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Object detection models have become the current tool of choice for plant

disease detection in precision agriculture. Most existing research improved the

performance by ameliorating networks and optimizing the loss function.

However, because of the vast influence of data annotation quality and the

cost of annotation, the data-centric part of a project also needs more

investigation. We should further consider the relationship between data

annotation strategies, annotation quality, and the model’s performance. In

this paper, a systematic strategy with four annotation strategies for plant

disease detection is proposed: local, semi-global, global, and symptom-

adaptive annotation. Labels with different annotation strategies will result in

distinct models’ performance, and their contrasts are remarkable. An

interpretability study of the annotation strategy is conducted by using class

activation maps. In addition, we define five types of inconsistencies in the

annotation process and investigate the severity of the impact of inconsistent

labels on model’s performance. Finally, we discuss the problem of label

inconsistency during data augmentation. Overall, this data-centric

quantitative analysis helps us to understand the significance of annotation

strategies, which provides practitioners a way to obtain higher performance

and reduce annotation costs on plant disease detection. Our work encourages

researchers to pay more attention to annotation consistency and the essential

issues of annotation strategy. The code will be released at: https://github.com/

JiuqingDong/PlantDiseaseDetection_Yolov5 .
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plant disease detection, annotation strategy, inconsistent bounding box, data-centric,
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1 Introduction

Plant disease recognition concerns many farmers and

researchers in agriculture. Once a plant is affected by diseases,

the damage can be easily propagated to the entire crop, causing

several production and economic risks (Carroll et al., 2017).

According to the statistics, plant diseases caused by bacteria,

fungi, nematodes and viruses cost the global economy USD220

billion annually (Savary et al., 2019). Furthermore, plant disease

negatively affects agricultural production, increasing the number

of hungry people. Hunger-related fatalities reached 4 million in

2020, 10 times the number of COVID-19 fatalities in the same

period, and most of them are distributed in less developed

countries and regions (He and Krainer, 2020). If plant diseases

are not discovered in time, food insecurity will increase.

Therefore, plant disease identification has been a crucial issue

in recent years.

Accurate and rapid plant disease detection algorithms can

help reduce the risk of spreading plant pests and economic

losses, which is also conducive to developing automatic

agricultural production. Not only does the level of automation

in agriculture require higher yields, but the quality is also a

critical factor (Saleem et al., 2019; Vishnoi et al., 2021). To

improve the quality of crops, protecting plants from potential

diseases is crucial, which also helps reduce food production

costs. Nevertheless, methods based on manual screening require

high labor costs, and inspectors need to have relevant domain

knowledge (Ferentinos, 2018). Therefore, designing an

automated detection system for plant disease is meritorious

and necessary.

Recently, image acquisition is becoming easier and easier in

the agricultural field because of the increased use of cameras and

sensors. Intelligent applications based on agricultural images
Frontiers in Plant Science 02
have been widely used in many aspects of agriculture, such as

plant disease and pest detection (Hughes and Salathé, 2015;

Fuentes et al., 2017; Liu et al., 2017; Fuentes et al., 2018; Wiesner-

Hanks et al., 2018; Parraga-Alava et al., 2019; Nazki et al., 2020;

Li et al., 2020; Singh et al., 2020; Fuentes et al., 2021; Fenu and

Malloci, 2021), fruit detection (Gao et al., 2020), yield prediction

(Schauberger et al., 2020), visual navigation (Emmi et al., 2021),

and agricultural robots (Chen et al., 2020). Deep learning

technology has been playing a dominant role in various

detection tasks. This technology can potentially reduce the

negative impacts of plant diseases by promptly estimating the

damage using non-intrusive sensors such as RGB cameras. Deep

learning-based systems have achieved higher recognition and, at

the same time, have contributed with environmental-friendly

tools to perform plant state monitoring. Generally, supervised

learning projects based on deep learning start by defining the

target task, collecting and labeling data, training and optimizing

the network, and finally deploying the model in practical

scenarios for testing. Figure 1 shows the pipeline of a general

deep learning project. In this pipeline, data collection and

labeling are upstream tasks, and training and optimization of

models are downstream tasks. Our work studies the impact of

the upstream task on downstream task performance.

