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QTL analysis of important
agronomic traits and
metabolites in foxtail millet
(Setaria italica) by RIL population
and widely targeted
metabolome
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Guangyu Fan1, Yixiang Wang2, Fang Zhao1, Xiaolei Zhang1,
Xiaolei Feng1, Gaolei Shi1, Weiqin Zhang2, Guoliang Song1,
Wenhan Dan2, Feng Wang1, Yali Zhang1, Xinru Li1,
Dequan Wang1, Wenying Zhang1, Jingjing Pei1,
Xiaoming Wang1* and Zhihai Zhao1*

1Institute of Millet, Zhangjiakou Academy of Agricultural Science, Zhangjiakou, China, 2Wuhan
Metware Biotechnology Co., Ltd., Wuhan, China
As a bridge between genome and phenotype, metabolome is closely related to

plant growth and development. However, the research on the combination of

genome, metabolome and multiple agronomic traits in foxtail millet (Setaria

italica) is insufficient. Here, based on the linkage analysis of 3,452 metabolites

via with high-quality genetic linkage maps, we detected a total of 1,049

metabolic quantitative trait loci (mQTLs) distributed in 11 hotspots, and 28

metabolite-related candidate genes were mined from 14 mQTLs. In addition,

136 single-environment phenotypic QTL (pQTLs) related to 63 phenotypes

were identified by linkage analysis, and there were 12 hotspots on these pQTLs.

We futher dissected 39 candidate genes related to agronomic traits through

metabolite-phenotype correlation and gene function analysis, including Sd1

semidwarf gene, which can affect plant height by regulating GA synthesis.

Combined correlation network and QTL analysis, we found that flavonoid-

lignin pathway maybe closely related to plant architecture and yield in foxtail

millet. For example, the correlation coefficient between apigenin 7-rutinoside

and stem diameter reached 0.98, and they were co-located at 41.33-44.15 Mb

of chromosome 5, further gene function analysis revealed that 5 flavonoid

pathway genes, as well as Sd1, were located in this interval . Therefore, the

correlation and co-localization between flavonoid-lignins and plant

architecture may be due to the close linkage of their regulatory genes in

millet. Besides, we also found that a combination of genomic andmetabolomic

for BLUP analysis can better predict plant agronomic traits than genomic or

metabolomic data, independently. In conclusion, the combined analysis of
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mQTL and pQTL in millet have linked genetic, metabolic and agronomic traits,

and is of great significance for metabolite-related molecular assisted breeding.
KEYWORDS

foxtail millet, RIL population, widely targeted metabolomics, metabolic QTL,
phenotypic QTL
1 Introduction

Foxtail millet (Setaria italica) is one of the earliest

domesticated crops from the green foxtail (Setaria viridis)

(Bennetzen et al., 2012; Pant et al., 2016; Yang et al., 2022).

Millet has the characteristics of wide adaptability and yield

stability, and it adapt to high temperature and arid

environment well (Yuan et al., 2021; Han et al., 2022). In

addition to its high nutritional value (Li et al., 2018; Ma et al.,

2022), millet is also an ideal model crop for studying grass crops

due to its small genome and close relatedness to many important

grass crops, such as switchgrass (Panicum virgatum), napiergrass

(Pennisetum purpureum), pearl millet (Li et al., 2022; Xing et al.,

2022). Therefore, the research on the formation of millet

phenotype, genetic mechanism and molecular breeding is of

great significance.

Linkage-based quantitative trait loci (QTL) mapping had

been conducted in millet for several agronomic traits including

yield, grain weight, flowering days and seed number (Jaiswal

et al., 2019). Ni et al. performed QTL mapping of nine

agronomic traits using the recombinant inbred line (RIL)

population, five of which were controlled by single gene.

They identified two QTLs for plant height, and a candidate

gene showed 89% identity to the known rice gibberellin-

synthesis gene Sd1 (Ni et al., 2017). Therefore, QTL is an

effective method for agronomic traits analysis, as well as

metabolites content. Metabolome is a powerful tool to

systematically explore genotype-phenotype relationships in

plants, the level of metabolites detected in plants further

reflects the growth status (Fang et al., 2019). Combining

mQTL with pQTL analysis can give a fuller picture of the

molecular mechanisms of important traits from genomic and

metabolic pathway.

With the gradual maturity of widely targeted metabolome

detection technology, it is possible to detect and identify more

than thousand metabolites at the same time (Chen et al., 2013).

Thus, multi-omics integrated analysis including metabolome

has become a research hotspot. In wheat, the genetic

mechanism of metabolites was analyzed by mQTL, in vitro

and it was confirmed that TraesCS5D01G028100 and
02
TraesCS2B01G459900 have glycosyltransferase activities in

vitro, which determined the accumulations in Apigenin and

Trincin glycoside, respectively (Shi et al., 2020). The genetic

analysis of rice combining metabolic profiling with an

ultrahigh-density genetic map proved that a large number of

mQTL can greatly accelerate the identification of gene

functions, and advance the research on the genetic and

biochemical basis of the metabolome (Gong et al., 2013).

QTL analysis in metabolics have been carried out in several

major crops and model plant species, including rice, wheat,

tomato, and Arabidopsis (Gong et al., 2013; Knoch et al., 2017;

Garbowicz et al., 2018; Shi et al., 2020), but few have been

reported in millet.

Previous studies have found that metabolites can be used as

biomarkers to predict complex agronomic traits, which could

speed up the breeding process while reducing costs.

Riedelsheimer used 285 inbred lines (285 × 2 = 570 hybrids)

crossed with two subjects to predict traits in hybrid maize by RR-

BLUP and found that the average predictability of seven traits

ranged from 0.72 to 0.81 for SNPs and 0.60 to 0.80 for

metabolites (Riedelsheimer et al., 2012). Xu et al. using

metabolomic data from 210 RILs to predict thousand-grain

weight (KGW) and other traits, found that LASSO and BLUP

were the most effective methods for yield prediction, and nearly

doubled the predictability when using metabolomic data

compared to genomic data (Xu et al., 2016). The above studies

suggest that metabolites are useful predictors for quantitative

traits. However, the analysis of the association between

metabolomics and phenotypes in millet has not yet

been implemented.

In order to provide a more comprehensive understanding of

the metabolites in millet, explore the genetic relationship

between the metabolites and agronomic traits, we conducted

metabolites and agronomic traits analysis in a RIL populations

of 179 millet. Metabolites and agronomic traits were linkage

analyzed using high-density genetic linkage maps to find QTLs,

hotspots and co-localized locus. Besides, we found it was reliable

that combining metabolomic data and genomic variation

information can more effectively predict agronomic traits in

millet, which increased our understanding of the relationship of
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metabolome-phenotype, and provides novel ideas for the

selection and improvement of millet.
2 Materials and methods

2.1 Plant materials

The 179 lines from the RIL population developed from a

cross between A2 (PTGMS A2) and Zhangzagu No.3 (Line

1484-5 × A2) was used in this study. The population was

evaluated in natural field conditions in the experimental farm

of Zhangjiakou Academy of Agricultural Science, Zhangjiakou,

China (144°88’N, 40°77’E). A randomized block design was used

during 2016-2018 cropping seasons. Each line was replicated

three times (individual plants) and planted in a two-row plot of

1.5 m length with the spacing of 0.1 m between plants and 0.2 m

between rows. Field management, including irrigation,

fertilization, weeding and pest control, followed the standard

agricultural practices in millet production. For each line, leaves

from three plants were taken at the five-leaf stage and pooled for

one biological replicate. Leaf samples for each line were selected

for DNA or chemical extraction. All the samples were harvested

at 10:00-12:00 on that day, placed in liquid N2 immediately and

stored at -70°C until vacuum freeze-drying.

