the studied traits (Mansueto et al., 2017). The naming of MQTL was based on their positions on the chromosome (i.e. MQTL1.1, MQTL1.2, and MQTL1.3).



Candidate Gene (CG) excavation within the most stable MQTLs interval

To explore functional genes modulating the evaluated traits, the flanking marker sequences were employed to determine the genomic positions of MQTLs in this study. Essentially, the MQTLs with at least 6 of the initial QTLs clusters were selected as the most robust and stable MQTLs. The Gramene database (https://archive.gramene.org/markers/) and available literature were used to retrieve flanking marker sequences of the robust MQTLs. Phytozome v13 was used to blast the sequences against the rice reference genome version 7.0 (Oryza sativa v7.0) to obtain the physical positions of stable MQTLs. All model genes were extracted from the physical intervals of the stable and robust MQTLs using the rice genome annotation project database (https://rice.uga.edu/cgi-bin/gbrowse/rice/) and annotated using (http://www.ricedata.cn, https://rice.uga.edu/cgi-bin/gbrowse/rice/, http://shigen.nig.ac/jp/rice/oryzabase/, and https://rapdb.dna.affrc.go.jp/).



Functional analysis of candidate genes

GENEDENOVO cloud platform (https://www.omicshare.com/tools/) was used to perform gene ontology (GO) enrichment analysis. The protein-protein interaction network was predicted using STRING (Szklarczyk et al., 2019). Based on the annotation information of significant CGs enriched by Gene ontology (GO) analysis, the CGs in each MQTLs with known proteins associated with grain yield were selected. In silico expression analysis was performed for these CGs using RNA-Seq gene expression data (Kawahara et al., 2013). A heatmap was constructed to visualize the expression of CGs using Morpheus online tool (https://software.broadinstitute.org/morpheus/).




Results


Major features of QTLs used in the meta-analysis

To unravel consensus chromosomal regions related to rice grain yield, we compiled QTL information on 462 QTLs obtained from 47 independent QTL studies (Table 1 and Supplementary Table 1). The population type consisted of RIL (26), BC (11), F2 (9), and DH (1) with the mapping population size ranging from 24 to 472 (Table 1). The 462 QTLs were unequally distributed on all chromosomes (Figure 2A). A total of 197 QTLs were found on chromosomes 1, 3, and 5, followed by 47 QTLs on chromosome 2 and 48 QTLs on chromosome 6. The least QTLs (17 QTLs) were concentrated on Chr 8. Among the studied traits reported, TGW had the greatest number of QTL (179 QTL) followed by SF (127 QTL), GNP (85), and PN (71) (Figure 2B). Notably, most of the traits were enclosed in Chr 3, Chr 5, and Chr 6 (Figure 2B). QTLs explained between 0.03% and 52.0% of the phenotypic variance (PVE or R2), with an average of 8.52%. In total, 67.53% of the initial QTLs showed PVE<10%, indicating that individual QTLs explained only a small proportion of phenotype variation (Figure 2C). This result indicates that grain yield appears to be mostly controlled by loci with minor genetic effects and complex genetic architecture. For each QTL, LOD score ranged from 0.00 to 210.50, with an average of 10.09. The distribution of LOD scores of individual QTLs is presented in Figure 2D.




Figure 2 | Basic features of the QTLs. (A) Distribution of initial QTLs and the QTLs projected. (B) Trait-wise distribution of QTLs on the 12 chromosomes of rice. (C) PVE or R2 (%) of initial QTLs. (D) LOD scores of initial QTL involved in MQTLs.





Consensus map of rice

The consensus map consisted of 7,050 markers (Figure 3) which comprised SNP, SSR, RFLPs, STS, RAPDs, ALFPs, MITEs, FNP, SLAF, SSLP, and InDels. Also, genes such as Grh, Prp2, Pox5, Pla1, Rpr2, W1, and cen1 were included in the reference map. The consensus/reference map had a cumulative map length of 2,945.67 cM with a genetic distance of individual chromosomes ranging from 144.00 cM to 383.80 cM (Supplementary Table 2). The mean marker densities per chromosome ranged from 7.25 cM to 21.49 cM and 13.10 cM for the whole genome. The highest number of markers were found on Chr 1 (972 markers) followed by Chr 3 (835 markers) and Chr 2 (733 markers) (Figure 3). However, Chr 10 harbored the lowest number of markers (328 markers) on the reference map.




Figure 3 | Distribution of markers on the consensus map utilized for meta-analysis of QTLs. The number of loci mapped on individual rice chromosome is shown.





QTL projection and analysis of meta-QTL

Of the total 462 QTLs available, only 313 QTLs could be successfully projected onto the reference map; the remaining 149 QTLs could not be projected due to inadequate information required for the QTL projection. The MQTL analysis refined the projected QTLs (313 QTLs) to 62 MQTLs (Figure 4 and Table 2). There was an uneven distribution of MQTLs on the rice chromosome. MQTLs on each chromosome ranged from two (Chr 8) to nine (Chr 3) with an average of 5.16 MQTLs per chromosome. The projection yielded the detection of 62 MQTLs, which involved 232 QTLs (Table 2 and Figure 4); the remaining 81 QTLs could not be allocated to any of the MQTLs partly due to lack of associated markers on the reference map and initial maps, low phenotypic variance explained by individual QTLs, relatively low LOD score values, and large confidence interval (CI), respectively.