Recent works on plant disease detection aim to design and

optimize the network structure to improve the feature extraction

capability. They assume that datasets are well-annotated and

immutable, and ablation studies are implemented to indicate the

efficiency of each module they proposed. In contrast to previous

works, we argue that datasets with different annotation strategies

will perform differently in a specific task. However, previous

works (Hughes and Salathé, 2015; Fuentes et al., 2017; Liu et al.,

2017; Fuentes et al., 2018; Wiesner-Hanks et al., 2018; Parraga-

Alava et al., 2019; Nazki et al., 2020; Li et al., 2020; Singh et al.,
FIGURE 1

Pipeline of a deep learning project. The dashed box is the focus of our research.
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2020; Fuentes et al., 2021; Fenu and Malloci, 2021) ignored the

impact of the annotation strategy on the detection model. In

addition, image classification systems recently made a giant leap

with the advancement of deep neural networks, which require

sufficient accurate labeled data to be adequately trained.

Nevertheless, acquiring an accurately annotated dataset is not

always feasible due to several factors. For example, practitioners

without computer vision knowledge lack experience on how to

annotate high-quality boxes, while annotators without domain

knowledge are also difficult to annotate accurate object boxes.

Due to these practical challenges, the actual labels often deviate

from the ideal value, which leads to labels that are inconsistent

with the instances. Even though extensive works of deep learning

techniques under class noise exist (Li et al., 2020; Bernhard and

Schubert, 2021; Mao et al., 2021; Xu et al., 2021), it mainly

focuses on computer vision datasets such as MS-COCO (Lin

et al., 2014), PASCAL VOC (Everingham et al., 2010), and

ImageNet (Deng et al., 2009) rather than domain-specific

datasets. In some domains, the definition of an object is

significantly different from generic objects in these typical

datasets, thus bringing annotation ambiguities. The literature

lacks a specific study on inconsistent labels in plant

disease detection.

Collecting images with labels is expensive and challenging in

many scenarios. Many data augmentation algorithms have been

proposed to alleviate this issue as effective and effcient policies

(Cubuk et al., 2019). However, if the specificity of the task is not

considered, implementing data augmentation may affect the

performance gain brought by this technique. In the existing

literature on data augmentation techniques, there is a lack of

analysis of annotation inconsistency caused by the data

augmentation process.

Consequently, in this work, data-centric machine learning

(Miranda, 2021) is proposed to find efficient ways to construct

suitable datasets to improve the performance of artificial

intelligence models. Our main contributions are summarized

as follows:
Fron
1. Four annotation strategies were proposed aiming to find

ways to help practitioners to reduce labeling costs and

improve plant disease detection performance through

an efficient annotation strategy. To the best of our

knowledge, there are no relevant studies on annotation

strategies in plant disease detection.

2. We define five different types of noise to describe

annotation inconsistency and investigate the severity

of the impact on the model’s performance by

perturbing clean bounding boxes. It is the first

quantitative study of annotation consistency in plant

disease detection.

3. We study annotation inconsistency caused by data

augmentation in different scenarios. In addition,
tiers in Plant Science 03
theoretical insights and empirical evaluations are

provided to demonstrate the importance of annotation

consistency to the model’s performance.

4. An interpretability study of the experimental results is

conducted through the visualization method, which can

help us analyze the logic behind recognizing novel data.
A detailed review of datasets and annotation, label

consistency, and data augmentation for anomaly detection in

plants and deep-learning techniques is presented in Section 2.

Annotation strategies and quality analysis are detailed in Section

3. Section 4 shows the experimental results to demonstrate how

annotation strategy and consistency affect the model’s

performance. We found that using a symptom-adaptive

strategy and adopting augmentation with a specific rotation

angle results in better performance. Moreover, we use

visualization techniques to display and analyze the features

extracted by a convolutional neural network (CNN) under

different labeling strategies. In the last section, we give some

conclusions, which will guide subsequent annotation workers.