The 179 accessions used in this study were characterized by

whole genome re-sequencing. DNA was isolated from young

leaves using the CTAB method and sequencing libraries with

short inserts were constructed following manufacturer’s

instructions (Illumina). The samples were sequenced on an

Illumina HiSeq 4000 platform. To retain reads of high quality,

reads with fewer than 5% N (missing) bases and with fewer than

50% of bases of base quality < 5 were deemed as cleaned reads.

All other reads were discarded.
2.2 Chemicals

All the chemicals were of analytical reagent grade. Gradient-

grade methanol, acetonitrile and acetic acid were purchased

from Merck Company, Germany (http://www.merck-chemicals.

com). The water was doubly deionised with a Milli-Q water

purification system (Millipore, Bedford, MA). Authentic

standards were purchased from ANPEL, Shanghai, China

(www.anpel.com.cn/cnw), BioBioPha Co., Ltd. (http://www.

biobiopha.com/), and Sigma-Aldrich, USA (http://www.

sigmaaldrich.com). Standards stock solutions were prepared

using water, methanol and/or dimethyl sulfoxide (DMSO) as

the solvent and stored at -20°C. Combined standard solutions of

chemicals were prepared just before use by mixing individual

stock solutions and diluting these mixtures with 70%

aqueous methanol.
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2.3 Sample preparation and extraction

The freeze-dried leaves were crushed using a mixer mill

(MM 400, Retsch) with a zirconia beads for 1.5 min at 30 Hz. A

100 mg mass of powder was weighted and extracted overnight at

4°C with 1.0 ml of 70% aqueous methanol. Following

centrifugation at 10, 000 g for 10 min, the extracts were

filtered (SCAA-104, 0.22 mm pore size; ANPEL, Shanghai,

Ch ina , h t t p : / /www . anpe l . c om . cn / ) b e f o r e l i qu id

chromatography-mass spectrometry (LC-MS) analysis.
2.4 LC-MS conditions

The sample extracts were analyzed using an LC-ESI-MS/

MS system (HPLC, Shim-pack UFLC SHIMADZU CBM30A

system, www.shimadzu.com.cn/; MS, Applied Biosystems

6500 Q TRAP, www.appliedbiosystems.com.cn/). The

analytical conditions were as follows, HPLC: column,

Waters ACQUITY UPLC HSS T3 C18 (1.8 µm, 2.1 mm*100

mm); solvent system, water (0.04% acetic acid): acetonitrile

(0.04% acetic acid); gradient program, 100:0 V/V at 0 min,

5:95V/V at 10.0 min, 5:95V/V at 11.0 min, 95:5 V/V at

11.1 min, 95:5 V/V at 15.0 min; flow rate, 0.35 ml/min;

temperature, 40°C; and injection volume: 5 ml. The effluent

was alternatively connected to an ESI-triple quadrupole-linear

ion trap (Q TRAP)-MS.

LIT and triple quadrupole (QQQ) scans were acquired on

a triple quadrupole-linear ion trap mass spectrometer (Q

TRAP) using an API 6500 Q TRAP LC/MS/MS System,

which was equipped with an ESI Turbo Ion-Spray interface

operated in a positive ion mode and controlled by Analyst

1.6.3 software (AB Sciex). The ESI source operation

parameters were as follows: ion source, turbo spray; source

temperature 550°C; ion spray voltage (IS) 5,500 V; ion source

gas I (GSI), gas II (GSII), curtain gas (CUR) were set at 55, 60,

and 30.0 psi, respectively; and the collision gas (CAD) was

high. Instrument tuning and mass calibration were performed

with 10 and 100 mmol/L polypropylene glycol solutions in

QQQ and LIT modes, respectively. The QQQ scans were

acquired as MRM experiments with the collision gas

(nitrogen) set to 5 psi. The DP and CE for individual MRM

transitions were performed with further DP and CE

optimization. A specific set of MRM transitions was

monitored for each period according to the metabolites that

were eluted within this period.
2.5 Statistical analysis

The metabolite data were log2-transformed for statistical

analysis to improve normality. Broad-sense heritability (H2) was
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calculated using the following formula: H2 = 1-10-2LOD/n, where

n is the sample size (Arends et al., 2010). The values of the

coefficient of variation (CV) were calculated for each metabolite

and agronomic trait (three-year data are calculated separately)

expressed as S/A, where S and A represent the standard

deviation and the average of metabolite and agronomic trait in

the population, respectively. Pearson’s correlation and the

statistical significance between traits were estimated using

programs housed in R (http://www.r-project .org/) .

Visualization correlation networks were constructed using

Cytoscape 3.7.0 (Smoot et al., 2010).
2.6 QTL mapping and
hotspot identification

A high-density genetic map was constructed for the RILs

(Zhang et al., 2017). The QTL analysis of each trait was

performed using the R package qtl version 1.46.2 (https://rqtl.

org/), with a scanning step of 0.1 cM and PIN (probability in

stepwise regression) of 0.01 (Li et al., 2007). The LOD threshold

was set to 2.5 for both metabolites and agronomic traits. The

confidence interval for each QTL was assigned as a 1.5-LOD

drop of the peak. The additive effect and percentage of

phenotypic variance associated with a QTL (contribution)

were estimated using the same program. For metabolic QTL

(mQTL), the QTL intervals of the same metabolite overlapped in

two replicates, will be selected for research. If the phenotypic

variance was greater than 15%, it was considered a major QTL

(Salvi and Tuberosa, 2005).

The whole genome was divided into 3 Mb partitions, and

the number of mQTL per partition was counted. Using 1,000

permutation tests, each mQTL was randomly assigned to a 3

Mb interval, and the number of mQTLs obtained in each

interval was counted. The cut-off number of mQTLs per 3

Mb by chance alone was 14 in mature seeds with P < 0.05,

respectively. A larger number was regarded as a mQTL hotspot

(Gong et al., 2013).
2.7 Phylogenetic analysis

The amino acid sequences of reported genes were obtained

from NCBI according to their accession numbers (http://www.

ncbi.nlm.nih.gov/). Candidate gene information in this study

was obtained from the draft assembly of the millet genome

(Bennetzen et al., 2012). The alignment of amino acid sequences

was performed using ClustalW bundled in MEGA 5, and

neighbor-joining trees were constructed using MEGA 5

software with all default parameters. The reliability of the

reconstructed tree was evaluated using a bootstrap test with

1000 replicates.
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2.8 Prediction of agronomic traits