Figure 4 | Distribution of MQTLs for grain yield traits on the 12 chromosomes of rice. Different colors on the left side of the maps indicate the initial QTLs involved in MQTLs.




Table 2 | Summary of meta-QTLs identified in this study.



The explained phenotypic variation by each MQTL identified ranged from 0.09% to 27.6% with a mean PVE (%) of 9.26% (Table 2). Individual MQTLs differed markedly for many traits modulating MQTL (Table 2). The MQTLs association with studied traits varied markedly from a solitary trait controlled by MQTL1.2 to 14 traits regulated by MQTL3.5 (Figure 5A). Out of 62 MQTLs, 50 MQTLs were related to at least two QTLs (controlling more than two different traits) from different mapping populations and genetic backgrounds. This result showed significant co-localization of chromosome regions regulating grain yield in rice. A total of 7 MQTLs (MQTL1.1, MQTL2.6, MQTL4.2, MQTL5.5, MQTL6.3, MQTL10.2, and MQTL12.2) were identified to contain more than six QTLs (Table 2). The 3 MQTLs (MQTL3.5, MQTL5.2, and MQTL8.2) were detected to contain more than 10 QTLs. However, 12 MQTLs (MQTL1.1, MQTL1.4, MQTL1.8, MQTL2.1, MQTL4.4, MQTL5.4, MQTL6.4, MQTL7.3, MQTL8.1, MQTL9.1, MQTL9.4, and MQTL12.1) were reported to harbor a single initial QTL governing spikelet fertility, thousand-grain weight, and grain number per panicle. Interestingly, none of the MQTLs showed overlapped regions in this study.




Figure 5 | Basic information of MQTLs identified in this study. (A) Frequency of MQTLs and the number of initial QTLs involved. (B) Comparison of CI of initial QTLs and MQTLs, exhibiting fold reduction in CI of initial QTLs and MQTLs.



The mean confidence interval of the MQTLs showed a markedly significant reduction (3.40 fold) compared to the CI of the initial QTLs (Figure 5B). The CI of initial QTLs ranged from 0.60 cM to 112.29 cM with a mean CI of 18.03. The CI of the reported MQTLs ranged from 0.24 cM to 29.45 cM with a mean CI of 10.91 cM. The average CI of MQTLs per chromosome showed a narrow CI ranging from 3.29 cM to 9.58 cM compared to the CI of initial QTLs which showed a wider CI ranging from 11.32 cM to 30.59 cM (Figure 5B), respectively. The fold reduction (average) in the size of CI of MQTLs was highest for Chr 8 (7.42 fold) followed by Chr 9 (4.76 fold); Chr 2 (1.80 fold) recorded the lowest fold reduction in the size of CI of MQTLs (Figure 5B).



Validation of MQTLs with GWAS

To check the efficacy of identified MQTLs, the physical position of all MQTLs was compared with the GWAS results available on Rice SNP-seek database. Consequently, 16 MQTLs co-located with SNP peak loci in rice GWAS for 1000-grain weight and spikelet fertility traits (Supplementary Figure 1). Among the 16 MQTLs, only two MQTLs (MQTL3.2 and MQTL3.5) were co-located with GWAS signals for both 1000-grain weight and spikelet fertility. This indicates the coherence of the two methods in identifying common chromosome regions associated with the studied traits.



Candidate gene mining of the most stable and robust MQTLs

To identify potential CGs in the MQTLs regions, MQTLs that harbored at least six of the initial QTL clusters were selected as the most stable and robust MQTLs. Based on this, 10 of the 62 MQTLs were selected. However, CGs could not be extracted in the two MQTL intervals due to the unavailability of flanking marker sequences. A total of 2,030 putative CGs underlying 8 MQTLs regions were identified including 321 genes of unknown function (Supplementary Table 3). There were numerous genes and/or gene families with related functions in various MQTL intervals (Figure 6) which included: 69 F-box-like domain, 15 AP2/ERF domain, 2 U-box domain protein, 8 ABC transporter-like, 4 MADs-Box domain-containing protein, 31 DUF domain proteins, 49 zinc finger domain-containing protein, 18 MYB family protein, 1 sugar transporter, 17 cytochrome P450, 1 Lysm domain-containing protein, 20 pentatricopeptide repeat protein family, 4 protein phosphatase 2C family, 21 ubiquitin ligase domain protein, 22 auxin-response family protein, 5 DEAD-box-ATP families, 27 receptor-like kinase/OsWAK family, 1 PHD finger protein, 4 UDP-glucose pyrophosphorylase protein, and 8 homeobox domain-containing protein (Figure 6). These genes were chosen for more detailed study on the basis that they encoded proteins directly associated with grain yield. Clusters of genes with similar functions were also identified in some MQTL regions which included: (i) F-box protein, (ii) prolamin precursor, expressed, (iii) ubiquitin carboxyl-terminal hydrolase, family 1, (iv) retrotransposons, and (v) zinc fingers (Supplementary Table 3).




