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1Center for Crop Breeding on Omics and Artificial Intelligence, Kongju National University,
Yesan, South Korea, 2Department of Plant Science, Gangneung-Wonju National University,
Gangneung, South Korea, 3Department of Plant Resources, College of Industrial Sciences, Kongju
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Rice is a globally cultivated crop and is primarily a staple food source for more

than half of the world’s population. Various single-nucleotide polymorphism

(SNP) arrays have been developed and utilized as standard genotypingmethods

for rice breeding research. Considering the importance of SNP arrays with

more inclusive genetic information for GWAS and genomic selection, we

integrated SNPs from eight different data resources: resequencing data from

the Korean World Rice Collection (KRICE) of 475 accessions, 3,000 rice

genome project (3 K-RGP) data, 700 K high-density rice array, Affymetrix

44 K SNP array, QTARO, Reactome, and plastid and GMO information. The

collected SNPs were filtered and selected based on the breeder’s interest,

covering all key traits or research areas to develop an integrated array system

representing inclusive genomic polymorphisms. A total of 581,006 high-quality

SNPs were synthesized with an average distance of 200 bp between adjacent

SNPs, generating a 580 K Axiom Rice Genotyping Chip (580 K _ KNU chip).

Further validation of this array on 4,720 genotypes revealed robust and highly

efficient genotyping. This has also been demonstrated in genome-wide

association studies (GWAS) and genomic selection (GS) of three traits: clum

length, heading date, and panicle length. Several SNPs significantly associated

with cut-off, −log10 p-value >7.0, were detected in GWAS, and the GS

predictabilities for the three traits were more than 0.5, in both rrBLUP and

convolutional neural network (CNN) models. The Axiom 580 K Genotyping

array will provide a cost-effective genotyping platform and accelerate rice

GWAS and GS studies.
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1 Introduction

Rice (Oryza sativa) is a staple food source for more than half

of the global population (Wing et al., 2018). Rice production is

expected to increase by 50–70% by 2050, with improved quality,

reliability, and sustainability of global food demand (Zhao et al.,

2011; Seck et al., 2012). However, sustainable production with

fewer resources will require the efficient utilization of high-

throughput and intensive systems in increasingly variable

environments (Rasheed et al., 2017; Yu et al., 2022).

With advances in high-throughput sequencing technologies,

-omics-based studies on rice have progressed considerably,

enabling the efficient identification of a large number of single

nucleotide polymorphisms (SNPs) (Wing et al., 2018; Nguyen

et al., 2019). In addition to being highly prevalent, biallelic,

codominant, and stable SNPs also play a significant role in

phenotypic variation. SNPs are the most effective and highly

informative genetic markers used to unravel functional variants

underlying traits for crop improvement (Yu et al., 2022). Next-

generation sequencing technologies enable accurate detection of

SNPs from various genomic backgrounds. With the availability

of several million SNPs, the challenge is efficient and economical

genotyping of these SNPs (Rasheed et al., 2017).

High-throughput SNP genotyping is an attractive

genotyping tool for identifying sequence polymorphisms

(Rasheed et al., 2017; Guo et al., 2021). It is typically

accomplished using SNP arrays or ‘chips’ or genotyping-by-

sequencing (GBS). SNP arrays and GBS are cost-effective for

genotyping thousands to millions of SNPs, whereas PCR-based

genotyping requires hundreds to a few thousand SNPs, and is

laborious, time-consuming, and suitable for small-scale

genotyping. Although GBS has low ‘set-up’ and per-sample

costs and performs SNP discovery and genotyping

simultaneously, its experimental operation and data analysis

are beyond the reach of average breeders (Verlouw et al.,

2021). In contrast, high-throughput genotyping arrays can be

used repeatedly to genotype different populations in a short

period of time with straightforward data analysis (Rasheed

et al., 2017).

Several genotyping platforms, including Illumina

BeadXpress (Chen et al., 2011; Thomson et al., 2012),

Fluidigm platform (Seo et al., 2020), Illumina Infinium (Yu

et al., 2014; Thomson et al., 2017; Morales et al., 2020), and

Affymetrix (Zhao et al., 2011; Singh et al., 2015; McCouch et al.,

2016) have been developed and utilized in rice molecular

breeding. RiceSNP50 was designed based on over 10M SNP

loci from the resequencing data of 801 rice varieties (Chen et al.,

2014). OsSNPnks include 50 K high-quality non-redundant

SNPs (Singh et al., 2015). Because they mainly consist of SNPs

within single-copy genes, SNP information has been widely

applied in evolutionary and domestication-related studies of

the Oryza genus. McCouch et al. constructed a high-density
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rice array consisting of 700 K SNPs surpassing the largest

publicly available genotyping platform for any crop species

(McCouch et al., 2016). Cornell_ 6 K _Array_Infinium_Rice

(C6AIR) was designed and developed to be polymorphic within

and between target germplasm groups and to map populations

of interest (Thomson et al., 2017). Therefore, C6AIR provides a

highly informative dataset to Cornell University and the IRRI,

indicating the importance of data resources in designing SNP

arrays. C6AIR was updated to C7AIR, covering polymorphisms

between and within O. sativa, O. glaberrima, O. rufipogon, and

O. nivara (Morales et al., 2020). Seo et al. developed two 96-plex

indica-japonica SNP genotyping assays for particular target

populations containing functional SNPs associated with

agronomic traits for efficient genotyping (Seo et al., 2020).

