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Alfalfa (Medicago sativa) is one of the most important leguminous forages,

widely planted in temperate and subtropical regions. As a homozygous

tetraploid, its complex genetic background limits genetic improvement of

biomass yield attributes through conventional breeding methods. Genomic

selection (GS) could improve breeding efficiency by using high-density

molecular markers that cover the whole genome to assess genomic

breeding values. In this study, two full-sib F1 populations, consisting of 149

and 392 individual plants (P149 and P392), were constructed using parents with

differences in yield traits, and the yield traits of the F1 populations were

measured for several years in multiple environments. Comparisons of

individual yields were greatly affected by environments, and the best linear

unbiased prediction (BLUP) could accurately represent the original yield data.

The two hybrid F1 populations were genotyped using GBS and RAD-seq

techniques, respectively, and 47,367 and 161,170 SNP markers were

identified. To develop yield prediction models for a single location and

across locations, genotypic and phenotypic data from alfalfa yields in

multiple environments were combined with various prediction models. The

prediction accuracies of the F1 population, including 149 individuals, were 0.11

to 0.70, and those of the F1 population, consisting of 392 individuals, were 0.14

to 0.67. The BayesC and RF models had the highest average prediction

accuracy of 0.60 for two F1 populations. The accuracy of the prediction

models for P392 was higher than that of P149. By analyzing multiple

prediction models, moderate prediction accuracies are obtained, although

accuracies will likely decline across multiple locations. Our study provided

evidence that GS can accelerate the improvement of alfalfa yield traits.
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Introduction

Alfalfa (Medicago sativa) is a perennial leguminous forage

with a high yield, high forage value, and wide adaptability and is

known as the “Queen of Forages”. Yield is one of the essential

traits of alfalfa and is the primary goal of breeding. Yield is a

quantitative trait controlled by multiple genes and influenced by

the environment (Annicchiarico, 2015). Alfalfa is a homozygous

tetraploid, has a complex genetic background, and suffers from

severe inbreeding depression and non-additive inheritance, thus

limiting the process of alfalfa breeding (Bingham et al., 1994;

Annicchiarico et al., 2010). In the past decades, yield

improvement has been achieved by increasing the tolerance of

alfalfa to stress, so this method of yield improvement only works

when stressed (Lamb et al., 2006). Conventional yield breeding

has stagnated in recent years, and the narrow heritability for

alfalfa yield ranges from 0.15 to 0.30. Low breeding values, long

selection cycles, high costs, and low efficiency limit the

improvement of alfalfa yield, which requires breeders to use

new methods instead of conventional phenotypic selection to

improve breeding efficiency (Annicchiarico, 2015).

Genomic selection (GS) is a new approach to select candidate

individuals at an early stage or in an off-season nursery or

greenhouse based on the prediction of breeding values, which

can accelerate genetic gain by capturing genetic information

through high-density SNP markers (Lande and Thompson,

1990). The GS study is divided into two main parts, marker

development and model prediction. With the development of

sequencing technology, there have been various strategies for

developing SNP markers. Li et al. identified millions of SNPs in

alfalfa by transcriptome sequencing, some of which have been

used to develop an Illumina Infinium SNP array containing

approximately 10,000 SNP markers (Li et al., 2014). With the

rapid development of reduced-representation genome sequencing

(RRGS) technology, low-cost RRGS results in SNP markers

sufficient to cover the entire genome, of which genotyping-by-

sequencing (GBS) and restriction site-associated DNA sequence

(RAD-seq) are the two most common methods for RRGS. Based

on this, GBS can sequence multiple individuals of a species with

known genome sequences and perform differential analyses of

individuals or populations (Wallace and Mitchell, 2017). The

RAD-seq identifies specific restriction endonuclease sites.

Hybridizing RAD tags to DNA microarrays allows simultaneous

screening of thousands of polymorphic markers and can be used

for bulk genotyping of populations (Baird et al., 2008). These

sequencing methods offer the opportunity to obtain high-density

and high-quality SNP molecular markers. And next-generation

sequencing technology largely increases the efficiency of the

determination of the exact genotype of an alfalfa individual

(Stritzler et al., 2022). The second step is the prediction of the

model, which involves phenotypic and genotypic data from the

training population to examine the effects of all SNP markers and

develop prediction models to predict GS. A test population is also
Frontiers in Plant Science 02
required to validate the accuracy of the prediction model.