Figure 6 | Frequency of candidate genes encoding known protein families related to grain yield of rice.





Gene Ontology (GO) and expression of CGs

Based on the GO enrichment analysis, 1,139 out of 2,030 CGs were annotated of which 34 GO terms were significantly enriched (Figure 7). Out of the 34 GO terms, 13, 10, and 11 GO terms were significantly enriched in biological process, cellular component, and molecular function, respectively. The most enriched GO terms in the biological process category were: metabolic process, cellular process, and single-organism process. For the cellular component, the most enriched GO terms were: cell, cell part, organelle, and membrane. High percentages of genes were enriched in the molecular process category which included binding and catalytic activity (Figure 7). These results indicate the significant association of these terms with grain yield in rice. The CGs significantly enriched during GO analysis were further subjected to protein-protein interaction to predict their relationships. Based on the analysis, six key interactions were determined, including an interaction between LOC_Os04g43410 and 109 genes, LOC_Os04g43380 and 101 genes, LOC_Os02g56130 and 43 genes, LOC_Os01g13520 and 33 genes, LOC_Os02g55410 and 29 genes, and LOC_Os12g26060 and 25 genes (Figure 8), respectively.




Figure 7 | Level 2 Gene ontology (GO) terms for CGs in the most stable and robust MQTLs intervals.






Figure 8 | Protein-protein interaction of significant candidate genes regulating grain yield.



To discover potential CGs underlying the promising MQTLs genomic regions, we focused on CGs which encode proteins associated with grain yield in rice (Figure 6). A total of 327 CGs were identified to belong to the above proteins. Moreover, the RNA-seq data of genes that is publicly available on the rice genome annotation project database were employed to heatmap the expression of the CGs in pre-emergence inflorescence, post-emergence inflorescence, anther, pistil, seed 10DAP, embryo, seed 5DAP, endosperm, and shoot (Figure 9). Based on the heatmap, 52 of the 327 genes showed high fold change expression in anther, pistil, seed, embryo, and inflorescence (Figure 9 and Table 3); hence, they could be grain yield regulatory genes. The MQTL1.1 possessed the highest number of potential CGs followed by MQTL4.2, MQTL2.6, MQTL5.5, MQTL5.2, and MQTL12.2. However, MQTL3.5 and MQTL10.2 had the lowest number of genes with high expression in yield-related tissues (Table 3).




Figure 9 | Expression profile of significant proteins encoded by 176 candidate genes underlying the following 8 MQTLs regions: MQTL1.1, MQTL2.6, MQTL3.5, MQTL4.2, MQTL5.2, MQTL5.5, MQTL10.2, and MQTL12.2.




Table 3 | Annotation of potential candidate genes underlying Meta-QTL regions.






Discussion

Increasing the productivity of rice is one of the foremost constraints rice breeders face to ensure adequate food supply to a rapidly growing global population. Most important agronomic traits such as spikelet fertility, number of grains per panicle, panicle number per plant, and thousand-grain weight are complex and modulated by numerous polygenic loci. Over the years, the success in the introgression of QTLs in breeding programs by marker-assisted selection has been slow due to inconsistency in QTL genetic backgrounds and phenotype environment. Integration of QTLs information from diverse independent studies and exploiting meta-analysis to identify MQTL regions has proven to be an ideal approach to accelerating QTLs fine mapping and gene cloning (Wang et al., 2013; Wang et al., 2015; Martinez et al., 2016; Wu et al., 2016; Chen et al., 2017).

To decipher the molecular mechanism underlying grain yield, MQTL analysis was conducted based on the QTLs conferring grain yield collected from previous independent studies. The initial step in the meta-analysis of QTL is the QTL projection onto the reference map. A characteristics of the reference map utilized in the current study showed that the highest marker saturation was reported on chromosome 1 followed by chromosomes 3 and 2 with the lowest marker density found on chromosome 10. Individual chromosomes had uneven marker distribution, and the density of markers at either end of the chromosome differed. This is primarily due to the use of independent genetic maps with different marker types and number of markers. Interestingly, similar cases have been reported in earlier studies on meta-analysis of QTLs (Venske et al., 2019; Liu et al., 2020; Saini et al., 2021; Yang et al., 2021; Saini et al., 2022). More so, the QTLs investigated were not evenly distributed across the entire rice chromosomes. Chromosomes 1, 2, 3, and 5 reported the highest number of QTLs which is consistent with the previous studies (Xing and Zhang, 2010; Swamy and Sarla, 2011; Swamy et al., 2011; Wu et al., 2016; Khahani et al., 2020). However, chromosomes 8, 9, and 10 reported the lowest number of QTLs. The possible reason for this phenomenon could be the low level of polymorphism associated with these chromosomes. Out of the total QTLs projected, only 32.47% constitute PVE >10%, indicating that the individual QTLs contributed very little to phenotypic variability. This shows that grain yield is primarily determined by minor effects loci, representing a complex genetic architecture.