A total of 63 agronomic traits were determined in 2016-2018

(Zhangjiakou) and the detailed information were shown in the

Supplementary table 1. Most phenotypes were measured using

common methods such as plant height, thousand-grain weight

and so on (Zhang et al., 2017; Fan et al., 2019). Other traits, such

as anther color, which was observed at the time of floret

dehiscence at anthesis, was scored on a scale of 1 point for

white, 3 points for yellow and 5 points for brown; spike neck

shape was to observe the bending degree and posture of stem

node under spike, the morphology of these traits were evaluated

and scored by experienced personnel. Briefly, genomic (2,202

bins of 33,579 SNPs integrated), metabolomic (3,452 metabolic

signals) and multi-omics data (genomic and metabolomic data

integration) were used to predict 63 agronomic traits using the

BLUP method in R (rrBLUP) (Endelman, 2011) and LASSO

methods in R (glmnet) (Hastie et al., 2017). The predictability

was measured using a 10-fold cross-validation method. The 179

RILs were then randomly divided into 10 groups, 9 of which

were used to construct the model. The remaining RILs were

predicted. The predictive power (predictability) is defined as the

Pearson’s correlation coefficient between the phenotypic

observations and the predicted values (Shi et al., 2020).
3 Results

3.1 Metabolome profiling of leaf tissues
from foxtail millet RIL population

Using widely targeted liquid chromatography-tandem mass

spectrometry (LC-MS/MS)-based metabolic profiling method

(Chen et al., 2013), we performed metabolic profiling with

leaves at the five-leaf stage from 179 accessions derived from a

cross between two elite foxtail millet varieties, A2 and

Zhangzagu No.3. A total of 3,452 reproducible metabolite

signals were detected, of which 381 metabolites were

qualitatively analyzed through standard comparison and

putatively annotated (Figure 1A). These annotated metabolites

achieved a coverage of multiple important metabolic pathways

for plants, including Flavonoids, Lipids, Phenolic acids, Amino

acids and derivatives, Organic acids, Nucleotide and derivatives,

Alkaloids, Anthocyanins, Lignans and Coumarins (Figure 1B,

Supplementary Table 2).

Pearson’s correlation coefficient of 381 annotated

metabolites in 179 millets were calculated to explore the links

between different metabol ic pathways (Figure 1C,

Supplementary Table 3). We found that the number of

metabolites with significant positive correlation (r > 0.5, p <

0.05, shown in red) were far more than those with significant

negative correlation (r < -0.5, p < 0.05, shown in blue). We also
frontiersin.org
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found some closely related areas in correlation heatmap,

especially for lipid metabolites, which indicated that these lipid

metabolic pathways were relatively independent (Cluster 3,

shown in blue box) of other types of metabolites. It is worth

noting that flavonoids has formed two different clusters (Cluster

1, Cluster 2), and the two clusters showed significant negative

correlation with each other. Cluster 1 (shown in red box)

contained more flavonoid metabolites mainly derived from the

Apigenin - Luteolin - Chrysoeriol - Selgin - Tricin- flavonoid

lignin pathway (Figure 1D), while Cluster 2 (shown in green

box) was mainly a group of flavonoids with the same
Frontiers in Plant Science 05
modification that might have a relationship of metabolic

substrate competition.

Coefficient of variation (CV) is often used to assess the

extent of metabolic differences between populations. There were

76.64% annotated metabolites with a CV above 30%, (Figure 1E,

Supplementary Table 2), which suggested great variations of

metabolites in different foxtail millet varieties. Moreover, the CV

of primary metabolites were lower (t-test, p-value=1.63E-7) than

that of secondary metabolites (Figure 1F, Supplementary

Table 4), indicating that secondary metabolites have greater

variation than primary metabolites. Generally, secondary
A

B

D E

F

C

FIGURE 1

Metabolic profiling in millet RIL population. (A, B) Number of detected metabolites and their classification. (C) Cluster heatmap of correlations
among annotated metabolites. Pairwise Pearson’s correlations are shown in a heatmap, metabolites in same class are sorted according to
correlation-based hierarchical cluster analysis. The level of correlation is indicated by red (positive correlation) and blue (negative correlation).
(D) Metabolic pathways of flavonoids in millet (Cluster 1). (E) Distribution of the coefficients of variation (CV) of annoted metabolic traits in the
millet RIL population. (F) Statistical analysis of the coefficient of variation (CV) of each class of metabolites in the millet RIL population.
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metabolites with greater variation in the population have

important functions during plant growth and facilitate the

mining of related genetic factors, such as anthocyanins and

flavonoids, whose CV were 413.03% and 125.91%, respectively
3.2 mQTL analysis of foxtail millet

The high-density genetic linkage map for “Zhangzagu No.03

× A2” RIL population used in this study was constructed as

previously (Zhang et al., 2017). The linkage map consisted of

2,202 bin and 33,579 SNPs from all 9 chromosomes of foxtail

millet. The genetic map spanned 1,934.6 cM of the foxtail millet

genome, with average 0.96 cM per bin. Based on the high-density

genetic linkage map, a total of 1,049 mQTLs (LOD > 2.5) from

992 metabolites were mapped, among which 114 annotated

metabolites were mapped to 130 mQTLs (Supplementary

Table 5). According to the mapping results of mQTL, the

proportion of mQTLs identified by secondary metabolites was

higher than that in primary metabolites (Supplementary

Figures 1A, B).
Frontiers in Plant Science 06
To have a more detailed understanding of mQTL results, we

have also analyzed the distribution of mQTLs, a total of 11

mQTL hotspots on seven chromosomes were identified,

indicating that some regulated genes of multiple metabolites

may located in these regions (Figure 2). It’s worth noting that

there were 59 mQTLs from 55 annotated metabolites co-

localized on the hotspot_5 (Supplementary Table 5, 6). Most

of these metabolites were involved in the phenylpropane and

alkaloid-putrescine metabolic pathway, thus we believed that

there may be regulatory genes of multiple metabolic pathways in

hotspot_5. However, fewer mQTLs were detected on other

chromosomes than expected, especially on chromosome 4

(Supplementary Table 7).
3.3 Unearthing of mQTL potential
candidate genes

Stable high-quality mQTLs can help us to discover potential

candidate genes. Based on the structural characteristics of the

metabolites and metabolic pathways have been reported, we
FIGURE 2

Chromosomal distribution of mQTLs identicfied from annotated metabolites. Distribution of mQTLs of 467 known metabolites on
chromosomes. Each row represents the QTL mapping of single metabolic traits. Metabolites from different class are marked by distinct colours.
The x-axis indicates the positions across the millet genome. The heatmap under the x-axis illustrates the density of QTL across the genome.
The window size is 3 Mb.
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screened 28 metabolite-related candidate genes from 14 mQTLs

(Table 1). The most significant mQTL for GZ2498 (Chrysoeriol-

O-hexoside-malonyl-hexoside) was a segment on chromosome

3 in 49.35 Mb (241.3-251.4 cM, LOD = 3.18, PVE = 6.44%). As a

candidate gene at this locus, Si021852m had high homology to

the reported Arabidopsis gene AtDTX41 (Blastp E-value=0.0,

Identity: 60.9%), which encodes a MATE efflux family protein

involved in the pathway flavonoid biosynthesis (Zhao and

Dixon, 2009). QTL of GZ2770 (Tricin O-sinapoylhexoside)

was mapped to the 2.44-3.98 Mb on Chromosome 9 (28.3-45.8

cM, LOD=2.68 and PVE=6.44), Si006338m, Si008637m and

Si006185m in the interval were homologous with a
Frontiers in Plant Science 07
anthocyanidin 3-O-glucosyltransferase gene ZmBZ1 (Blastp E-

value=0.0, Identity: 81.9%) in maize, a flavonoid 3-dioxygenase 3

gene OsF3’H-3 (Blastp E-value=4.4E-64, Identity: 38.0%) in rice

and a quercetin 3-O-glucosltransferse gene AtUGT73B4 (Blastp

E-value=0.0, Identity: 67.0%) in Arabidopsis, respectively (Roth

et al., 1991; Lim et al., 2004; Kim et al., 2008; Byeon and Back,

2015). Besides, at the QTL of GZ2525 (apigenin-C-rutinoside) in

21.00-36.05 Mb on Chr 9 (112.6-132.7 cM, LOD=2.74 and

PVE=4.02), we screened two genes Si035224m and Si035935m,

they are highly homologous with the OsF3’H gene (Si035224m:

Blastp E-value=0.0, Identity: 81.1%; Si035935m: Blastp E-

value=0.0, Identity: 80.6%). In Rice, OsF3’H had been reported
TABLE 1 Candidate genes based on mQTL results.