High-throughput genotyping platforms play critical roles in

genetic diversity, gene mapping, germplasm resource analysis,

genome-wide association study (GWAS), evolution analysis, and

genomic selection (Xu et al., 2021).

However, most of these arrays included whole-genome

random SNPs but were not inclusive of SNPs related to key

traits or research interests. Taking advantage of the accrued rice

genomic sequence data, we collected SNPs from eight different

highly informative datasets and selected high-throughput SNPs

across the breeder’s research interests (Figure 1) to develop a

large-scale genotyping array on the Affymetrix platform. Further

validation of this array using a large set of accessions for GWAS

analysis and genomic selection for different traits has

demonstrated its usefulness in the global rice community.
2 Materials and methods

2.1 Sequence resources

We utilized different databases for designing the Axiom rice

genotyping chip:1) Resequencing data of Korean World Rice

Collection (KRICE) of 475 accessions composed of 417

cultivated and 58 wild accessions (Phitaktansakul et al., 2021),

2) Rice genome project data of 3,000 accessions (3 K-RGP) from

the International Rice Research Institute (IRRI) (https://snp-

seek.irri.org), 3) High-Density Rice Array (HDRA, 700K) array

reported from Cornell university (McCouch et al., 2016), 4)

Affymetrix 44 K Rice Chip (Affy44K) (Zhao et al., 2011), 5)

QTARO database (http://qtaro.abr.affrc.go.jp/) (Yonemaru et al.,

2010), 6) Plant Reactome Gramene Pathways database (https://

plantreactome.gramene.org/) 7) Chloroplast (Tong et al., 2016;

Cheng et al., 2019) and mitochondria (Tong et al., 2017)

genomic sequences of japonica and rufipogon and 8) GMO,

we used transgenic plants and genomes of various

microorganisms as references for GMO marker design. The

known GMO events consisted of host and insert regions; we

utilized NCBI Primer-BLAST tool to get the full-length products
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and modified them into Axiom probes for 155 events. Besides,

GMO markers were also developed from ds, tDNA, and tos17 as

these insertion elements have been employed for generating

large-scale mutant pools in different crops. We performed

BLAST queries against rice reference genome sequences and

unmapped sequences were selected for GMO marker design.

Further, selected SNPs were aligned with different reference

genomes including, japonica (ftp://ftp.ensemblgenomes.org/

pub/plants/release-36/fasta/oryza_sativa/dna) (Kawahara et al.,

2013), indica (http://rice.hzau.edu.cn/rice/download_ext/

MH63RS2.LNNK00000000.fasta.gz) (Zhang et al., 2016), and

O. rufipogon (https://www.ncbi.nlm.nih.gov/nuccore/NC_

013816.1?report=fasta) (Fujii et al., 2010).
2.2 SNP filtering and integration

A VCF file was created from 3,475 rice accessions (3 K-RGP

and KRICE), and SNP/indel sites with MAF<0.05, and missing

rate> 0.1 were removed. Obtained SNPs were further enriched

with Affymetrix (Affy44K), High-Density Rice Array (HDRA,

700K), and SNPs of selected genes from QTARO and Reactome

databases, which resulted in a total of 7,682,442 markers. These

markers were categorized into different classes viz., japonica,

indica, and rufipogon specific, based on their sources (Table S1).

The selected SNPs (called tag-SNPs) and the corresponding

flanking sequences were submitted to Affymetrix (Axiom®

BioFx Services) service for initial probe screening. The priority
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was given as 0, 1, and 2, with 2 being the highest priority and 0

being the lowest. We assigned priority 2 to agronomically

important genes, that have known pathways, and exist

exclusively in either japonica or indica. After removing the

tag-SNPs with a design score (pconvert)<0.6, a total of

3,204,347 SNPs met the Affymetrix probe designing criteria

(Table S1).
2.3 Selection of SNPs for
array development

Among technical suitable variants, we allocated SNPs based

on genetic diversity and breeder’s interest, which were divided

into five divisions (Figure 2A). In the genetic diversity division,

we selected 40 K high-quality SNPs from KRICE (Minimum

allele frequency, MAF< 0.01, non-missing) (Phitaktansakul

et al., 2021), 220,135 SNPs from the Affymetrix and Cornell

chip, and SNPs specific to the indica/japonica group from the 3

K-RGP and KRICE data. We also selected chloroplasts (Tong

et al., 2016; Cheng et al., 2019) and mitochondrial genomes

(Tong et al. , 2017) and fi ltered high-quality SNPs/

indels (Figure 2A).

Furthermore, in the key research division, SNPs detected

from 11 different genome-wide association studies (GWAS) for

candidate genes were filtered with MAF< 0.01 (Figure 2). The

evaluation of these studies resulted in 400 K polymorphisms,
FIGURE 1

Schematic of 580K _ KNU chip design. SNPs were collected from eight different datasets, including 1) Resequencing data of 475 KRICE,
2) 3K-RGP from IRRI, 3) 700K rice array from Cornell University, 4) Affymetrix 44K Rice Chip, 5) QTARO database, 6) Plant Reactome Gramene
database, 7) Chloroplast and mitochondria genomic sequence and 8) GMO information.
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including 300 K SNPs and 100 K indels, which are associated

with different traits.