The MQTL analysis identifies stable and robust QTLs irrespective of the genetic background of mapping population, phenotype environment, and marker density which are the main constraints of QTL mapping (Arcade et al., 2004; Zhang et al., 2010; Daware et al., 2017; Bilgrami et al., 2018; Khahani et al., 2019). Further, association mapping approach has also been shown as an alternative instrument with better accuracy compared to QTL mapping of complex agronomic traits (Daware et al., 2017). However, this method faces remarkable false positive outcomes because of the population structure employed in the analysis (Daware et al., 2017). Owing to this, analysis of MQTL is regarded as the most reliable approach for detection of stable loci modulating quantitative traits. In this study, a total of 313 QTLs were confined into 62 MQTLs across the 12 chromosomes for the evaluated traits. Chromosome 3 reported the highest number of MQTLs (9 MQTLs) and the least MQTL were located on chromosome 8 (2 MQTLs). Intriguingly, our findings corroborate with a previous study on MQTLs in rice (Khahani et al., 2021). More than 80% (50/62) of MQTLs harbored at least two of the initial QTLs. Furthermore, some of the MQTLs contained as high as 10 initial QTLs exhibiting MQTLs robustness. The reference map developed and utilized in this study is much more informative compared to those employed in the previous studies (Wu et al., 2016; Khahani et al., 2020; Khahani et al., 2021). We also found that six out of the total MQTLs identified had common genomic positions with previously reported MQTLs (Wu et al., 2016; Sandhu et al., 2021). This includes regions on chromosomes 2 (MQTL2.3), 4 (MQTL4.1, MQTL4.2), 7 (MQTL7.2), 9 (MQTL9.1), and 12 (MQTL12.1). It is worth noting that, the average confidence interval of MQTLs remarkably reduced up to 3.4 folds times compared to the confidence interval of original QTLs. Our study clearly shows that the meta-analysis is effective in locating consensus and exact QTLs. Previous studies on meta-analysis in wheat, rice, maize, soybean, and cotton, reported 10% to 21% reduction in the total QTLs with two to four times reduction in the average confidence interval of original QTLs (Guo et al., 2006; Rong et al., 2007; Ballini et al., 2008; Courtois et al., 2009; Lanaud et al., 2009; Löffler, 2009; Khahani et al., 2020). MQTLs identified were compared with GWAS studies via the Rice SNP-seek database which led to the identification of common significant regions. Consequently, 16 (25.81%) important GWAS peaks for spikelet fertility (SF) and 1000-grain weight (TGW) were co-located with our MQTLs. Our results demonstrate the coherence of the two approaches in pinpointing common loci associated with the studied traits. However, there are also reports which contradict the result in the present study with 63%, 61.3% and 38.66% MQTLs validated with GWAS (Yang et al., 2021; Amo and Soriano, 2022; Saini et al., 2022). These phenomena may be ascribed to the material utilized for initial QTL mapping (finally used for MQTL analysis) and GWAS.

Identification of underlying genes in genomic regions of major QTLs is of great interest in breeding programs. More so, MQTLs with narrow and precise physical regions are beneficial in candidate gene mining. According to Kaur et al. (2021), MQTLs with 5-8 initial QTL clusters with moderately high R2 values could be considered important for mining candidate genes. The genes present in the 8 MQTLs regions were analyzed using rice databases (http://www.ricedata.cn, http://shigen.nig.ac/jp/rice/oryzabase/, and http://rice.uga.edu.cgi-bin/gbrowse/rice). We identified 2,030 genes and as many as 327 genes were found to encode proteins (sugar transporters, PPR repeat-containing protein-like genes, cytochrome P450, zinc fingers, F-box genes, PP2C family, MADs-Box domain-containing protein, AP2 domain-containing protein, and cytokinase oxidase genes) associated with yield (Wu et al., 2016; Chen et al., 2020; Jiang et al., 2022).