Individual genetic strengths were estimated directly as the best

linear unbiased prediction (BLUP) (Russell et al., 1997). The

genomic best linear unbiased prediction (gBLUP) models for

individual-based prediction, the ridge-regression best linear

unbiased prediction (rrBLUP), and Bayesian models for SNP

benefit value-based prediction, support vector machines (SVM)

and random forest (RF), two machine learning methods, are the

main approaches currently used to perform GS (Corinna and

Vladimir, 1995; Meuwissen et al., 2001; Leo, 2001; VanRaden,

2008; Park and Casella, 2008; Endelman, 2011; Habier et al.,

2011). These methods have to be selected according to different

populations and different heritabilities of traits. Its prediction

accuracy finally reveals the best model. Based on the

constructed GS prediction equations, researchers estimate the

genomic breeding value (GEBV) of individuals and select

candidates early in the nursery or greenhouse, thus improving

breeding efficiency.

GS breeding methods have been used for many plants, such

as barley, maize, and wheat (Mendes and de Souza, 2016;

Schmidt et al., 2016; Juliana et al., 2022). As alfalfa is a

perennial forage, the collection of multiple harvest yield data

for the purpose of evaluating breeding values is required

throughout the breeding process. Furthermore, GS can

significantly reduce breeding years to 3–4 years of phenotypic

selection if breeding values can be assessed based on genotypes at

the seedling stage. Li et al. (2015) used the GS breeding method

to make single-location, cross-location, and cross-generation

predictions in a comprehensive breeding population of alfalfa.

Furthermore, their single-location prediction accuracy was 0.43

to 0.66. The accuracy of cross-generation prediction could also

reach 0.40. The GS selection efficiency was higher than the

phenotypic selection, which indicates that the GS breeding

method could improve the alfalfa breeding efficiency (Li et al.,

2015). Creating new germplasm with excellent integrative traits

by artificial hybridization is a standard method for alfalfa

breeding. GS modeling studies have not been reported for this

breeding population. Furthermore, in GS modeling studies,

population type, population size, and the number of SNP

markers dramatically influence the accuracy of GS prediction,

and different GS prediction models can affect prediction

accuracy (Paolo et al., 2015). Recent developments in

genotyping and prediction models have made it possible to

investigate GS in alfalfa breeding populations.

The present study evaluated two full-sib populations of 149

and 392 progeny lines segregating for yield-related traits in three

field trials over seven years. The two F1 populations were then

genotyped using GBS and RAD-seq to obtain SNP markers

covering the entire genome. The number of SNP markers from

the two library construction methods was compared, and eight

GS prediction models were established to analyze the effects of

population size and SNP markers on the accuracy of

genome prediction.
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Materials and methods

Plant materials and experimental design

Population development and field management were

provided in a previous study (Zhang et al., 2019; Zhang et al.,

2020). Due to its excellent forage yield, large leaves, high stem/

leaf ratio, and good persistence of the yield, the same maternal

parent, P2, was derived from cultivar Zhongmu No. 1

(CF0032020). Two separate P1 paternal parents (P1-1 and P1-

2) with low yield but early flowering time were chosen from a

local cultivar, Cangzhou (CF000735, Figure 1). The first

population, which was designated as P149, included 149 F1
individuals, whereas the second population, which was

designated as P392, included 392 F1 individuals (Figure 2).

From 2014 to 2019, in Tongzhou and Langfang, eight

environments for P149 were sampled for phenotyping. From

2016 to 2020, phenotypic data of P392 from eight environments

were also recorded at Langfang and Changping. Harvest dates

varied from year to year and depended on the location (Table 1).
Phenotypic data analysis

Every year, one to four harvests were carried out at each

location (Table 1). Fresh yield of each plant were evaluate, and

random samples of individual were harvested for biomass,

weighed while still wet, and dried for five days at 60°C in a

forced-air facility. The average dry matter biomass yield was

calculated based on the average dry-matter content of each plant.

BLUP was performed to evaluate the phenotypic results

collected over the years at various locations using PROC

MIXED (Russell et al., 1997).

The following was the random-effects model utilized for

BLUP:
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Yijkh = m + lk + ri(k) + gj + yh + gljk + gyjh + glyjkh + eijkh

where Yijkh represents the Y for the jth genotype in the ith

replication of the kth location in the hth year; m represents the

grand mean; ri(k) represents the effect of the ith replication

nested in the kth location; yh represents the effect of the hth

year; gj represents the genetic effect of the jth genotype; gljk
represents the interaction effect of the jth genotype and kth

location. The interaction effect of the jth genotype and the hth

year is denoted by the symbol gyjh; the interaction effect of the jth

genotype, the kth location, and the hth year is denoted by the

symbol glyjkh; and the residual is denoted by the symbol eijkh. The

grand mean was the only element that was not determined by

random effects.