In the breeder division, the key traits and genes of rice

breeder interest were chosen, including starch synthesis, blast

resistance, and yield-related genes (Figure 2A). A total of 1800

genes/QTL regions from the QTARO database were used for the

SNP collection. In addition, for metabolite division, a set of

genes was selected from the plant reactome (https://

plantreactome.gramene.org) to retrieve SNPs involved in

different pathways or processes in rice (Figure 2A, Table S2).

To prioritize probe sets for polymorphisms and select the

final set of SNPs for array design, we used following criteria: (1)

71mer sequence (35 bp flanking sequence of target SNP) was to

score the marker; (2) A marker was “not recommended” having

one or more polymorphisms within 24 bases; (3) If a marker has
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the same recommendation for each strand, we recommended

tilling the one with the highest pconvert value; (4) A marker/

strand was recommended if: pconvert > 0.6, there are no

wobbles, and poly count = 0; (5) A marker/strand was

not_recommended if: duplicate count > 0, or poly count > 0,

or pconvert< 0.4, or wobble distance< 21, or wobble count >= 3;

(4) A marker was considered not_possible on a given strand if

we cannot build a probe to interrogate the SNP in that direction.

A list of 620,852 candidate SNP loci was sent to Affymetrix

Bioinformatics Services (Santa Clara, CA, USA) for array design.

The quality of each SNP was assessed again and designated as

‘recommended’, ‘neutral’, ‘not recommended’, and ‘not_possible’

using in silico validation with proprietary software. We retained

one SNP marker every 200 bp to ensure a uniform distribution

and high density of SNPs throughout the rice genome. The final
frontiersin.o
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FIGURE 2

Development of integrated array system. (A) SNPs collected from genomic databases were prioritized based on breeders’ interest and key
research divisions. (B) Summary of distribution of SNPs selected for Axiom 580K Array.
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580 K Axiom Rice Genotyping Chip (580 K _ KNU chip)

contained a total of 581,006 SNP markers (Figure 2B).
2.4 Plant material and phenotyping

A total of 4,720 genotypes were genotyped for initial

validation of the 580 K _KNU chip. This 4,720 genotype set

was composed of different genotypes, including RILs (1,821),

backcross inbred lines (209), backcross lines (BC1F3, 96), F1-F7
(209), breed (1,123), landraces (252), weedy (488), Rufipogon

(96), wild type (245), and mutant lines (181) (Table S3).

The traits clum or culm length (cm), heading date, and

panicle length (cm) were evaluated for GWAS, and amylose

content (%), panicle length (cm), number of grains/panicle,

heading date, number of panicles/hill, and 100-grain weight

were used in genomic selection analysis. Phenotyping was

conducted at the Kongju National University, Yesan, South

Korea, during the dry seasons of 2017 and 2018. Five plants

were randomly selected from the middle row of the plot, and

each parameter was recorded using the Standard Evaluation

System (SES) (IRRI, 2002). Days to heading were defined as the

time when half of the plants in each accession showed panicles.

Amylose content was determined using the iodine colorimetric

method at 620 nm absorbance on a UV-1800 spectrophotometer

(Shimadzu Co., Kyoto, Japan). Frequency distributions of

phenotypic data were tested for normality using the Shapiro–

Wilk function in R environment (Royston, 1995).
2.5 Genotyping

Genomic DNA was extracted from young green leaf tissue

using a Qiagen plant DNeasy kit (Qiagen, Germantown, MD,

USA) and quantified using a NanoDrop spectrophotometer

(Thermo Scientific, USA). The DNA quality was checked

using a 1% agarose gel. Genomic DNA (200 ng) from all lines

was hybridized into arrays using the Affymetrix GeneTitan

system, according to the manufacturer’s instructions. SNP

genotyping, quality control (QC), and SNP filtering were

performed according to the Axiom Genotyping Solution Data

Analysis User Guide (http://www.affymetrix.com/). Briefly,

genotype calling and QC metrics were performed using

Affymetrix Genotyping Console™ (GTC) v.4.2. Samples with

a development quality check (DQC) value<0.83 and call

rate<0.97 were excluded from further analysis. GTC results

were post-processed using the SNPolisher R package (v.3.0).

The Ps_Metrics function was used to generate SNP metrics, and

the Ps_Classification function with the default setting classified

SNPs into six categories: PolyHighResolution (SNPs had good

cluster resolution and at least two examples of the minor allele),

MonoHighResolution (SNPs had good SNP clustering but less

than two samples had the minor allele), Off-Target Variant,
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CallRateBelow-Threshold (SNPs had call rates CR below the

threshold, but the other properties were above the threshold),

NoMinorHom (SNPs had good cluster resolution but no

samples had the minor allele), and Other (more than one

cluster property was below the threshold) (Gao et al., 2014b).

Furthermore, SNP QC metrics, including call rate (CR, ≥97%),

Fisher’s linear discriminant (FLD, ≥3.6), heterozygous strength

offset (HetSO, ≥_0.1), and homozygote ratio offset (HomRO,

≥0.3) values, were applied to assess SNPs. The remaining SNPs

retained for further analysis were annotated using an in-house

Python script. SNP distribution and count across the rice

genome were analyzed using a 100 kb sliding window with an

R package.
2.6 Genome-wide association studies

High-quality SNPs obtained from the Affymetrix chip were

used in a genome-wide analysis of associations. A GWAS was

performed on three phenotypic traits: clum length, heading date,

and panicle length. Association analyses were conducted using

the Genome Association and Prediction Integrated Tool

(GAPIT) (Lipka et al., 2012) and TASSEL 5.0 (Trait Analysis

by Association, Evolution, and Linkage) (Bradbury et al., 2007).