Trait
ID Compound_name Class Chr LOD PVE Interval

(Mb) Gene ID Description

GZ0329 L-Phenylalanine Amino acids 1 3.27 10.30 29.64-31.51 Si016926m HCT

GZ0789 p-Coumaric acid
Phenolic
acids

1 4.03 2.25 30.72-32.10
Si016504m;
Si016467m

PAL

Si019385m;
Si016478m

PAL

Si016475m PAL

GZ2674 Tricin O-feruloylhexoside O-hexoside Flavonoids 2 4.25 7.31 9.74-15.77
Si029576m;
Si029633m

UDP-RhaT

GZ2498
chrysoeriol-O-hexoside-malonyl-
hexoside

Flavonoids 3 3.18 6.44 48.89-49.83 Si021852m MATE

GZ2770 Tricin O-sinapoylhexoside Flavonoids 4 2.68 6.11 2.44-3.98 Si006338m
Anthocyanidin 3-O
GT

Si007997m UDP-GT

GZ0710 Luteolin C-hexoside Flavonoids 5 3.17 6.81 41.98-43.61
Si001301m;
Si001332m

UDP-RhaT

GZ0064 L-Serine Amino acids 5 8.81 21.39 43.37-44.01
Si001325m;
Si001577m

AAPS

GZ2434 luteolin-C-hexoside Flavonoids 5 2.62 7.81 43.06-44.15 Si000845m Lc

GZ1147 4-Methoxycinnamic acid
Phenolic
acids

7 2.54 7.96 13.50-16.44 Si009584m 4CL

GZ2259 N-Feruloyl spermidine Alkaloids 7 2.76 23.50 17.00-18.37 Si010179m ACT

GZ2803 Chrysin 5-O-glucoside (Toringin) Flavonoids 7 2.56 4.95 17.89-19.31 Si010039m
Anthocyanidin 3-O
GT

GZ0609 Luteolin-C-pentosyl-C-hexoside Flavonoids 9 4.03 8.53 6.30-8.61 Si040642m F7,3GT

GZ0609 Luteolin-C-pentosyl-C-hexoside Flavonoids 9 4.03 8.53 6.30-8.61
Si040087m;
Si040021m

RhaT

Si038926m;
Si035772m

RhaT

GZ2525 apigenin-C-rutinoside Flavonoids 9 2.75 4.02 14.33-19.47 Si039984m FCGT

Si035224m;
Si035935m

F3’,4’H

Si035595m F5GT
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as flavonoid 3-hydroxylase which catalyzes the 3’-hydroxylation

of the flavonoid B-ring to the 3’,4’-hydroxylated state (Lam et al.,

2015). These all demonstrated the high quality and reliability of

the mQTL of this study.

We noticed that multiple phenolic acids at the upstream of

the phenylpropane metabolic pathway were mapped to

hotspot_2 with high LOD and PVE on chromosome 1

(Figure 3A). Through the annotation of metabolite pathway

and gene function, we had unearthed 6 candidate genes in this

locus, including a Hydroxycinnamoyltransferase (HCT)

Si016926m and 5 redundant Phenylalanine ammonia-lyase

(PAL) (Figure 3B). Orthologs of these candidate genes had

been reported to play an important role in the regulation of

phenolic acid synthesis in the phenylpropane metabolic pathway

(Figure 3C). Phylogenetic analysis showed that the PAL genes
Frontiers in Plant Science 08
were clustering with the reported PAL from monocotyledonous

cereal crops, like rice and triticum, rather than the PAL from

dicotyledonous plants such as Arabidopsis (Zhu et al., 1995; Liao

et al., 1996) (Figure 3D). Si016926m clustering with the

HCT/HQT genes that had been reported to transfer

hydroxycinnamate to shikimate or quinine, and is involved in

the formation of phenolic acid (Chao et al., 2021) (Figure 3E).

In order to further dissect the function variation of candidate

genes, we analyzed the SNPs within the candidate genes. A total

of 30 SNPs in these 6 candidate genes were related to at least one

metabolite in the pathway (Supplementary Table 8). Among

them, a non-synonymous mutation SNP (SNP1:3064324, C/T)

in Si016926m caused the conversion between the basic amino

acid lysine (Lys, K) and the neutral amino acid aspartyl (Asn, N).

There were significant differences in metabolites content among
A

B

D E

F

G

C

FIGURE 3

Candidate genes for a mQTL hotspot on chromosome 1 for phenylpropanoid metabolites. (A) LOD curves of QTL mapping of the
phenylpropanoid metabolites accumulation on chromosome 1. (B) Gene model of candidate genes. The orange box represents the coding
sequence of HCT, the green boxes represent the coding sequence of PALs. (C) Metabolic pathways of phenylpropanoid metabolites. (D, E) An
unrooted phylogenetic tree of the candidate genes protein was constructed as described in Methods. Bootstrap values >70% (based on 1,000
replications) are indicated at each node (bar: 0.2 amino acid substitutions per site). (F, G) The effect of different alleles on the content of some
phenylpropanoid metabolites. GZ0329, L-Phenylalanine; GZ0446, 3-O-p-coumaroyl quinic acid O-hexoside; GZ0548, 1-O-p-Coumaroyl quinic
acid; GZ0639, 5-O-p-Coumaroyl quinic acid; GZ0703, 3-O-p-Coumaroyl quinic acid; GZ0611, Caffeic acid O-glucoside; GZ2292, 3-O-Feruloyl
quinic acid; GZ2580, 3-Hydroxy-4-methoxycinnamic acid; GZ1147, 4-Methoxycinnamic acid.
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different SNP haplotypes (p < 1E-03). As a upstream metabolite

of phenylpropane metabol ic pathway, GZ0329 (L-

Phenylalanine) content in millet varieties with C is lower than

those millet varieties with T or heterozygous in this site. On the

contrary, the content of other downstream metabolites in millet

with C had higher content than those millet varieties with T or

heterozygous in the same SNP (Figure 3F). Moreover, a non-

synonymous mutation SNP (SNP1:3176740, T/G) was found in

the coding region of Si016467m, which can lead to the

conversion between non-polar alanine (Ala, A) and polar

threonine (Thr, T)The content of GZ0329 in the millet with T

was significantly higher than that of the G, while other

downstream substances such as GZ0548 (1-O-p-Coumaroyl

quinic acid) and GZ2292 (3-O-Feruloyl quinic acid), showed

the opposite trend (Figure 3G). Therefore, SNP1:3064324 in

Si016926m and SNP1:3176740 in Si016467m did affect the

synthesis of metabolites in phenolic acids pathway.
3.4 QTL analysis of foxtail millet
agronomic traits

As the parents of the RIL population, Zhangzagu No.3 and

A2 had significant differences not only in plant height (PH) and

heading stage (HS), but also in number of grain (NG), length of

ear neck (LEN/NL), gross weight (GW), ear length (EL), top

second leaf length (TSL) and stem diameter (SD) through

evaluation (t-test, p<0.05) (Supplementary Figures 2A, B).