The BLUP estimate was carried out using the lme4 package

in R (Bates et al., 2015). Estimated BLUPs were used as observed

phenotypic values of total biomass output to make a more

accurate GS prediction model.
DNA isolation, RAD, and GBS library
construction

DNA extraction and the development of RAD for P149

and GBS for P392 libraries have been described in previous

studies (Zhang et al., 2019; Zhang et al., 2020). The RAD

sequences and the raw GBS data were uploaded to the NCBI

Sequence Read Archive with the BioProject IDs PRJNA503672

and PRJNA522887.
Sequence analysis and SNP genotyping

The genome of M. sativa ‘Xinjiangdaye’ was used as a

reference for GBS sequencing analysis of P392 (Chen S. et al.,

2020). TASSEL-GBS was used to call SNP with the default
FIGURE 1

The phenotypic difference between the parents P1-1, P1-2 and P2 for flowering time.
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parameter (Glaubitz et al., 2014). SNPs with a 50% missing rate

and a MAF of 0.05 were filtered using VCFtools (Danecek

et al., 2011).

The sequence data from the RAD-seq for P149 was initially

filtered for quality using the Trimmomatic program with default

parameters (Bolger et al., 2014). The reads obtained from paired-

end sequencing were used in BWA-MEM to map M. sativa

‘Xinjiangdaye’ genome, using the program’s default mapping

settings (Li and Durbin, 2010). It was achieved with SAMtools

by converting the SAM data into BAM files and then sorting the

BAM files with the default settings (Li et al., 2009). Both Picard

Tools and Genome Analysis ToolKit were used in this study.
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Picard Tools (http://broadinstitute.github.io/picard/) was utilized

to mark duplicate reads, while Genome Analysis ToolKit was

utilized to repair indels that can be mistaken for SNPs (Van der

Auwera et al., 2013). To identify SNPs, the SAMtools mpileup and

VarScan programs were utilized (Koboldt et al., 2012).

Furthermore, the SNP data were filtered using VCFtools to have

a missing rate of less than 10%, a minor allele frequency greater

than 0.05, and a mean read depth greater than 20.

The SNP data from the P149 and P392 populations were

uploaded to figshare (http://figshare.com) with the following

dios: https://doi.org/10.6084/m9.figshare.21172051.v1 and

https://doi.org/10.6084/m9.figshare.21162283.v2.
TABLE 1 Biomass yield harvested by the two populations.

Population Location Year Harvests Max Min Ave. SE CV H2

P149 Tongzhou (TZ), Beijing 2014 2 137.07 4.17 56.19 1.66 0.52 0.83

2015 4 429.17 12.22 104.77 3.78 0.89 0.66

Langfang (LF), Hebei 2014 3 650.00 9.48 278.87 5.95 0.53 0.44

2015 4 270.19 2.80 108.53 2.48 0.49 0.91

2016 4 690.00 14.00 226.65 5.31 0.58 0.91

2017 1 448.03 22.83 217.12 8.47 0.48 0.02

2018 1 644.33 99.60 337.46 11.49 0.42 0.05

2019 4 489.68 1.75 111.94 4.07 0.90 0.94

P392 Langfang (LF), Hebei 2016 3 710.00 14.00 203.02 3.50 0.59 0.97

2017 1 625.23 25.75 253.99 7.04 0.55 0.83

2018 3 953.70 6.63 285.15 4.88 0.59 0.80

2019 2 728.40 20.00 252.88 4.54 0.50 0.96

Changping (CP), Beijing 2017 4 514.59 5.18 108.56 1.98 0.72 0.81

2018 3 605.10 22.70 208.64 2.90 0.48 0.95

2019 4 691.00 25.00 197.27 2.94 0.59 0.89

2020 4 560.60 2.23 153.31 2.53 0.65 0.97
frontiersin
FIGURE 2

Schematic diagram of training, validation and comparison for genomic selection of alfalfa in full-sib populations.
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Correlation analysis

The relationships between the harvest phenotype value in

different years and the BLUP estimate in different locations were

determined by correlation analysis.
Model development and validation for
genomic selection prediction

A variety of statistical models have been devised for genomic

selection (Heffner et al., 2009; Lorenz et al., 2011). The present

study evaluated gBLUP, rrBLUP, four Bayesian models, SVM,

and RF. The accuracy of the predictions was determined by

calculating the Pearson correlation between the predicted and

observed phenotypes. To achieve this, 90% of the individuals

were assigned to a training set, while the remaining 10% were

assigned to a validation set. The genomic prediction accuracy

was estimated as the Pearson correlation (r) between estimated

GEBVs and estimated BLUPs of phenotypic values. This cross-

validation process was carried out 5000 times, and the accuracy

ratings were averaged.