GWAS analysis was performed using the mixed linear model

(MLM) of GAPIT (Yu et al., 2006) to predict the association

between each SNP and the phenotypic data. The kinship (K)

matrix represents the variance-covariance matrix between

individuals. The R package qqman (https://cran.r-project.org/

web/packages/qqman/index.html) was used to draw Manhattan

plots. A P value of 3.16 × 10−7 was used to consider marker-trait

association (MTA) as significant.
2.7 GS Models

2.7.1 Penalized Regression Model
The ridge regression best linear unbiased prediction (rr-

BLUP) model was implemented using the R package rrBLUP

(Endelman, 2011). The model is described as follows.

y = m + Zu +  e

where y is an N × 1 vector of adjusted means for all

genotypes, m is the overall mean, Z is an N × M matrix of

markers, u is a vector of marker effects as u ~ N(0, Is2u), and e is
the residual error with e ~ N(0, Is2e).

GS was performed with fourfold cross-validation by

including 80% of the samples in the training population and

predicting the genomic estimated breeding values (GEBVs) of

the remaining 20% of the samples. For the accuracy assessment,

two 50 replication sets were performed, with each replicate

consisting of five iterations.
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2.7.2 Convolutional Neural Networks
Convolutional neural network (CNN) is a deep learning

model that accommodates inputs distributed along with space

patterns (Pérez-Enciso and Zingaretti, 2019). In a CNN, the

input data first passes through a convolutional layer, followed by

a pooling layer, dropout layer, fully connected dense layer, batch

normalization layer, and finally to the output layer containing

one node with the predicted trait value. During each

convolutional layer, the CNN applies kernels and filters, and

performs the convolution operation with a predefined width and

strides, providing the same weights for all SNP marker windows.

The filter moves for the same window size across the input SNP

markers, and the CNN obtains a locally weighted sum (Sandhu

et al., 2021). The earlyStopping function in Keras (https://keras.

io/callbacks/#earlystopping) was applied to control model

overfitting (Zingaretti et al., 2020). A pooling layer is added

after each convolutional layer for dimensionality reduction, and

the filters are invariant to small changes in the input. Finally,

pooling results in a smoothed representation and merging of the

kernel output of the previous convolutional layer by taking the

minimum, mean, and maximum (Bellot et al., 2018).
3 Result

3.1 Alignment, SNP selection, and Axiom
Array design

A detailed description of the detection, filtering, and final

selection of SNPs included in the array is provided in the

Methods section and Figure 1. SNPs collected from eight

different datasets were selected based on the breeder’s interests

and key research divisions (Figure 2).

Alignment of whole-genome resequencing of 1) 475 Korean

World Rice Collection (KRICE) accessions and 2) 3,000 rice

genome project (3 K-RGP) data accessions against both indica

and japonica rice reference genomes were performed to identify

sequence variations (SNPs and indels) (Kawahara et al., 2013;

Zhang et al., 2016). The alignment resulted in the identification

of over 3.1 million SNPs in KRICE, of which 40 K high-quality

SNPs (MAF< 0.01 and zero missing rates), all exonic SNPs/

indels and sub-species specific SNPs were selected. Furthermore,

SNPs from the high-density rice array assay from 3) Cornell

University, 4) Affymetrix 44 K Rice Chip, 5) QTARO database,

and 6) Plant Reactome were mapped and aligned to select

potential SNPs. SNPs from (7) chloroplasts (Tong et al., 2016;

Cheng et al., 2019) and mitochondrial genomes (Tong et al.,

2017) of japonica and rufipogon rice were filtered and 3,449 and

3,329 SNPs/indels were selected, respectively. In GMO markers,

20,895 markers were derived from binary vectors, and 2,089,

13,697, and 746 markers derived from ds, tDNA, and tos17,

respectively. As described in the ‘Methods’ section, after

applying different criteria to identified SNPs data, a set of
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620,852 high-quality SNPs were selected. Finally, 581,006

SNPs were tiled on the 580 K _ KNU chip SNP array that

includes 3,329 from rufipogon, 34,276 from indica, and 542,432

from japonica (3,449 plastid and 538,983 nuclear). Among

japonica specific 538,983 SNPs/indels (500,725 SNPs and

38,258 indels) 126,076 SNPs were for agronomic traits,

162,315 for intergenic, and 94,393 for genic SNPs (Figure 2B).

Among the 34,276 indica-specific SNPs/indels, 22,820 were

SNPs, and the remaining 11,456 were indels. In the case of 8)

GMO, 969 regions were selected from transgenic genes and

vectors, and a total of 40,715 probes were selected as candidate

SNPs (Figure 2B).