Several genes of unknown functions were also found in stable MQTLs intervals; further study is necessary to explore the functional role of those genes in regulating grain yield. A bioinformatics pipeline implementing the genomic sequences of stable MQTLs was used to identify potential candidate genes. These pipelines involved three steps, thus retrieving candidate genes from rice genome project annotation database, visualizing the molecular function of candidate genes by GO enrichment analysis, and implying candidate genes in rice yield-related tissues based on their expression pattern. Consequently, 52 genes were considered potential candidate genes (Table 3). Most of the identified candidate genes are associated with the terms of binding, catalytic activity, cell, cell part, cellular, and metabolic process. These terms have functions related to yield (Mao et al., 2010; Li and Li, 2014; Elattar et al., 2021). In the stable MQTL regions, most of the candidate genes encode zinc finger family protein, ubiquitin ligase domain-containing protein, auxin-responsive gene family, AP2 domain-containing protein, cytochrome P450, receptor-like kinase protein, and MADs-box family protein. Furthermore, zinc fingers have been reported to play a vital role in plant growth, development, and response to abiotic stresses (Li et al., 2013). For instance, a zinc finger protein DST regulates the expression of OsCKX2 and increases cytokinin level in reproductive shoot apical meristem, which in turn elevates meristem activity, panicle branching, and increased grain number (Li et al., 2013). Similarly, DHHC-zinc finger protein gene has been reported to regulate plant architecture and grain yield (Zhou et al., 2017). AP2 domain-containing proteins have been reported to play essential roles in regulating plant growth and development. Overexpression of OsAP2-39 decreased biomass and grain yield in transgenic lines of rice (Yaish et al., 2010). Overexpression of OsIAA10 (auxin-responsive gene in MQTL2.6) was reported to increase rice susceptibility to rice dwarf virus (Jin et al., 2016; Qin et al., 2020). One reported gene, OsBIHD1 (encodes homeodomain protein, putative, expressed) was found in MQTL3.5. Overexpression of OsBIHD1 revealed an increased salt sensitivity and oxidative stress in rice (Luo et al., 2005). In addition, a clone gene Oshox22 (encodes homeobox associated leucine zipper, putative, expressed) was identified in MQTL4.2. Overexpression of Oshox22 increased ABA sensitivity and reduced salt drought and stress tolerance (Zhang et al., 2012).

In MQTL5.2 lies two reported genes, RSR1 and OsAPIP6. The overexpression of RSR1 resulted in the change of amylopectin and starch gelatinization (Fu and Xue, 2010). OsAPIP6 interacted with AvrPiz-t in vitro and reduced flg22-induced ROS generation, suppressed defense gene expression, and increased rice plant susceptibility to M. Oryza (Park et al., 2012). We also found two reported genes, OsPUB44 (encodes U-box domain-containing protein, expressed) and OsMADS4 (encodes MADS-box family gene with MIKCc type-box) in MQTL5.5. OsPUB44 positively control immune responses of rice plant to bacterial blight (Ishikawa et al., 2014). In another study, U-box domain family protein has been reported to play a vital role in rice pollen development (Chen et al., 2019). A mutant of OsPUB73 (U-box domain protein) showed low pollen fertility suggesting that OsPUB73 was responsible for pollen exine or tapetal development and led to pollen partial sterility (Chen et al., 2019). The genes, OsMADS4 interacted with rice AP3 orthologs SPW1 and facilitate stamen and lodicule development (Yao et al., 2008). In previous studies, MADs box genes have been implicated to modulate stamen development in rice (Yamaguchi et al., 2006; Hu et al., 2011; Yan et al., 2015; Wei et al., 2019), arabidopsis (Ito et al., 2004; Ito et al., 2007), and maize (Schreiber et al., 2004). Two genes, CYP94C2b (cytochrome P450, putative, expressed) and OsARF24 (auxin response factor, putative, expressed) underlie MQTL 12.2 have been reported to enhance salt tolerance in rice (Li et al., 2014) and control cell growth (Kurotani et al., 2015).



Conclusion

In the present study, we integrated QTLs conferring spikelet fertility, panicle number per plant, thousand-grain weight, and number of grains per panicle which led to the identification of 62 MQTLs. 16 of these MQTLs were successfully verified with GWAS studies on the studied traits. 10 MQTLs that harbored at least six of the initial QTLs were selected as the most stable and robust chromosome regions to mine CGs and positional cloning that could be useful for breeding programs. Based on the bioinformatics pipelines, 52 potential CGs were identified to be associated with grain yield. The high expression of these genes was evidenced in yield-related tissues and maybe grain yield regulatory genes. This study provides a useful framework for genetic dissection of grain yield under unstressed conditions via positional cloning, fine mapping, and CGs validation by gene editing technique. The remaining novel CGs detected in this study could be validated or functionally characterized via gene editing, overexpression, knockout techniques, and candidate gene-based association mapping to ascertain their roles in regulating grain yield in future studies.
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OEBPS/Images/table2.jpg
MQTLs Chr Position (cM) Flanking markers No. of QTLs No. of Trait Traits (avg. PVE)"

MQTLL.1 1 46.48 RM6324-C11461 8 3 SE,GNP,TGW (11.09)
MQTL1.2 1 62.9 GNMS$3879-RM583 1 1 GNP (27.6)
MQTL1.3 1 84.25 RM600-RM572 2 2 SETGW (4.94)
MQTL1.4 1 1168 RM23-RM24 1 1 SF (4.8)

MQTLL5 1 176.13 TPI1E3B-RM3143 4 2 GNP,TGW (9.03)
MQTLL6 1 199.86 C10980S-C1162 3 3 SETGW (16.05)
MQTL1.7 1 224 C1162-RM212 4 2 SETGW (5.81)
MQTLL8 1 257.89 G54-RM5310 1 1 SF (0.09)

MQTL2.1 2 219 C60318SC-RRH02_2 1 1 GNP (18.22)
MQTL2.2 2 27.14 RM6911-RM324 5 2 PN, TGW (7.85)
MQTL2.3 2 65.83 $20660A-RG157 3 1 TGW (8.53)
MQTL2.4 2 118.36 €920-L107 3 1 SF (4.73)