gBLUP involves the construction of a covariate matrix by

utilizing individual kinships, followed by predicting the

phenotype through utilizing the values of individual species

(VanRaden, 2008). The following constitutes the statistical

model:

y = Xb + Zu + e,

where y represents the association matrix of the phenotypic

vector, X represents the association matrix of the fixed effect

coefficient, and b represents the fixed effect; Z represents the

association matrix of random additive genetic effects; u

represents a random additive genetic effect, also known as an

individual genomic breeding value; and e represents a

residual effect.

rrBLUP operates under the presumption of a linear mixed

additive model, in which each marker is given an effect as a

solution to the following equation:

y = m + Zu + e,

where y is the observed value of the phenotype, m represents

the intercept, Z represents the marker matrix, and u represents a

vector of estimated marker effects (Endelman, 2011).

Models based on Bayesian theory provide prior densities for

the marker effects that induce the various forms of shrinkage.

The answer is produced using a Gibbs sampling strategy to take

samples from the resultant posterior density to solve the

problem, as detailed in (Geman and Geman, 1984; George and

Edward, 2012). In this study, we evaluated the phenotypic

prediction capabilities of four different Bayesian models: (i)

BayesA (Meuwissen et al., 2001), (ii) BayesB (Habier et al.,
Frontiers in Plant Science 05
2011), (iii) BayesC (Habier et al., 2011), and (iv) Bayesian Ridge

regression (Park and Casella, 2008). Using the following settings,

the Bayesian models were examined using the BGLR package

of the R programming language (Perez and de Los Campos,

2014). The number of iterations equals 5000, while the burnin

threshold is set at 1500.

RF uses the bootstrap resampling method to extract multiple

samples from the original sample, model a decision tree for each

bootstrap sample, combine the predictions of multiple decision

trees, and obtain the final prediction result through voting (Leo,

2001). SVM is a model for binary classification, and its learning

algorithm is an optimization algorithm for solving convex

quadratic programming (Corinna and Vladimir, 1995).
Results

Phenotypic analysis

In the two breeding populations, the coefficient of the

variation of annual yield ranged from 0.42 to 0.90 (Table 1),

indicating that the yields of the breeding individuals were quite

different. In the P149 population, the broad-sense heritability

(H2) of LF_2017 and LF_2018 was only 0.02 and 0.05, indicating

that the yield in these two years was greatly affected by the

environment (Table 1).

The yield was evaluated by employing the BLUP. Correlation

analysis was performed between different years of the two

breeding populations using the mean value of the annual yield

data and BLUP (Figures 3, 4). The correlations of the yields in

different years ranged from 0.19 to 0.73, indicating that the

comparisons of the individual yields in different years were quite

different. For the yields of P149 and P392, the correlation

coefficients between BLUP and each year ranged from 0.63 to

0.91. Overall, the correlation coefficients between BLUP and

each year were higher than the values between different years,

the only exception being in 2015 and 2016, when the P149

population gave the higher correlation coefficients, 0.66 rather

than 0.64.

Between different locations, a correlation analysis was

performed using the mean and BLUP values, and the

coefficients for P149 and P392 were 0.47 and 0.59,

respectively, indicating a significant difference in yields

between different locations (Figure 5). In the P392 population,

the correlation coefficients between two locations and the overall

BLUP were 0.92 and 0.85, indicating that the overall BLUP could

represent the value of each location (Figure 5B). In the P149

population, the correlation coefficients were 0.61 for TZ_BLUP

and TZ-LF_BLUP and 0.97 for LF_BLUP and TZ-LF_BLUP

(Figure 5A), which were consistently greater than 0.60.

Using the BLUP values, the H2 of the P149 population at the

TZ and LF locations was 0.48 and 0.57, respectively, while the H2
frontiersin.org
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B

A

FIGURE 3

Correlation analysis of different years in the P149 population. (A) BLUP was calculated based on years in Tongzhou, Beijing. (B) BLUP was
calculated based on years in Langfang, Hebei. BLUP, best linear unbiased prediction.
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of the combined location was only 0.19, which was much lower

than the H2 of the individual locations (Table 2). These results

showed significant genetic diversity in the biomass produced by

hybrid populations during each harvest and in each

environment. On the other hand, the accuracy of the BLUP
Frontiers in Plant Science 07
value and the means of the original data in the two populations

was between 0.90 and 0.98, and the correlation coefficients of the

combined location were higher than the values of the individual

locations, indicating that BLUP could accurately represent the

original yield data (Table 2 and Figure 6).
B

A

FIGURE 4

Correlation analysis of different years in the P392 population. (A) BLUP was calculated based on years in Changping, Beijing. (B) BLUP was
calculated based on years in Langfang, Hebei. BLUP, best linear unbiased prediction.
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B