Regarding the distribution of 500,725 japonica-specific SNPs

in different parts of the genes, 82,666 (16.51%) SNPs were

present in exons, 78,963 (15.77%) in introns, 27,139 (5.42%)

in the UTR, and 26,3539 (52.63%) in the intergenic region

(Figure 3A). Most indels were detected within an intron of

japonica (Figure 3B). In the case of 22,820 indica-specific SNPs,

no intergenic SNP were detected, whereas only two indica-

specific indels were observed in the intergenic region

(Figure 3C, D). Of the indica-specific SNPs, 53.6% (12,234),

27.7% (6,317) and 06.0% (1,367) were distributed within introns,

exons, and UTR, respectively (Figure 3C). SNPs were located

along each of the 12 rice chromosomes, with an average density

of 154 SNPs/100 K and a median density of 130 SNPs/100 K

(Figure 4). The average gap between two adjacent SNPs was 200

bp, and gaps between more than 90% were less than 2 kb

(Table S4).
3.2 Genotyping performance of 580K _
KNU chip

The performance of the 580 K _ KNU Axiom Array was

evaluated by genotyping eight different sets of genotypes on an

integrated Affymetrix GeneTitan® platform. All samples passed the

quality assessment with a high DQC value (>0.89) and call rate

(>95%), and duplicate samples showed 99% SNP reproducibility.

Thus, the genotyping results of 4,720 genotypes validated the chip

performance with both a high sample success rate and genotyping

call. The SNP genotyping results from the 4,720 genotypes were

classified into six categories based on the Affymetrix quality control

metrics (Table 1; Figure 5). Based on the filtering parameters, Fisher’s

linear discriminant (FLD), HetSO, HomRO, and CR ≥95% as the

filtering options, approximately 79.2% (n = 18,087) of the total

indica-specific array SNPs were converted. Of the 38,258 designed

japonica-specific indels, 23,759 passed the bead representation and

decoding quality metrics. In japonica-specific SNPs, 53.13% SNPs

were categorized in the ‘PolyHighResolution’ category, whereas

15.94% SNPs were found in ‘OTV’ and 6.08% in the

‘MonoHighResolution’ category (Figure 5A). A total of 7,735

japonica-specific indels (20.2%) were classified ‘PolyHighResolution’

and 23.0% as ‘OTV’ (Figure 5B). While in the case of indica-specific
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SNPs, 24.8% of SNPs were found in the ‘PolyHighResolution’

category, but the highest SNPs (42.6%) were grouped fall in the

‘other’ category (Figure 5C). A similar trend was found for indica-

specific indels with the highest 50.8% in ‘other’ category, followed by

22.6% of SNPs in the ‘PolyHighResolution’ (Figure 5D).
3.3 Genome-wide association studies
and genomic selection

To evaluate the practicality of this array in GWAS, we used a

set of 1,288 lines, representing a subset of the 4,720 collection

that were phenotyped for clum length, heading date, and panicle

length. The frequency distribution curves revealed continuous

variation and displayed a normal distribution for all the traits

(Figure 6). A total of 60 SNPs were detected for clum length with

a threshold above 7 (−log10 p-value) having the highest −log10 p-

value of 22 for a marker on chromosome 7 (chr07_ 29494004)

(Figure 7A; Table S5). In contrast, 277 markers on chromosomes

6 and 7 were significantly associated with heading date with a

7< −log10 p-value (Figure 7B; Table S6). We obtained a total of

84 significant SNPs exceeding the threshold –log10 p-values of 7

for panicle length (Figure 7C; Table S7). From the GWAS

results, we observed several significantly associated SNPs with
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three traits located on chromosomes 6, 7, and 9 based on the

genome-wide significance cut-off, −log10 p-values 7 (Figure 7).

For panicle length, three SNPs from Os09g0456100 (OsLP1;

LONG PANICLE 1) showed significant association with −log10
p-value of 7<. In addition, significant SNPs mapped on the 2.4

Mbp region of chromosome 9 were belongs to 15 genes that

i n c l ude DENSE AND ERECT PANICLE1 (DEP1 ;

Os09g0441900) , leci thine cholesterol acyl transferase

(Os09g0444200), Serine carboxypeptidase 42 (Os09g0462875),

gibberellin receptor (Os09g0455900), alpha-amylase isozyme

3A precursor (Os09g0457400), etc were significantly associated

with panicle length (Table 2). Similarly, annotation of significant

SNP regions with -log10 p-values > 7 predicted a total of 42 genes

on chromosomes 6 and 7 for heading date and 12 genes for clum

length (Tables S8).

To demonstrate the performance of the 580 K _KNU chip

rice array in quantitative phenotype prediction, we utilized the

rrBLUP and CNN statistical models. The predictability of

genomic selection was evaluated using four-fold cross-

validation, where the sample was randomly partitioned into

four parts to estimate the parameters. Finally, all parts were

predicted once and used ten times to estimate the parameters. A

total of 80, 7 genotypes, including having bred and weedy rice

and corresponding 121,208 markers from chip data, were used
B

C D

A

FIGURE 3

Genomic position of selected SNPs and indels. (A) Distribution of japonica-specific SNPs in different genomic regions. (B) Distribution of
japonica-specific indels in different genomic regions. (C) Distribution of genomic regions indica-specific SNPs in different genomic regions
(D) Distribution of indica-specific indels in different genomic regions.
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to evaluate the accuracy of prediction for amylose content (Table

S9). Both models showed the highest predictability for amylose

content, and values of predictability for all traits with rrBLUP

were higher than those of CNN (Figure 8). The predictabilities of

the three traits were more than 0.5 in both models. The CNN

model was unable to predict the grain number per panicle;

however, rrBLUP had a lower value (Figure 8).
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4 Discussion

Rice was the first crop species to be fully sequenced

(International Rice Genome Sequencing Project, 2005).