MQTL2.5 2 145.51 Rf2-RM240 4 3 SE,GNP,TGW (11.35)
MQTL2.6 2 161.74 Y8007R-RM208 7 3 SE,GNP,TGW (7.87)
MQTL3.1 3 57.62 RM5474-GNMS3875 4 3 SE,GNP,TGW (0.86)
MQTL3.2 3 1153 RM254-GNMS1140 4 2 SETGW (12.8)
MQTL3.3 3 153.71 GS3-RM15283 3 2 SETGW (11.38)
MQTL3.4 3 191.94 RM6681-RM426 4 1 TGW (17.11)
MQTL3.5 3 197.49 RM426-510742 14 4 SE,GNP,PN,TGW (10.52
MQTL3.6 3 205.15 $10742-RM468 2 1 TGW (23.7)
MQTL3.7 3 224.72 RM200-510057A 4 2 SETGW (8.41)
MQTL3.8 3 253.74 WI1871A-R689 5 2 SETGW (6.9)
MQTL3.9 3 258.92 R689-S13122 5 3 SF,GNP,TGW (12.13)
MQTL4.1 4 30.25 RM6314-RM2536 2 1 SF (114)

MQTL4.2 4 130.54 RM273-RG776A 7 3 SE,GNP,TGW (8.89)
MQTL4.3 4 143.05 RG776A-Prp2 2 1 GNP (11.13)
MQTL4.4 4 160.52 PSM115-RM5709 1 1 SF (0.19)

MQTL4.5 4 17231 RM7509-C1016 5 2 GNP,TGW (4.98)
MQTL5.1 5 1688 Rpr2-RM153 2 1 SF (7.79)

MQTL5.2 5 64.27 E612935-Pi23 13 3 SE,GNP,TGW (11.77)
MQTL5.3 5 67.95 Pi23-RM509 4 3 SE,GNP,TGW (10.00)
MQTL5.4 5 81.44 RM161-RM305 1 1 TGW (18.13)
MQTL5.5 5 104.18 RM3351-RZ225 6 3 SE,GNP,TGW (9.14)
MQTL6.1 6 69.42 RM7088-TaA 4 2 SE,GNP (10.35)
MQTL6.2 6 89.51 RM190-VB3 2 2 SETGW (2.8)
MQTL6.3 6 11623 LDH-G8023 6 3 SE,GNP,TGW (8.16)
MQTL6.4 6 152,51 RM238B-C1 1 1 SF (025)

MQTL6.5 6 162.41 RG468-Y1124L 3 3 SE,GNP,TGW (7.97)
MQTL6.6 6 229.01 GNMS3878-RM3827 2 1 GNP (6.9)

MQTL6.7 6 270.28 RM4447-E313308 4 2 SETGW (6.14)
MQTL7.1 7 88.77 RM21345-RM215 2 1 TGW (10.46)
MQTL7.2 7 109.5 RM214-R1788 3 2 SF,GNP (9.34)
MQTL7.3 7 164.15 RM455-RM1135 1 1 SF (0.19)

MQTL7.4 7 179.68 RM1135-R2286 5 3 SE,GNP,TGW (8.61)
MQTL7.5 7 20131 FORI1-R10022$ 4 2 SE,GNP,TGW (4.43)
MQTL7.6 7 225.17 $162745-RM1335 4 2 GNP,TGW (9.42)
MQTL8.1 8 97.84 §779-C12515 1 1 SF (153)

MQTL8.2 8 107.56 cen8-RM556 10 3 SE,GNP,TGW (6.64)
MQTL9.1 9 56.41 EM14_6-RM107 1 1 SF (4.0)

MQTL9.2 9 89.89 RM566-ME4_10 4 4 SE,GNP,PN,TGW (6.51)
MQTL9.3 9 108.16 B163-RM3769 5 3 SE,GNP,PN (3.59)
MQTL9.4 9 139.64 G293-RM201 1 1 TGW (8.07)
MQTL10.1 10 100.03 RM101-RM2696 2 2 GNP,TGW (16.28)
MQTL10.2 10 173.08 RZ337-R1877 6 2 SETGW (7.58)
MQTL10.3 10 190.05 RG134-RMg65 4 2 SETGW (16.2)
MQTLI11.1 11 13.15 SINE1r6-510637B 2 2 SE.GNP (14.95)
MQTL11.2 11 40.39 TP1s1-RG1094 3 2 SETGW (7.52)
MQTLI11.3 11 65.37 $2137-E4355A 3 2 GNP,PN (4.4)
MQTL11.4 11 131.53 G389-GNMS3600 2 2 GNP,PN (5.75)
MQTLI12.1 12 49.27 P4-E26M47.222-P1 1 1 TGW (24.81)
MQTLI12.2 12 58.07 RG457-Sdh1 8 2 SE,GNP (7.81)
MQTL12.3 12 99.68 RG323-GNMS3766 3 2 SE,GNP.TGW (4.02)

* Average phenotypic variance explained.
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MQTLL.1