A

FIGURE 5

Correlation analysis of different locations in the P149 and P392 populations. (A) BLUP was calculated based on locations in the P149 population.
(B) BLUP was calculated based on locations in the P392 population. Abbreviation: BLUP, best linear unbiased prediction.
Frontiers in Plant Science frontiersin.org08

https://doi.org/10.3389/fpls.2022.1037272
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


He et al. 10.3389/fpls.2022.1037272
Genotyping-by-sequencing
genotype data

After quality filtering and processing, a total of

114,943,310,784 sequencing reads were obtained in P149, with

an average of 771,431,616 per genotype, ranging from

197,919,225 to 2,813,293,425. A total of 98,802,178,615

sequencing reads were obtained in the P392 population. The

average number of reads per genotype was 252,046,374, ranging

from 2,637,626 to 779,056,669.

To analyze the sequence reads obtained from two breeding

populations coupled with eight chromosomes of M. sativa

‘Xinjiangdaye’, we utilized a variety of UNEAK pipelines. After

thoroughly examining the readings, we discovered 161,170 SNP

markers for the breeding population of P149. After removing
Frontiers in Plant Science 09
markers with missing values greater than 50% of the time, 47,367

SNP markers were retained in the P392 breeding population.

Furthermore, since RAD-seq and GBS sequencing were used

in the two populations, we further analyzed the percentage of

SNP makers captured jointly and found that the common SNP

makers of the two populations were extremely low. A total of 116

shared SNP loci were obtained after the first attempt, which only

accounted for 0.07% of the total number of SNPs sequenced by

RAD-seq.
Validation of the P149 population

In P149, the total biomass output was calculated using the

BLUP based on six harvests of two years in Tongzhou and
TABLE 2 The result of BLUP in LF and TZ. .

Population Location† min max mean cor‡ H2

P149 TZ -35.05 22.58 0.00 0.90 0.48

LF -136.14 113.80 0.00 0.94 0.57

TZ-LF -43.80 45.72 0.00 0.95 0.19

P392 LF -129.11 209.97 0.00 0.98 0.57

CP -91.63 191.90 0.00 0.98 0.69

LF-CP -86.42 133.38 0.00 0.98 0.48
frontiersin
†TZ, Tongzhou, Beijing; LF, Langfang, Hebei; TZ-LF is the total biomass yield at both TZ and LF locations; CP, Changping, Beijing; LF-CP is the total biomass yield at both LF and CP
locations. ‡Correlation analysis was performed between the means of phenotype value and BLUP estimate in the two populations.
FIGURE 6

The correlation of BLUP (trait_mean, harvest phenotype value; breeding_value, BLUP phenotype value) in the P149 and P392 populations at a
single location and across locations.
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seventeen harvests of six years in Langfang. Furthermore, the

BLUP values were used as phenotypic data for the GS prediction

model. Using the dataset of 161170 SNPs, each one had fewer

than 50% of its genotypic values missing.

We used eight GS models to estimate the accuracy of

genomic prediction of single location and across locations, and

the accuracy of these models ranged from 0.11 to 0.70. The

BayesC model had the highest prediction accuracy of 0.70 in

Tongzhou, the BayesB model had the highest prediction

accuracy of 0.58 in Langfang, and the BayesB model had the

highest prediction accuracy of 0.55 for total biomass at both sites

(Table 3 and Figure 7A). Among these eight models, the gBLUP

model predicted the lowest average accuracy of 0.22, while the

BayesB and BayesC models predicted the highest average

accuracy of 0.43.

It should be noted that the accuracy of the predictions of the

TZ-LF and TZ-TZ-LF models for the four Bayesian models was

very low in P149, and to explore the reason for this, we

subsequently performed the validation of the GS model

following the same method using biomass data for two years
Frontiers in Plant Science 10
(2014 and 2015) from Tongzhou and Langfang. The model

prediction accuracies ranged from 0.17 to 0.70, with single-

location predictions from TZ, LF, and TZ-LF having the highest

accuracy of the BayesC model at 0.70, 0.57, and 0.65,

respectively. The gBLUP model had the lowest prediction

accuracy of 0.19, and the BayesC model had the highest

prediction accuracy of 0.60 among the eight models (Table 4).
Validation within the P392 population

For the P392 population, the total biomass yield was

calculated by applying BLUP, using harvest yield data for four

years of nine harvests at Langfang and four years of 15 harvests at

Changping, and the BLUP values were used for the GS prediction

model. When using the data set consisting of 47,367 SNPs, each

had fewer than 50% of their genotypic values missing.