Thousands of varieties have been re-sequenced (The 3,000 rice

genomes project, 2014; Duitama et al., 2015), and de novo

assemblies have been performed for several subspecies (Yu
B

C D

A

FIGURE 4

Distribution of the converted SNPs on the array in 100 Kb windows along the rice chromosomes. (A) Density of japonica-specific SNPs across
chromosomes. (B) Density of japonica-specific indels across chromosomes (C) Density of indica-specific SNPs across chromosomes (D) Density
of indica-specific indels across chromosomes.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1036177
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Kim et al. 10.3389/fpls.2022.1036177
et al., 2002; Kawahara et al., 2013; Schatz et al., 2014). Based on

accrued genomic information, QTL studies and GWAS have

been good strategies for understanding the genetic basis

underlying complex traits in rice (Yano et al., 2019; Wang

et al., 2020; Yuan et al., 2020), and major associations have

been identified as important traits for the last few decades. In

current rice breeding programs, a major limitation in the genetic

dissection of agronomically important traits is the tight linkage

between undesirable loci and preferable loci, for example, two

loci within a linkage disequilibrium (LD) block (Xiao et al.,

2021). To break tightly linked loci, breeding experts either have

to enlarge the population size or advance generations until the

block is dissected and the marker interval is minimized. High-

throughput genotyping arrays can genotype hundreds of

thousands of markers over a large number of samples in a

short timeframe. Owing to this technology, the breeding system

PolyHighResolution: Polymorphic high-resolution, CallRateBelowThreshold: Call rate be
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enables the handling of the population required to dissect LD

blocks in a relatively short time. Through association studies and

linkage mapping, the rate of development of trait-linked DNA

markers can be accelerated, and the breeding cycle can be

dramatically reduced, even for tightly linked traits within LD

blocks. In the current rice breeding program, where major

associations have been detected for important traits, SNP array

chips must be designed based on breeders’ interests to address

challenging problems in rice breeding, along with efficient and

fast genotyping.

In this study, the 580 K _KNU chip array was developed

based on inclusive genomic polymorphisms targeting breeders’

interests, covering all key traits and research areas. To construct

an integrated array system, in addition to the SNPs from 475

KRICE, SNPs from major rice chips that had been published

previously were added after strict filtration (Figure 1). To make

eshold, OTV: Off-target variant.
TABLE 1 Classification of SNPs in the 580K SNP Chip after genotyping on 4720 accessions.

SNP category Japonica-specific SNPs Japonica-specific indels Indica-specific SNPs Indica-specific indels

NoMinorHom 45,021 8,673 3,211 1,254

MonoHighResolution 26,363 6,202 860 424

PolyHighResolution 284,998 7,735 6,342 2,590

CallRateBelowThreshold 2,196 107 314 216

OTV 73,259 8,783 2,040 1,148

Other 68,888 6,758 10,053 5,824

Total 500,725 38,258 22,820 11,456
NoMinorHom: No minor homozygote, MonoHighResolution: Monomorphic high-resolution,
low thr
B

C D

A

FIGURE 5

Summary of SNP genotyping data in 4720 accessions using the 580K _ KNU chip. (A) Classification of japonica-specific SNPs (B) Classification
of japonica-specific indels (C) Classification of indica-specific SNPs (D) Classification of indica-specific indels. NoMinorHom: No minor
homozygote, MonoHighResolution: Monomorphic high-resolution, PolyHighResolution: Polymorphic high-resolution, CallRateBelowThreshold:
Call rate below threshold, OTV: Off-target variant.
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the 580 K _KNU chip more informative for the current rice

breeding program, we selected candidate SNPs associated with

important traits to reflect breeders’ interests (Figure 2). Hence,

along with a dense marker interval of 200 bp, the 580 K _KNU

chip consisting of 581,006 high-quality SNPs representing the

genomic polymorphisms in rice is an excellent platform for

genetic dissection of agronomic traits and is highly informative,

especially for current research topics in rice breeding programs.

The development and cultivation of GM crops have expanded

over time, and microarray technology is a flexible method of

detecting GMO varieties. In this study, we incorporated GMO-

specific loci covering 40,715 markers that will be helpful in rice

b r e e d i n g f o r p r e l im i n a r y s c r e e n i n g o f GMOs

contaminations. Previously such microarray-based GMO

detection has been applied at a small scale in detection of GM

soya, rice and maize lines (Kim et al., 2010; Turkec et al., 2016;

Chen et al., 2021; Kutateladze et al., 2021).

Using the 580 K _KNU chip, we evaluated the associations

between the three phenotypes and the 580 K SNP genotypes in

different lines. For club length and heading date, the most

significant signals were located in the candidate gene

Os07g0695100 (Pseudo-Response Regulator37; OsPRR37), which

was identified as being responsible for the early heading7-2 (EH7-

2)/heading date2 (Hd2) QTL (Koo et al., 2013; Yan et al., 2013;

Gao et al., 2014a). In the case of panicle length, the most

significant signal (chr09_16415391 with −log10 p-value 21) was

observed in the OsDEP1 gene (Os09g0441900) (Table 2), which

controls the erect panicle (EP) architecture, which is a typical

characteristic of super rice utilized in rice breeding for nearly a

century owing to its high yield, lodging tolerance with strong

stems, reasonable population structure, and high nitrogen use

efficiency (Huang et al., 2009; Zhou et al., 2009; Xu et al., 2016;

Sibo et al., 2021). The same marker chr09_16415391

(Os09g0441900) was found to be the second most significant

signal (−log10 p-value 22) for clum length (Table 2).