Further, we evaluated the important agronomic traits of millet

throughout the growth period in the millet RIL population for

three consecutive years (2016-2018) (Supplementary Table 1).

The descriptive statistics of each agronomic traits of the

population were shown in Supplementary Table 9. The

agronomic traits of millet RIL populations were quite different,

and the average phenotypic coefficient of variation reached

24.05%. By analyzing the correlation of agronomic traits, we

tagged two cluster in the correlation heatmap (Supplementary

Figure 2C). In the first cluster shown in blue box, there were

significant positive correlations among 12 agronomic traits, such

as ear shape (ES) and anther color (AC). Another cluster shown

in green box containing five yield-related traits such as panicle

weight (PW) and grain weight (GraW), also showed highly

positive correlation.

We used the three-year phenotypic data to perform single-

environment QTL analysis, and a total of 132 pQTLs (LOD >

2.5) were identified (Figure 4A; Supplementary Table 10). In the

2016 pQTL results, most of the traits were only mapped to one

pQTL, of which the bristle color (BC) mapped a maximum of

three pQTLs, while LEN/NL_2017 and PN_2018 can mapped

five pQTLs, respectively. This confirmed that agronomic traits

were closely linked with environmental factors and affected the

pQTL results. Thus, stable pQTLs that had been repeatedly

identified in more than one year for the same trait can more
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accurately reflect genetic characteristics of phenotypes. We

identified 21 stable pQTLs across all chromosomes, and more

than half of them explained a phenotypic variation of greater

than 10% , especially qBc4-1 with the highest LOD and PVE

(Figure 4B; Supplementary Table 11). Similar to the results of

mQTL, the distribution of pQTL on the chromosome was not

evenly (Figure 4C).
3.5 Unearthing of pQTL potential
candidate genes

Based on the genome annotation and reported functional

genes, we searched for potential candidate genes in the pQTL

interval. A total of 39 candidate genes were mined from 25

pQTLs loci with 12 agronomic traits related to crop growth,

development and yield formation (Table 2). The stable pQTL

qHs9-1 (LOD=4.99-11.45, PVE=10.33-20.85%) for HS located

within 0.39-1.06 Mb on chromosome 9, where we found a

transcription factor Si039184m which encodes a GHD protein

(Supplementary Figure 3A, B). The homologous gene OsGHD7

of Si039184m (Blastp E-Value=8.19E-59, Identity: 49.8%) in rice

had been reported to play a major role in regulating the

flowering time under long day (LD) conditions by negatively

regulating the expression of EHD1 and HD3A (Supplementary

Figure 3C) (Hori et al., 2013). Another pQTL qHs9-2

(LOD=3.36, PVE=5.62%) located in the 57.82-58.44 Mb on

chromosome 9 was also identified, in this loucs, we found a

candidate gene Si034749m encoding EHD4 protein domain

(Supplementary Figures 3A, B). The function of its

homologous gene OsEHD4 (Blastp E-Value=5.86E-93, Identity:

40.6%) in rice had been proved to be related to flowering as a

downstream gene of GDH7 (Gao et al., 2013). Phylogenetic

analysis revealed that both Si039184m and Si034749m were

grouped together with the reported GDH genes and EHD

genes from monocotyledonous cereal crops, respectively,

which indica ted the cons i s tent funct ion of them

(Supplementary Figure 3D). At the locus of qTne9-1 (57.07-

57.82 Mb, LOD=2.74, PVE=4.41%) near qHs9-2, a yield-related

gene Si035172m attracted attention. Its homologous gene OsTE

in rice (Blastp E-Value=0.0, identity: 93.0%) encodes a Cdh1

protein belonging to a co-activator of APC/C. The APC/C-TE

complex has special effect on regulating the lateral branch and

tillering of the embryo, which is an important factor to

determine the plant type and grain yield (Supplementary

Figures 3E, F, G) (Netty and Yossi, 2017). The utilization of

this segment will be beneficial to cultivate the planting resources

of early-maturing and high-yielding millet.

The yield-related pQTLs were simultaneously mapped in the

33.43 Mb-37.15 Mb interval of chromosome 4, including qTgw4-

1, qPn4-1, qPw4-1, qGraW4-1 (Supplementary Figure 3H). The

co-location pQTLs of the similly traits was also beneficial for

candidate gene mining, and the gene Si008391m with annotated
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function of cytokinin dehydrogenase was excavated in this locus

(Supplementary Figure 3I). It was found that OsCKX2 gene (E-

Value=6.09E-164, identity: 52.7%) is a homologous gene of

Si008391m in rice, and OsCKX2 affected rice yield by

regulating the content of cytokinin (Supplementary Figure 3J)

(Li et al., 2013). This provided important evidence and resources

for genetic breeding related to yield in millet.
3.6 Exploration of the connection
between metabolome and
agronomic traits

In order to explore the relationship between phenotypic

characters and metabolome, we focused on co-localized

metabolites that were highly correlated with the phenotypic

traits. We built a metabolite-agronomic trait association
Frontiers in Plant Science 10
network based on the correlation between 381 annotated

metabolites and 63 phenotypes (Figure 5A). A total of 498

significant correlations were screened (|r|>0.3, p<0.05), which

suggested these metabolites may be involved in the formation

of agronomic traits (Supplementary Table 12). Among them,

most of the metabolites were in the phenylpropane metabolic

pathway. Besides, there were 104 mQTLs of annotated

me t abo l i t e s co - l o c a t ed w i th pQTLs (F i gu r e 5B ;

Supplementary Table 13). A total of 48 metabolites were

significantly correlated with their corresponding phenotypes,

indicating that these genetic loci may affect the phenotype by

regulating the content of metabolites. Notably, most of the

annotated metabolites with co-localization were in the

phenylpropane metabolic pathway, such as GZ0852

(apigenin 7-rutinoside), which was co-located with SD

(2018), and the Pearson’s correlation coefficient was 0.98

(Supplementary Table 12).
A

B C

FIGURE 4

Chromosomal distribution of pQTLs identicfied from agronomic traits. (A) Genetic linkage map and pQTLs controlling agronomic traits. (B) Venn
diagram of pQTLs identified for agronomic traits in three years. (C) Distribution characteristics of pQTLs for agronomic traits.
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Since the detection of metabolites and the investigation of

agronomic traits were carried out in different periods, the high

correlation between metabolites and agronomic traits suggested

the presence of a genetic relationship. We found that multiple
Frontiers in Plant Science 11
metabolites and agronomic traits were mapped on the same

locus 41.33-44.15 Mb of chromosome 5 with high correlation

(Figures 6A, B). Among them, the metabolites of the flavonoid-

lignin synthesis pathway were positively correlated with
TABLE 2 Candidate genes based on pQTL results.