The highest accuracy of the total biomass yield was predicted

by the RF model in Langfang, two locations, and the rrBLUP

model in Changping, with 0.56, 0.67, and 0.61, respectively. The
TABLE 3 The genomic prediction accuracy of total biomass yield in the P149 population validated within and across locations.

Validation†

Model Estimation TZ LF TZ-LF Mean

rrBLUP TZ 0.47 0.33 0.34 0.39

LF 0.38 0.40 0.41

TZ-LF 0.39 0.40 0.41

gBLUP TZ 0.18 0.18 0.19 0.22

LF 0.19 0.25 0.26

TZ-LF 0.19 0.25 0.25

BRR TZ 0.69 0.15 0.20 0.40

LF 0.36 0.46 0.49

TZ-LF 0.42 0.40 0.42

Bayes A TZ 0.68 0.11 0.17 0.43

LF 0.34 0.55 0.58

TZ-LF 0.40 0.49 0.53

Bayes B TZ 0.69 0.11 0.17 0.43

LF 0.31 0.58 0.60

TZ-LF 0.37 0.52 0.55

Bayes C TZ 0.70 0.20 0.23 0.43

LF 0.33 0.52 0.55

TZ-LF 0.39 0.46 0.49

SVM TZ 0.44 0.29 0.32 0.36

LF 0.34 0.38 0.39

TZ-LF 0.35 0.38 0.38

RF TZ 0.44 0.27 0.29 0.36

LF 0.42 0.36 0.38

TZ-LF 0.41 0.32 0.38
frontier
†TZ, Tongzhou, Beijing; LF, Langfang, Hebei; TZ-LF is the total biomass yield at both TZ and LF locations.
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overall prediction accuracy of the eight models ranged from 0.14

to 0.67 (Table 5). The gBLUPmodel predicted the lowest average

accuracy of 0.14, and the RF model predicted the highest

average accuracy of 0.60 (Table 5 and Figure 7B). The highest

average accuracy of 0.60 was achieved by the RF model.
Frontiers in Plant Science 11
Validation based on the number
of markers

In the P149 population, we randomly selected different SNP

markers for the GS analysis of the Tongzhou yield data using the
B

A

FIGURE 7

Validation of eight different models in the P149 and P392 populations. (A) The genomic prediction accuracy of total biomass yield in the P149
population was validated. (B) The genomic prediction accuracy of total biomass yield in the P392 population. rrBLUP, ridge-regression best
linear unbiased prediction; gBLUP, genomic best linear unbiased prediction; BRR, Bayesian Ridge regression; BayesA, BayesianA; BayesB,
BayesianB; BayesC, BayesianC; SVM, support vector machines; RF, random forest.
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rrBLUP model, with five replications for each number of SNP

markers. When the number of SNP markers is 1000, the prediction

accuracy is at least 0.45, and when the number of SNP markers is

more than5000, the prediction accuracy is 0.47 in all cases (Figure 8).
Discussion

Genotyping-by-sequencing and
restriction-site-associated DNA
sequencing

GBS and RAD-Seq are two of the most common simplified

genome sequencing technologies that have been used to detect

SNP loci in the genomes of many plants. The GBS and RAD-seq

methods employ methylation-sensitive enzymes to trim

genomic sequences and decrease redundancy. However, the

sensitivity enzymes and sequencing methodologies used by the

two systems are distinct (Zhang et al., 2019). In this study, we

performed RAD-Seq and GBS on the P149 and P392
Frontiers in Plant Science 12
populations, respectively, to explore the effect of the number

of SNP markers on the prediction accuracy of the GS model.

GBS simplifies the library building step and is a cost-effective

method for SNP typing, but the number of SNPs obtained is

significantly lower than RAD-Seq (Davey et al., 2011). In the

P149 population, we identified 161,170 SNP loci in tetraploid

alfalfa that could be used for genotyping using RAD-Seq, and in

the P392 population, we obtained 47,367 SNP loci that could be

used for genotyping using GBS, which was only 29.4% of the

RAD-Seq method. It showed that the RAD-Seq sequencing

method obtained significantly more SNPs than the GBS method.

Due to the covariancebetween the genomesofM. truncatula and

M. sativa, many previous studies have used the M. truncatula

genome as a reference for genotype data analysis, although M.

truncatula is self-pollinated and diploid (Chen H. et al., 2020). The

most significant challenge we encounter with alfalfa (as we do with

other allogamous polysomic polyploids) is the presence of

heterozygosity. Multiple readings are necessary to get an accurate

determination of whether a genotype is heterozygous or

homozygous. The availability of the whole genome sequence of M.
TABLE 4 The genomic prediction accuracy for two years (2014 and 2015) of biomass yield in the P149 population validated within and across
locations.