Os09g0456100 (OsLP1; LONG PANICLE 1) that encodes

Remorin_C-containing proteins showed significant association
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with panicle length. Previously, two SNPs from the third and

fifth exons of LP1 were reported to reduce panicle length (Liu

et al., 2016). The clusters of significant SNPs associated with

heading date were detected around Os07g0695100 covering an

extensive region of 0.15 Mb, followed by a region (~1-0.89 Mb) on

chromosome 6 containing Os06g0285900 (embryogenesis

transmembrane protein), Os06g0285100 (OsFLA23; fasciclin

domain-containing protein) Os06g0286310 (Oxidoreductase-like

protein), Os06g0286400 (nitrate induced protein), Os06g0289200

(UDP-glucuronosyl/UDP-glucosyltransferase family protein),

Os06g0286351 (Armadillo-type fold domain containing protein),

Os06g0285400 (Serine/threonine-specific kinase-like protein),

Os06g0296700 (C-type lectin conserved site domain-containing

protein) which have not previously been shown to be associated

with any trait in rice (Table 2). Similarly, for heading date, 34 and

13 QTLs were detected near Hd1 and Hd17 , RFT1 ,

and Hd3a genes, respectively, on chromosome 6, while 10 QTLs

were detected near the OsPRR37 gene on chromosome 7 (Ebana

et al., 2011; Hori et al., 2015). Therefore, identified candidate loci

could be targeted for fine mapping in order to determine the exact

genes/alleles underlying these GWAS signals pertaining to

agronomic traits.

GBLUP is the most robust method and the most commonly

used tool in rice because it provides high predictability (Xu et al.,

2014; Spindel et al., 2015; Xu et al., 2021). In GS selection using the

580K_KNU chip, rrBLUP performed better than CNN, but both

models showed > 0.5 prediction values (Figure 8). GS predictability

is influenced by various factors, including heritability, relatedness

between populations, sample size, marker density, genetic

architecture, statistical model, and factors. GS accuracy in rice

breeding populations has been performed for various quantitative

traits varied by trait, population, and model and moderate to high

predictive ability has been reported (Xu et al., 2021). Onogi et al.,

2015 recorded the predictive ability of heading date (0.8), clum

length (0.75), panicle length (0.6), panicle number (0.4), and grain

length (0.4) in a population of 110 Asian rice cultivars using

GBLUP (Onogi et al., 2015). The genotyping of 413 rice inbred
B CA

FIGURE 6

Frequency distribution for all the traits used for the genome-wide association study. (A) Clum length, (B) Heading date, and (C) Panicle length.
The histograms with purple colors are normal as expected while other colors denote difference from normal distribution. The observed and
expected normal distributions fitting for data were represented with dashed and solid red lines, respectively.
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FIGURE 7

Manhattan plots of genome-wide association studies using the 580K _ KNU chip (A) Manhattan plot for Clum length, (B) Manhattan plot for
Heading date, and (C) Manhattan plot for Panicle length.
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lines with a 44 K chip showed the predictive abilities for florets per

panicle (~0.6), flowering time (~0.63), plant height (~0.7), and

protein content ~0.44 (Isidro et al., 2015), while in a panel of 363

elite breeding lines predictive abilities of 0.31, 0.34, and 0.63 for

grain yield, plant height and flowering time, respectively were

reported (Spindel et al., 2015). The predictive abilities for 1000

grain weight were 0.82–0.83 in 210 recombinant inbred lines and

278 hybrids (Xu et al., 2014), and 0.54 in 1495 hybrids derived from

incomplete NC II design (Cui et al., 2020). The GS predictive values

reported in this study were in accordance with previous reports on

rice (Xu et al., 2014; Grenier et al., 2015; Spindel et al., 2015; Xu
Frontiers in Plant Science 12
et al., 2018; Cui et al., 2020). Compared with other arrays, where

several major genes have not been fully integrated, our 580 K _KNU

chip system might be better suited for GS. Similarly, the gene–

coding sequence–haplotype (gcHap)-based GS showed higher

predictive ability than SNP-based GS because the gcHap dataset

represents the diversity of 45 963 rice genes in 3010 rice accessions

(Zhang et al., 2021). GS-specific SNP arrays could further improve

rice breeding accuracy, intensity, and efficiency as well as reduce

cost and time.

The current manuscript mainly focused on the development

of an inclusive SNP array system that will help rice breeders for
TABLE 2 List of genes identified from significantly associated SNPs for phenotypic traits.

Trait SNP ID Chr Position SNP effect −Log10 (P) Locus_ID Description

Clum length AX-281898346 7 29623752 6.79 23.60 Os07g0695100 OsPRR37; Heading date 2, PSEUDO-RESPONSE REGULATOR 37

AX-95959478 9 16415391 4.95 22.51 Os09g0441900 OsDEP1; DENSE AND ERECT PANICLE 1

AX-115865280 7 29529536 -2.74 12.32 Os07g0693700 WD40 repeat-like domain-containing protein.