MQTL2.6

MQTL3.5

MQTL4.2

MQTL5.2

MQTL5.5

MQTL10.2

MQTL12.2

Gene ID

LOC_0s01g05970
LOC_Os01g12440
LOC_0s01g10504
LOC_0s01g13770
LOC_Os01g10580
LOC_0s01g15630
LOC_Os01g13740
LOC_0s01g13030
LOC_Os01g13170
LOC_0s01g13280
LOC_Os01g16650
LOC_0s01g08930
LOC_0s01g05640
LOC_0s01g08440
LOC_0502¢55340
LOC_0s02¢55380
LOC_0s02¢56550
LOC_0s02¢55520
LOC_0s502¢56280
LOC_0s02¢56250
LOC_0s02¢57250
LOC_0s03g47770
LOC_0s03g47740
LOC_0s04g46440
LOC_0s04g41560
LOC_0s04g44820
LOC_0s04g45020
LOC_Os04g48460
LOC_0s04g46190
LOC_Os04g42740
LOC_Os04g41570
LOC_0s04g45810
LOC_0s05g03040
LOC_0s05g03760
LOC_0s05806270
LOC_0s05g10670
LOC_Os05g14180
LOC_0s05g08960
LOC_0s05¢36360
LOC_0s05¢34940
LOC_0s05¢36090
LOC_0s05¢39380
LOC_Os05g41440
LOC_0s05g43920
LOC_0s05g¢38550
LOC_0s10g34480
LOC_0s10g33940
LOC_0s12g21700
LOC_0s12¢31840
LOC_Os12g05440
LOC_0s12¢29520
LOC_0s12g05120

Description

OsFBOI1-F-box and other domain containing protein

AP2 domain containing protein, expressed

OsMADS3 - MADS-box family gene with MIKCe type-box
DUF250 domain containing protein

B-box zinc finger family protein

zinc finger, C3HC4 type domain

myb-like DNA-binding domain

OsIAA3 - Auxin-responsive Aux/IAA gene family member
ubiquitin-conjugating enzyme E2

ubiquitin conjugating enzyme protein
ubiquitin-conjugating enzyme

DEAD-box ATP-dependent RNA helicase

receptor-like protein kinase 5 precursor

UDP-glucoronosyl and UDP-glucosyl transferase domain
‘WD domain and HEAT domain containing protein

AP2 domain containing protein

ABC transporter, ATP-binding protein

zinc finger, C3HC4 type domain

zinc finger family protein, putative, expressed

GATA zinc finger domain containing protein

OsTAA10 - Auxin-responsive Aux/IAA gene family member
ubiquitin-conjugating enzyme E2 W

homeodomain protein, putative, expressed

AP2 domain containing protein, expressed

B-box zinc finger family protein

zinc finger, C3HC4 type domain

MYB family transcription factor

cytochrome P450, putative, expressed

ubiquitin carboxyl-terminal hydrolase, family 1, putative, expressed

serine/threonine-protein kinase receptor precursor, putative, expressed

ethylene-responsive protein related, putative, expressed
homeobox associated leucine zipper, putative, expressed
AP2 domain containing protein, expressed

zinc finger family protein, putative, expressed

zinc finger, C3HC4 type domain containing protein
zinc finger CCCH type family protein, putative
OsIAA17 - Auxin-responsive Aux/IAA gene family member
ubiquitin-conjugating enzyme, putative

U-box domain containing protein, expressed
OsMADS4 - MADS-box family gene with MIKCc type-box
zinc finger DHHC domain-containing protein

zinc finger, C3HC4 type domain containing protein
cytochrome P450, putative, expressed

auxin response factor 14, putative, expressed
ubiquitin-conjugating enzyme, putative

cytochrome P450, putative, expressed

auxin response factor 18, putative, expressed

zinc finger C-x8-C-x5-C-x3-H type family protein
Z0S12-05 - C2H2 zinc finger protein

cytochrome P450, putative, expressed

auxin response factor, putative, expressed

receptor kinase, putative, expressed

Gene symbol

OsFBO1
ERF53
MADS3
OsTPT1
OsBBX1
OsRFP
OsGLK2
OsIAA3
OsUBC42
OsUBC37
OsUBC27
OsRH39
OsUGT75K1
OsWD40-57
OsERF127
OsABCI14

OsGATA3
OsIAAIO
OsUBC25
OsBIHD1
OsERF34
OsBBX11
OsRDCP1
OsCYP704A3
OsUCH4
OsbHLH65
Oshox22
RSRI
OsTZF5
OsAPIP6
OsTZF1
OsIAAL7
OsUBC8
OsPUB44
OsMADS4
OsRFP
CYP98A4
OsARF14
OsUBCI12
OsARF22
0OsC3H66
0sDjC81
CYP94C2b
OsARF24
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OEBPS/Images/table1.jpg
Parents Type of Size of No. of Marker Traits References