Validation†

Model Estimation† TZ LF TZ-LF Mean

rrBLUP TZ 0.47 0.42 0.41 0.45

LF 0.50 0.44 0.43

TZ-LF 0.49 0.43 0.43

gBLUP TZ 0.18 0.17 0.18 0.19

LF 0.20 0.19 0.21

TZ-LF 0.19 0.19 0.20

BRR TZ 0.69 0.53 0.62 0.58

LF 0.54 0.54 0.63

TZ-LF 0.55 0.53 0.62

Bayes A TZ 0.68 0.54 0.63 0.58

LF 0.50 0.55 0.64

TZ-LF 0.53 0.55 0.64

Bayes B TZ 0.69 0.52 0.62 0.58

LF 0.51 0.53 0.62

TZ-LF 0.54 0.53 0.63

Bayes C TZ 0.70 0.57 0.65 0.60

LF 0.52 0.57 0.65

TZ-LF 0.54 0.57 0.65

SVM TZ 0.44 0.37 0.38 0.39

LF 0.42 0.37 0.37

TZ-LF 0.44 0.38 0.37

RF TZ 0.44 0.36 0.36 0.41

LF 0.53 0.35 0.35

TZ-LF 0.47 0.42 0.38
frontier
†TZ, Tongzhou, Beijing; LF, Langfang, Hebei; TZ-LF is the total biomass yield at both TZ and LF locations.
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TABLE 5 The genomic prediction accuracy of total biomass yield in the P392 population validated within and across locations.

Validation†

Model Estimation† LF CP LF-CP Mean

rrBLUP LF 0.52 0.55 0.62 0.58

CP 0.50 0.61 0.62

LF-CP 0.53 0.59 0.64

gBLUP LF 0.14 0.14 0.14 0.14

CP 0.14 0.14 0.14

LF-CP 0.14 0.14 0.14

BRR LF 0.46 0.45 0.53 0.53

CP 0.53 0.58 0.64

LF-CP 0.49 0.53 0.58

Bayes A LF 0.46 0.44 0.52 0.53

CP 0.51 0.58 0.63

LF-CP 0.48 0.53 0.58

Bayes B LF 0.45 0.42 0.51 0.52

CP 0.52 0.56 0.63

LF-CP 0.49 0.50 0.57

Bayes C LF 0.45 0.45 0.52 0.53

CP 0.52 0.58 0.64

LF-CP 0.48 0.53 0.58

SVM LF 0.54 0.58 0.63 0.59

CP 0.53 0.60 0.65

LF-CP 0.55 0.59 0.65

RF LF 0.56 0.59 0.64 0.60

CP 0.57 0.59 0.67

LF-CP 0.54 0.59 0.67
Frontiers in Plant Science
 13
 frontier
†LF, Langfang, Hebei; CP, Changping, Beijing; LF-CP is the total biomass yield at both TZ and LF locations.
FIGURE 8

Genomic prediction accuracy of biomass yield at Tongzhou in P149 using different levels of marker datasets by rrBLUP. rrBLUP, ridge-regression
best linear unbiased prediction.
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sativa ‘Xinjiangdaye’ (Chen S. et al., 2020) allows us to compare the

simplified genome sequence with the entire alfalfa genome,

eliminating the dilemma of using M. truncatula. In this study, we

aligned the simplified genome sequences with the reference genome

of alfalfa and obtained 161,170 and 47,367 SNP markers that

increased by 42% and 65% compared to the previous analysis

using the M. truncatula genome (Chen S. et al., 2020). Increasing

the number of SNP loci can significantly increase the power of

association mapping and genomic prediction.
Genomic prediction accuracy based on
the number of markers

As the number of SNPs increased, the accuracy of the GS

model prediction also increased, but the accuracy of the

predictions eventually reached a plateau. Predictions using

35,000 GBS SNP markers with up to 80% missing data were

more accurate than predictions using 2000 diversity array

technology (DArT) markers with 2% missing data in barley

(Triticum aestivum L.) (Poland et al., 2012). For increasing

marker counts and avoiding bias caused by DArT markers, GBS

was mainly considered for increasing the accuracy of genomic

prediction (Lu et al., 2013), thus improving the accuracy of

genomic prediction. In alfalfa, the average accuracy of GS

increased as the number of markers increased until the amount

of missing data per marker exceeded the limitation of 70 to 80%,

as a higher imputation error may be caused by higher missing

values (Li et al., 2015). In this study, the number of SNP markers

increased from 1000 to 161,170, but the prediction accuracy did

not improve significantly and fluctuated around 0.47 when the

number of SNP markers exceeded 5000.