AX-154994951 9 18671171 2.90 9.23 Os09g0483400 Similar to Ubiquitin/ribosomal fusion protein (Fragment).

AX-117368794 9 16535714 -4.27 8.98 Os09g0444100 Similar to Minus dominance protein.

AX-95931544 9 17878923 3.07 7.06 Os09g0469900 Similar to Queuine tRNA-ribosyltransferase.

AX-95938232 9 16543763 -5.44 7.04 Os09g0444200 Lecithin: cholesterol acyltransferase family protein.

Heading date AX-115865280 7 29529536 -3.34 20.65 Os07g0693700 WD40 repeat-like domain-containing protein.

AX-281898346 7 29623752 5.75 17.17 Os07g0695100 OsPRR37; Heading date 2, PSEUDO-RESPONSE REGULATOR 37

AX-115788386 7 29623803 3.89 15.96 Os07g0695100 OsPRR37; Heading date 2, PSEUDO-RESPONSE REGULATOR 37

AX-283557343 7 29632090 3.78 15.26 Os07g0695300 OsRLCK243: Receptor-like Cytoplasmic Kinase 243

AX-117367125 6 10148113 -4.49 11.19 Os06g0285400 Similar to Serine/threonine-specific kinase-like protein.

AX-154504166 6 10588394 3.99 10.86 Os06g0289900 UDP-glucuronosyl/UDP-glucosyltransferase family protein.

AX-117355228 6 10377892 -4.46 10.66 Os06g0286500 Similar to NBS-LRR disease resistance protein homolog.

AX-123161598 6 10347685 -4.45 10.66 Os06g0286351 Armadillo-type fold domain-containing protein

AX-155742676 6 10480694 4.18 10.29 Os06g0288300 OsCGT; C-glucosyltransferase, Flavone-C-glycoside synthesis

AX-155780256 6 10343235 4.04 10.27 Os06g0286310 Similar to Oxidoreductase-like protein.

AX-116841734 6 8197078 3.94 9.98 Os06g0257200 Similar to Signal recognition particle 9 kDa protein.

AX-154042176 6 10959896 4.02 9.77 Os06g0296700 C-type lectin, conserved site domain-containing protein.

AX-154664097 6 8313556 3.80 9.54 Os06g0258900 NAD(P)-binding domain-containing protein.

AX-155544336 6 10553998 3.96 9.47 Os06g0289200 UDP-glucuronosyl/UDP-glucosyltransferase family protein.

AX-273967585 6 9319713 -2.58 9.34 Os06g0274500 OsSERL2; Somatic embryogenesis receptor kinase-like 2

AX-117351923 6 10438340 3.82 8.75 Os06g0287500 CC-NBS-LRR protein, Blast resistance

AX-154759957 6 10374435 3.55 7.87 Os06g0286375 Similar to Nitrate-induced NOI protein-like protein.

AX-117364893 6 10131338 -3.16 7.79 Os06g0285100 OsFLA23; fasciclin-like arabinogalactan protein 23

AX-117360522 6 10184468 -3.39 7.40 Os06g0285900 Similar to embryogenesis transmembrane protein.

Panicle length AX-95959478 9 16415391 1.91 21.49 Os09g0441900 OsDEP1; DENSE AND ERECT PANICLE 1

AX-95938232 9 16543763 -2.12 9.65 Os09g0444200 Lecithin: cholesterol acyltransferase family protein.

AX-283693666 9 15591135 -1.35 8.62 Os09g0429000 OsGLR2.1; Glutamate receptor homolog 2.1.

AX-115821718 9 17185419 -1.88 8.46 Os09g0456100 OsLP1; LONG PANICLE 1.

AX-117360521 9 17109742 -1.91 8.39 Os09g0455200 OsHSF22; Heat stress transcription factor 22.

AX-117388485 9 17290563 -1.91 8.23 Os09g0457400 OsEnS-129; Alpha-amylase3A.

AX-155718545 9 17506122 -1.82 8.01 Os09g0462875 OsSCP42; Serine carboxypeptidase 42.

AX-276235752 9 17081620 -1.86 7.90 Os09g0454600 OsPT19; Phosphate transporter 19

AX-116843575 9 17185192 -1.81 7.43 Os09g0456100 OsLP1; LONG PANICLE 1.

AX-154875030 9 17172676 -1.71 7.39 Os09g0455900 Alpha/beta hydrolase fold-3 domain-containing protein.

AX-117388873 9 17184182 -1.77 7.23 Os09g0456100 OsLP1; LONG PANICLE 1.
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multiple breeding programs. Also, we have conducted validation

analyses for the GWAS and genomic selection. In collaboration

with DNA Link, Inc. (Korea), we provide microarray analysis

services using our 580 K _KNU chip. Scientists and breeders in

Korea are using it for a variety of applications, and we expect to

see the results of studies on the use of our SNP array in the near

future. As an accurate high-density genotyping tool, the 580 K

_KNU chip is an excellent platform for GWAS, QTL mapping,

evolutionary studies, genetic diversity, and genomic selection,

especially genetic dissection of important traits of breeders’

interest that have not been fully identified. Hence, it will play

a pivotal role in rice breeding applications.
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FIGURE 8

Genomic selection predictive ability (r) for different traits by using rrBLUP (A), and CNN (B) model.
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