population population  markers types
Zhenshan 97B xMilyang 46 RIL 209 158 RFLP, SSLP SF, PN, TGW  Zhuang et al., 2002
IR64 x Azucena DH 135 253 RELP, RAPDs,  SF, TGW Hittalmani et al.,
SSR 2003
R64 x TRGC 105491 BC 400 165 SSR, RFLPs SF,PN,GNP Septiningsih et al.,
2003
IRGC 105491 x Jefersson BC 353 153 SSR, RFLPs SF,PN,GNP Thomson et al.,
2003
58025A x 1C22015 BC 251 80 SSR SF, PN, GN Marri et al., 2005
Milyang 23 x Akihikari RIL 155 273 SSR, RFLPs GNP Takai et al., 2005
Minghui 63 xB5 RIL 187 244 SSR, RFLPs PN, GNP You et al,, 2006
T226 x T219 RIL 202 181 SSR SF Qing-Quan et al,,
2007
Suweon365 x Chucheongbyeo RIL 231 221 SSR, ALEPs, PN, GNP Kwon et al., 2008
MITEs
Junambyeo xIR71033 F2 146 338 STS SF, PN Rahman et al.,
2008
lpumbyeo (IP) x Dasanbyeo (DS) BC 252 196 STS SF Qiao et al., 2008
Tarommabhalli x Khazar F2 192 74 SSR GNP Sabouri et al., 2009
Koshihikari x Kasalath BC 182 162 RFLPs TGW Li-jun et al., 2009
Minghui 63 xTeqing RIL 190 133 SSR TGW Liu et al., 2009
Gharib x Sepidroud F2 236 155 SSR PN, TGW Sabouri et al,, 2010
YJCW x 93-11 BC 354 187 SSR SF,PN,GNP, Fu et al,, 2010
TGW
Zhong 156 x Gumei 2 RIL 276 198 SSR PN,GNP,SF, Cao et al,, 2010
TGW
Pusa 1266 x Pusa Basmati 1 RIL 161 175 SSR GNP, PN Deshmukh et al.,
2010
Dasanbyeo x TR 22183 BC 166 218 SSR, STS SF Chin et al., 2011
Nanyangzhan x Chuan? RIL 185 164 SSR TGW Bai et al,, 2011
Pusal266 x Jaya RIL 310 162 SSR SF,PN,GNP Marathi et al., 2012
XieqingzaoB x Zhonghui9308 RIL 266 177 SSR SEPN,TGW Liang et al,, 2012
cv. D50 x cv. HB277 RIL 116 102 SSR TGW Tang et al,, 2013
Guanghui 116 x LaGrue RIL 307 119 SSR GNP, TGW, Zhou et al,, 2013
SF
Swarna x IRGC81848 BC 472 175 SSR TGW Swamy et al,, 2014
HWC-line x Dasan x Hwacheong F2 190 157 SSR, STS, ENP  SF, TGW Seo et al,, 2014
Nipponbare x 93-11 RIL 266 131 SSR GNP, TGW Venu et al., 2014
HP x Nipponbare F2 93 90 SSR, InDels GNP Tian et al, 2015
M201 x JY293 RIL 234 32 SSR, SLAF TGW Xu et al,, 2015
Xieqingzao B xZhonghui 9308 RIL 138 198 SSR SF, PN, TGW  Yue et al,, 2015
N040212 (indica) x Nipponbare BC 146 34 SSR SF Ahmed et al., 2016
NYZ x Ce253 F2 188 110 SSR, InDels TGW Wei et al,, 2016
G46B x K1075 RIL 182 4.92 SSR TGW Gao et al,, 2016
HR1128 x Nipponbare BC 331 37 SSR, InDels GNP Sun et al,, 2017
R998xFrancis RIL 213 3016 SNP PN, GNP, Zhu et al,, 2017
TGW
Dasanbyeo x TR22183 RIL 179 162 SSR, STS SF, PN, TGW  Kim et al,, 2017
9IL188 x 9311 F2 152 326 SSR GNP Hu et al,, 2018
Nagdong x Cheongcheong RIL 90 154 SSR PN,GNP Jia et al, 2019
Teqing x TRBB RIL 250 68 SSR, InDels TGW Zhang et al., 2020
Xuishui09 x IR2061 BC 459 6181 SNP TGW Wang et al., 2020
K1561 x G1025 RIL 201 5826 SSR, SLAF TGW Li et al., 2020
IR58025AxKMR-3R RIL 24 1,082 SNP TGW Kulkarni et al.,
2020
Teqing x IRBB lines, Zhenshan 97 x Milyang 46, RIL 446 654 SSR SF, GNP Niu et al., 2020
Xieqingzao/Milyang 46
W303 x Nipponbare F2 166 185 SSR TGW Feng et al,, 2021
Huanghuazhan x Jizi 1560 RIL 208 208 SSR, InDels SE,PN, GNP Li et al,, 2021
PDK Shriram x Heera RIL 188 133 SSR, SNP SF Sekhar et al., 2021
166s x 14s F2 174 79 SSR GNP, TGW Beerelli et al., 2022

RIL, Recombinant inbred line; DH, Double haploid; BC, Backcross population; Fy, Second generation of recombination. SF; spikelet fertility, PN; panicles per plant, GNP; number of grains
per panicle, TGW; thousand-grain weight.
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