Since simplified sequencing can only cover about 3% of the

genomic regions, GBS and RAD-seq can capture a few genomic

regions together, and thus the number of common SNPs that can be

detected is also small. In this study, after several attempts, we found

that the common SNP loci only represented 0.07% of the total SNPs

sequenced by RAD-seq, which was close to the theoretical value of

0.09%. Therefore, it was impossible to combine the data from the

two sequencing results for the integration validation of the yield

model in two populations, P149 and P392, at a later stage. In order

to improve the applicability of the yield model, representative loci

with comprehensive coverage and uniformity should be selected to

design genotype detection chips and establish a yield prediction

model based on a uniform genotype data matrix. Then, when

genotype analysis is done on the population to be tested, the yield

model created in the first step can be used to predict the yield of

the population.
Genomic prediction accuracy based on
the model developed

GS breeding methods have been used for many plants, such

as winter barley, with prediction accuracies of 0.80 for malt
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quality, 0.72 for maize yield, and 0.94 for oil palm fruit yield

(Cros et al., 2015; Mendes and de Souza, 2016; Schmidt et al.,

2016). In this study, two half-sib populations were harvested at

three different locations, and multi-year yield data were

collected. We obtained 0.70 accuracy using the BayesC model

in the P149 population, indicating that sufficient accuracy can be

predicted for complex traits such as alfalfa yield in half-sib

alfalfa populations.

Different GS models resulted in different accuracies in

marker assumptions and treatment effects. This study used the

gBLUP model, which predicts on an individual basis, and the

rrBLUP, BRR, BayseA, BayesB, and BayesC models, which

predict on an SNP benefit value basis. The results showed that

gBLUP was less effective than the other models, which indicates

that predicting yield using individuals is not ideal for alfalfa.

Moreover, prediction based on SNP effect values could lead to

better prediction accuracy.

The worst prediction accuracy of the gBLUP model may be

related to the fact that the gBLUP model is based on individual

prediction, with a heritability of yield traits of approximately

19% and approximately 80% of phenotypic variation that cannot

be predicted by individual effects, resulting in lower prediction

accuracy. Furthermore, the covariance used in this study was

replaced by the principal component analysis (PCA) results

using TASSEL to calculate genotype data. However, the

covariance between individuals for a specific trait is

determined by the association at the causal loci rather than the

association across the entire genome (Endelman and Jannink,

2012). This is because causal loci are more likely to be inherited.

Recent research has shown that even for complicated

characteristics with very high marker density, the connection

at the whole genome level can only poorly approximate the

causative locus relationship for individuals that are very distantly

related (Hill and Weir, 2011; de Los Campos et al., 2013). This is

why the prediction accuracy of the gBLUP model is lower than

that of other methods. Because of the low prediction accuracy of

the gBLUP model, we will not discuss this model afterwards.
Genomic prediction accuracy based
on location

For the GS models used in the P149 population, we

established four Bayesian models, among which the TZ-LF

and TZ-TZ-LF models predicted very low accuracy. However,

the prediction accuracy of the TZ single-location was all above

0.67. This is probably because Tongzhou had only two years of

data for six harvests. Because of the disparity in the volume of

the data, a GS model was developed that failed to capture the

majority of biomass yield genes across ages or growth seasons,

and as a result, it had an inaccurate forecast. We then used two

years of data from Tongzhou and Langfang (2014 and 2015).

When the GS model was rebuilt, the accuracy of its predictions
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increased from 0.11–0.33 to 0.42–0.57, and the accuracy of both

the local and cross-location predictions increased. This showed

us that the stubble numbers of the modeling and validation

populations should not be too different when conducting GS

breeding and that the quality of biomass data can significantly

impact the accuracy of the GS model prediction.

In addition, population size also affects the prediction

accuracy of GS models. Generally, the larger the breeding

population, the higher the accuracy of GS prediction and the

higher the cost. We constructed two populations including

different individuals to investigate the effect of the population

size on the accuracy of the GS prediction. The seven models

showed high prediction accuracy for the P392 population (0.42–

0.67). In conclusion, when developing the alfalfa GS model, we

should establish as large a breeding population as we can afford.
Implications for alfalfa breeding

In this study, the prediction accuracy of large breeding

populations was higher than that of small breeding

populations. The prediction accuracy of total biomass was

high, and high accuracy was also observed in cross-location

prediction. Between different models the prediction accuracy

varied greatly. It is also surprising that when the number of SNP

makers increases, the prediction accuracy does not increase

significantly, which will be our next research direction. This

study shows that GS has a high potential to accelerate alfalfa

breeding.
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