Trait
Name Year Main

QTL Chr LOD PVE Interval
(Mb)

Locus of millet reference
genome

Position
(Mb)

Homologous
gene

EL 2018 qEl1-1 1 3.57 7.27 30.65-32.14 Si017808m,Si017668m 30.79 OsNST1

LEN/NL 2017
qLen/nl1-
1

1 6.91 17.08 30.65-32.19

PH 2018 qPh1-1 1 2.53 5.83 30.65-32.19

EL 2016 qEl1-1 1 2.98 5.84 31.51-32.41 Si020198m 31.45 OsPAP10c

EL 2017 qEl1-1 1 4.58 12.74 31.51-32.41 Si018007m 31.45 OsMPS

SL 2017 qSl1-1 1 6.80 12.32 31.51-32.41 Si016559m,Si016509m 31.93 OsARF18

Si017671m 31.97 OsGA2ox6

HS 2018 qHs2-1 2 3.59 4.54 37.25-39.52 Si029202m 38.25 OsGhd7

HS 2017 qHs2-1 2 5.40 5.97 37.25-39.52

ES 2017 qEs4-1 4 6.58 8.73 6.46-8.41 Si007994m 5.34 OsGW2

TGW 2017 qTgw4-1 4 4.00 8.27 33.43-34.89

PW 2018 qPw4-1 4 2.65 6.02 34.24-34.89

GraW 2018 qGraW4-1 4 3.75 7.05 34.41-37.15 Si008391m 35.64 OsCKX2

PN 2017 qPn4-2 4 4.28 9.12 38.14-38.42 Si008326m 39.29 OsPht1

TPN 2016 qTpn5-1 5 3.81 6.07 3.34-3.87 Si001947m,Si001632m 3.66 OsYGL8

PW 2017 qPw5-1 5 2.65 2.10 3.47-5.25

GraW 2017 qGraW5-1 5 3.54 2.87 3.69-5.47 Si001664m 5.34 OsGSK3

SL 2016 qSl5-1 5 22.40 44.77 43.37-43.73 Si002088m 42.28 OsFBP1

SL 2017 qSl5-1 5 27.29 45.39 43.37-43.73 Si001831m,Si001110m 42.57 OsPdk1

GraW 2017 qGraW5-2 5 18.08 31.93 43.37-44.01 Si000832m 43.04 OsPH1

LEN/NL 2017
qLen/
nl15-1

5 5.35 11.89 43.37-44.01 Si001573m 43.16 OsGA20ox1

LEN/NL 2016
qLen/
nl15-1

5 6.59 10.62 43.37-44.01 Si002599m 43.41 OsIG1

PH 2018 qPh5-1 5 18.12 34.69 43.37-44.01 Si000027m 44.38 OsDCL1

PN 2016 qPn5-5 5 18.63 36.30 43.37-44.01 Si000265m 44.63 OsSPY

PN 2017 qPn5-5 5 28.24 53.20 43.37-44.01 Si001955m 44.86 OsPIN5b

PW 2017 qPw5-2 5 21.17 36.79 43.83-44.01

LEN/NL 2017
qLen/
nl16-1

6 4.07 7.04 33.75-35.10 Si013177m 34.89 OsNACK

SL 2017 qSl6-1 6 3.89 3.74 33.97-35.23 Si013875m,Si013885m 34.93 TOGR1

Si014597m,Si014596m 35.12 SAUR39

(Continued)
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architecture-related traits, and negatively correlated with yield-

related traits (Figures 6C, D). Through functional annotation

analysis, we found that the Si001573m in this interval was the

homologous gene of the Sd1 known as the green revolution gene

in Rice (Blastp E-Value=0.0, identity: 82.8%), which can affect

plant height by regulating GA synthesis (Sasaki et al., 2002;

Spielmeyer et al., 2002; Peng et al., 2021). Phylogenetic analysis

showed that Si001573m grouped with Gibberellin 20 oxidase of

other crops, including Sd1 (OsGA20ox2) in rice (Figure 6E).

Interstingly, we screened four candidate genes of flavonoid-

lignin synthsis pathway nearly the Si001573m (Figure 6B).

Among those, Si000845m was annotated as an anthocyanin

regulatory Lc protein, its homologous gene in maize has been

confirmed to regulate the glycosylation of flavonoids (Blastp E-

Value=0.0, identity: 71.0%) (Ludwig et al., 1989; Nesi et al.,

2000). Phylogenetic analysis revealed that Si000845m was also

highly homologous to Lc transcription factors in other crops

(Figure 6F). In addition, Si001301m and Si001332m encoded

glycosyltransferase proteins. Their homologous genes have been

reported to play a role in glycosylation modification of

flavonoids in strawberry (Blastp E-Value=5.2E-129, identity:

43.8% and Blastp E-Value=5.8E-132, identity: 45.3%,

respectively). The catalytic function of Si001301m and

Si001332m for rhamnosyl modification of flavonoids was

further determined by phylogenetic analysis (Figure 6G)

(Lunkenbein et al., 2006). Si001026m has been annotated as a

flavonoid hydroxyl ligase, and its homologous genes can be used

for hydroxylation modification of flavonoid in licorice (Blastp E-

Value=4.98E-137, identity: 57.6%). Phylogenetic analysis

showed that Si001026m was clustered with F2’H reported in

other species (Figure 6E) (Akashi et al., 1998).

There is still a lack of reliable reports or evidences to verify

the relationship between metabolites and phenotypes, despite

the presence of co-localizations and strong correlation in millet.
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There were five genes located close together within an ~1.81 Mb

region (Chr5: 41.79-43.60 Mb). We speculated that there might

be a close linkage between them, causing the non-separation of

the same genotype in the hybrid offspring. Therefore, plant

height and flavonoid-lignin were highly correlated. In order to

confirm this hypothesis, we focus on SNP5: 43169135 near the

gene Si001573m that formed two different genotypes of C and T

in the population. Further analysis revealed that there were

significant differences in PH value of millet under the two

genotypes (p=3.33E-19), and the content of flavonoid- lignin

pathway metabolites such as GZ2761 (3’,4’,5’-Tricetin O-

rutinoside) and GZ3060 (Tricin 4’-O-syringic acid) also

showed the same trend (Figure 6H), which provided

important resources for the development of molecular markers

related to functional metabolites and agronomic traits at the

same time.
4 Discussion

4.1 Characteristics of foxtail
millet metabolome

In this study, we used widely-targeted LC-MS/MS-based

metabolic profiling method to detect 3,452 metabolite signals

in millet seedling leaves, and elucidated 381 metabolites through

standard comparison and chromatography-mass spectrometry

data, including primary metabolites and secondary metabolites.

Additionally, the coefficient of variation (CV) of primary

metabolites was significantly lower than that of the secondary

metabolites, which was in line with the results in other cereal

crops such as rice, wheat and barley. Interestingly, flavonoids in

millet and barley, especially anthocyanins, have the largest CV.

However, in wheat, the CV of phenolamide alkaloids was the
TABLE 2 Continued

Trait
Name Year Main

QTL Chr LOD PVE Interval
(Mb)

Locus of millet reference
genome

Position
(Mb)

Homologous
gene

Si013185m 35.19 BC12

Si014611m 35.25 OsAHP1

Si013329m,Si013225m 35.56 OsSPY

HS 2016 qHs9-1 9 4.99 10.33 0.39-1.06 Si039184m 1.06 OsGhd7

HS 2018 qHs9-1 9 7.65 14.19 0.45-1.06 Si034009m 1.09 OsCesA9

HS 2017 qHs9-1 9 11.45 20.85 0.45-1.06 Si035876m 1.77 OsRLCK57

EL 2017 qEl9-1 9 3.92 8.20 1.06-1.45 Si035170m,Si035172m 57.54 OsCCS52A

TNE 2016 qTne9-1 9 2.73 4.41 57.07-57.82 Si039193m 57.58 OsDTH3

HS 2017 qHs9-3 9 3.36 5.62 57.82-58.44 Si034749m 58.22 OsEhd4

EL, Ear length; LEN/NL, Length of ear neck; PH, Plant Height; SL, Stem length; HS, Heading stage; ES, Ear shape; TGW, Thousand-grain weight; PW, Panicle weight; GraW, Grain
weight; PN, Panicle number; TPN, Total plant number; TNE, Total number of ear.
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largest, and the CV of flavonoids and anthocyanins was

relatively small (Chen et al., 2013; Chen et al., 2020a; Shi et al.,

2020; Zeng et al., 2020).

The correlation between metabolites not only reflect the

relationship among metabolites in synthesis pathways and
Frontiers in Plant Science 13
genetic regulation, but also help to predict the structure of

unknown metabolites. We observed a significant association

between metabolites of the same class, such as flavonoids,

phenolic acids, lipids, amino acids and nucleotide. Metabolites

in adjacent pathways from different classes still have significant
A

B

FIGURE 5

Association network visualization of metabolite-agronomic traits and co-localized anaysis. (A) Association analysis of 381 annotated metabolites
with agronomic traits. Metabolites and agronomic traits are represented as nodes, and their correlation coefficient values as edges.The absolute
values of the Pearson’s correlation coefficient values above the threshold (P < 0.01) are shown. Different colours represent different classes of
metabolites. Green rectangles and blue circles are represented as metabolites and agronomic traits, respectively, where the size of the shape
represents the number of associations. The level of correlation is indicated as red (positive correlation) or blue (negative correlation). The
intensity of the colour indicates the correlation, where a darker colour denotes a stronger correlation. The yellow circles indicate metabolites
that are significantly associated with the co-localization of close agronomic traits. (B) Co-localization analysis between metabolites and
agronomic traits.
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FIGURE 6

Conjoint analysis of flavonoids and agronomic traits co-localized on chromosome 5. (A) Cluster heatmap of correlations between co-localized
flavonoids and agronomic traits. Pairwise Pearson’s correlations are shown in a heatmap, flavonoids and agronomic traits are sorted according to
correlation-based hierarchical cluster analysis. The level of correlation is indicated by red (positive correlation) and blue (negative correlation). (B)
LOD curves of QTL mapping of the flavonoids and agronomic traits on chromosome 5. Below the curve is thegene model of candidate genes.
The purple box represents the coding sequence of F2’H, the light green box represents the coding sequence of GA20ox, the pink boxes
represent the coding sequence of UGTs, the yellow box represents the coding sequence of Lc. (C, D) Correlation analysis between two
metabolites (GZ1101 and GZ2523) and PH. (E-G) An unrooted phylogenetic tree of the candidate genes protein was constructed as described in
Methods. Bootstrap values >70% (based on 1000 replications) are indicated at each node (bar: 0.2 amino acid substitutions per site). (H) The
effect of different alleles on the content of some flavonoids and PH. GZ1206, Chrysoeriol; GZ2593, Syringetin 7-O-hexoside; GZ2666, Selgin O-
hexosyl-O-hexoside; GZ2761, 3’,4’,5’-Tricetin O-rutinoside; GZ2653, Tricin -O-(syringyl alcohol) ether 5-O-hexoside; GZ1185, Tricin O-malonyl
rhamnoside; GZ1208, Syringetin; GZ2770, Tricin O-sinapoylhexoside; GZ3060, Tricin 4’-O-syringic acid; GZ0852, Apigenin 7-rutinoside; GZ1194,
Tricin; GZ1214, Tricin 4’-O-b-guaiacylglycerol; GZ1233, Tricin O-oxalic acid O-coumaroyl shikimic acid; GZ1101, Tricin O-glycerol; GZ2925,
Tricin 4’-O-syringyl alcohol; GZ2627, Hydroxymyricetin; GZ2895, Tricin O-phenylformic acid; GZ2954, Tricin -O-syringyl alcohol isomer.
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associations, such as flavonoids - anthocyanins, and flavonoids -

phenolic acids, which were consistent with the results in wheat

and rice (Gong et al., 2013; Shi et al., 2020). Apart from this,

some metabolites were not closely connected in metabolic

pathways were also highly correlated. For example, the

Pearson’s correlation coefficient of GZ2056 (N-(4’-O-glycosyl)-

p-coumaroyl agmatine) and GZ1939 (4-Pyridoxic acid O-

hexoside) reached 0.66, possibly due to the similar glycosyl

structure. Co-localization analysis showed that they were

mapped on the same locus of 24.24-28.42 Mb on chromosome

1, indicating that their glycosylation modification may be

regulated by the same site (Supplementary Tables 3, 5).

In addition to the annotated metabolites, we had also

detected a series of unknown signals. The correlation between

the unknown metabolites and the annotated metabolites, as well

as the co-localization analysis of mQTLs can provide an

important resource for future efforts in the identification of

unknown metabolites and pathways (Shin et al., 2014; Do et al.,

2015). For instance, the unknown metabolite GZ2531 had a high

correlation with multiple flavonoid metabolites in the

Eriodictyol-Apigenin pathway with the average correlation of

0.82 (Supplementary Table 14). They were mapped on the same

loucs at 6.30-8.89 Mb on chromosome 9. Moreover, GZ2531 and

GZ2536 (Chrysoeriol 8-C-hexoside) had the same Q1, thus they

were likely to be isomers of each other (Supplementary Table 5).
4.2 Genetic features of metabolome and
phenotypes in foxtail millet

We used the high-density genetic linkage map of millet to

identify 1,049 mQTLs of 922 metabolites. Consistent with the

mQTL research on rice, wheat, Arabidopsis, maize and apple, we

found that mQTLs were mainly distributed in the form of hot

spots on the genome (Khan et al., 2012; Gong et al., 2013; Wen

et al., 2015; Knoch et al., 2017; Shi et al., 2020). For example,

1,005 mQTLs identified using metabolites in mature wheat

grains were distributed on 68 hotspots, such as chromosomes

1B, 4B and 7A (Shi et al., 2020); mQTLs for rice grains and flag

leaves were also distributed on 4 hotspots and 2 hotspots,

respectively (Gong et al., 2013). In particular, there was a

major hotspot in the 40-44Mb interval on chromosome 5 in

millet where most of the mQTLs were located, which was

consistent with the research in apple (Khan et al., 2012).

Different from other plants, the mQTLs of the same class

metabolites in millet were not evenly distributed on

chromosomes. For example, the mQTLs of flavonoids were

concentrated on two hotspots of chromosome 5 and 9, while

the nucleotide mQTLs were only concentrated on the hotspots

of the chromosome 5.

We compared the present results with previous mGWAS

study based on the genetic mechanism of metabolites in natural

variation populations of millet, and found that there were
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differences in the genetic sites identified for the same

metabolite (Wei et al., 2021). There were 49 metabolites with

significant association interval, including 59 mQTLs and 350

significant SNPs. From 59 mQTLs, we screened 34 metabolite-

related 36 important mQTLs (LOD >5, PVE >10%), and only 12

metabolites could detect similar genetic loci by both study,

including 9 unknown metabolites (GZ0797, GZ0814, GZ0894,

GZ1055, GZ1201, GZ1272, GZ2255, GZ2256, GZ2300) and 3

annotated metabolites (GZ0755 pentoside Caffeate, GZ2305

(+)-Gallocatechin -hexoside, and GZ2800 Tricin O-

vanilloylhexoside). Unexpectedly, we found that different

metabolites of the same pathway may be detected at the same

genetic locus in different populations. Therefore, mQTL and

mGWAS can not only verify the accuracy of metabolite genetic

locus mining, but also help improve the metabolite pathway.

A total of 132 pQTLs were identified by single-environment

QTL analysis using the phenotypic data of three years. By

analyzing the distribution of all the pQTLs, we found 12

hotspots (all of which contained at least 3 pQTLs) on six

chromosomes including 81 pQTLs. Among them, hotspots_9

contained the most pQTLs and covered with 15 traits, was

located at 42-45 Mb on chromosome 5. In hostspots_9, the

range of LOD was 3.63 to 28.24, and the range of PVE was 0.39

to 53.20% (Supplementary Table 15, 16). Based on the physical

coordinates of the QTL confidence intervals, we compared the

present results with previous reports. Four pQTLs (qPw5-2,

qPh1-1, qPh5-1, qTgw5-1) were overlapped with the genomic

regions of qpw5, qph1, qph5 and qtgw5 that were isolated from

439 RIL populations in foxtail millet (Zhang et al., 2017). The

physical position of qPw6-1 was overlapped with that of qpw6.2

for PW detected in a backbone line Ai88 × Liaogu1 F2

population (Zhi et al., 2021). Above all, the QTL analysis in

this study was reliable to further explore the genetic relationship

between metabolites and phenotypes.
4.3 Advantages of metabolome profiling
for phenotypic genetic loci research

Metabolites are the closest phenotypic link in the process

from heredity to phenotype (Luo, 2015). Metabolome has

striking advantages in analyzing less observable phenotypes,

which can clearly reflect small changes in phenotypes from

metabolite content levels. Through correlation and co-

localization analysis, we identified strong associations between

metabolites and agronomic traits in millet. For example, PC and

two anthocyanin metabolites GZ2284 (Cyanidin 3-O-

malonylhexoside) and GZ2423 (Pelargonidin 3O-malonyl-

malonylhexoside) showed a significant positive correlation.

GZ2284 and GZ2423 could effectively regulate plant color,

which was consistent with the research in Arabidopsis and

apple (Jiang et al., 2019; Kim et al., 2019). Studies in rice,

sorghum and wheat have shown that the downstream
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metabolic pathways of phenylpropane, tryptophan and tyrosine

of shikimic acid can regulate the yield of cereal crops, showing a

significant positive correlation with yield (Chen et al., 2020b).

However, we found the yield-traits of millet were negatively

correlated to GZ0329 (L-Phenylalanine), GZ0200 (L-

(-)-Tyrosine) and flavonoid metabolites (based on Tricin-

related metabolites), and positively correlated to unsaturated

fatty acids, succinic acid. This may because of the specificity of

metabolites accumulation pattern in different species or tissues.

The genetic basis of metabolites and phenotypes is mainly

divided into three types. First, functional genes that regulate

metabolites are distributed near phenotype-related genes, there

may be close linkages between these genes. Selection for

agronomic traits during the breeding process will also select

genes that regulate metabolites through the free-riding effect

(Zhu et al., 2018). Secondly, transcription factors that regulate

both phenotypes and metabolic pathways can simultaneously

affect specific agronomic traits and metabolites (Pillet et al.,

2015). Finally, genes can influence the phenotypes by regulating

the content of metabolites that affect the phenotypes (Jiang et al.,

2019). At present, the identification technology of trait genetic

locus has been gradually mature, but the process of mining the

candidate genes remains a huge challenge. Many studies only

identified QTL or SNP markers and failed to dig out important

candidate genes within the locus. According to further genetic

mechanism research, we found that metabolites and phenotypes

with strong relevance were located in the same locus, which was

consistent with the research in wheat and rice (Gong et al., 2013;

Shi et al., 2020). In this study, combined analysis of mQTL and

pQTL can effectively help narrow the candidate interval and

validate key phenotype-related genes.
4.4 Comparison of predictions of
agronomic traits

With the progress of various omics technologies, multi-

omics data have been used to predict complex agronomic

traits. Such application enriches the methods of molecular

marker-assisted breeding and brings breakthroughs for the

genetic improvement of crops (Xu et al., 2014; Wang et al.,

2017; Xu et al., 2017). Due to the strong association between

seedling metabolites and important agronomic traits throughout

the growth period, we attempted to predict agronomic traits

using multi-omics data in this study. Based on least absolute

shrinkage and selection operator (LASSO) and BLUP models,

genomic (2,202 bins of 33,579 SNPs integrated), metabolomic

(3,452 metabolic signals) and multi-omics data (genomic and

metabolomic data integration) were used to predict the 63

agronomic traits, respectively. Due to the sparse solution

characteristics of the LASSO model, the phenotypes were not

completely predicted. The average predictability of different data
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were 0.60, 0.57, and 0.60, respectively. The BLUP model can

complete the prediction of all phenotypes with an average

predictability of 0.68, 0.66 and 0.79. The predictability of all

phenotypes using the BLUP model and multi-omics data has

reached more than 0.5, indicating that this method can be used

to predict the phenotype of millet and achieve satisfactory results

(Supplementary Table 17). Among the phenotypes, PN_2017

showed the highest predictability, with an average of 0.85 under

all methods (Supplementary Table 18).

Comparing the prediction results of different omics data by

two models, the prediction using BLUP model and multi-omics

data was significantly better than other methods. (Figure 7A and

Supplementary Table 17). These results were consistent with the

reports in rice and maize (Riedelsheimer et al., 2012; Xu et al.,

2016). Based on the correlation analysis of the relationship

between the predictability and heritability, we found that the

average correlation between predictability of genome

participation and heritability was 0.71, 0.69, 0.58, 0.71,

respectively, while the correlation between the predictability of

phenotype by the metabolome and heritability was smaller,

showed 0.36, 0.44, respectively (Supplementary Table 17). It

showed that the use of genomes for phenotype prediction

comparisons relies on the heritability, while metabolomes have

advantages in predicting low-heritability phenotypes. For

example, the heritability of TPN_2016 was only 0.09, and its

predictability based on the BLUP model using genomic and

metabolomic data reached 0.48 and 0.79, respectively

(Figure 7B). Similar results were obtained in rice, metabolomic

prediction for YIELD with low heritability was almost twice as

efficient as genomic prediction (Xu et al., 2016), and it may be

one of the reasons for the better predictability of multi-

omics data.
5 Conclusion

In this study, LC-MS-based widely targeted metabolic

profi l ing analysis was performed in 179 millet RIL

populations. All metabolites and important agronomic traits

were performed linkage analysis using high-density genetic

linkage maps. A total of 1,049 mQTLs were mapped and

distributed in 11 hotspots. We have mined 28 metabolite-

related candidate genes from 14 mQTLs by the structure of

metabolites and functional annotations. In addition, 136 pQTLs

associated with 63 phenotypes were identified by linkage

analysis. We found 12 hotspots and 39 candidate genes related

to agronomic traits, including Sd1 which can affect plant height

by regulating GA synthesis. Besides, we found that flavonoid-

lignin pathway maybe closely related to architecture and yield,

and the traits were highly correlated and co-located at

chromosome 5. Moreover, we also verified that a combination

of genomic and metabolomic for BLUP analysis can more
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effectively predict plant agronomic traits in millet. In a word, it is

of important significance to the study of genetic, metabolic and

agronomic traits in millet, as well as molecular breeding

involving functional metabolites in crops.
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