Overall, this work lays a foundation for data annotation in

intelligent agriculture, inspiring subsequent works in the

related domains, and calling for the community to pay more

attention to the essential issue of annotation strategies

and quality.
2 Related work

In this section, we briefly review recent works related to the

proposed approach. According to the constraints of the latest

advances in plant disease recognition, there is no research work

on annotation strategy. Accordingly, we analyze the logic behind

constructing the dataset through examples presented in

published papers. Regarding annotation consistency, we

discuss noise-related deep learning methods for image

classification and object detection. The related issues of data

augmentation and deep-learning methods are discussed at the

end of this section.
2.1 Datasets and annotation strategy

The construction of datasets is crucial for deep learning

models. Data annotation is an integral part of dataset

construction. Up to now, many datasets related to plant

disease detection have been proposed. Plant Village dataset

(Hughes and Salathé, 2015) was collected from field trials of

crops infected with one disease. Firstly, the technicians collected

leaves from the plant, then placed them against a surface with a

grey or black background. From our observation, most images
frontiersin.org
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contain a whole leaf in a single frame. On the contrary, for crops

such as corn and squash, the leaves were too large to capture in a

single frame while retaining high-resolution, close-proximity

views. In these cases, they took images of different sections of

the same leaf. Li et al. (Li et al., 2020) used VGG16 and

Inception-v3 models to identify different degrees of Ginkgo

biloba diseases. Liu et al. (2017) proposed a new CNN

structure to identify apple leaf disease. Parraga-Alava J et al.

(Parraga-Alava et al., 2019) introduce a coffee leaf images dataset

for classification and segmentation tasks. As with Plant Village,

each image of the Ginkgo biloba dataset (Li et al., 2020), apple

leaf dataset (Liu et al., 2017), and coffee leaf dataset (Parraga-

Alava et al., 2019) contains only one leaf.

Singh D et al. (Singh et al., 2020) create the PlantDoc dataset

for plant disease detection. While labeling the boxes, the authors

made sure that the whole leaf should be present inside the box,

and the size of the bounding box should not be smaller than

approximately 1/8th of the image. Fenu G et al. (Fenu and

Malloci, 2021) released a publicly available field-dataset collected

to diagnose and monitor plant symptoms, called DiaMOS Plant.

Wiesner-Hanks T et al. (Wiesner-Hanks et al., 2018) collected

images of maize leaves taken in three ways: by a hand camera,

with a camera mounted on a boom, and with a camera mounted

on a small unmanned aircraft system. Each bounding box of

DiaMOS Plant (Fenu and Malloci, 2021) and Corn2018

(Wiesner-Hanks et al., 2018) covers the entire leaf, but each

image contains more than one box. Fuentes A (Fuentes et al.,

2017; Fuentes et al., 2018; Fuentes et al., 2021). is one of the

pioneers in plant disease detection. Unlike previous datasets,

annotations in (Fuentes et al., 2018; Fuentes et al., 2021) are

more complex because they allow one image or leaf to contain

multiple classes of diseases.

Although there are many related works in plant disease

detection, they ignore the discussion of annotation strategies.

They focus on optimizing the model rather than the data
Frontiers in Plant Science 04
preprocessing part. Table 1 shows the details of the

above datasets.
2.2 Annotation consistency analysis

Real-world data is never perfect and often suffer from

annotation consistency. Generally, annotation consistency will

suffer from the degenerated label set, including wrongly assigned

class labels and inaccurate, redundant, and missing bounding

boxes, which can impact interpretations of the data, models

created from the data, and decisions made based on the data.

Hence, most current learning algorithms have integrated various

approaches to improve their discriminative capability in noisy

environments, but the degenerated label set can still introduce

severe negative impacts.

Zhu X et al. (Zhu and Wu, 2004) differentiate noise into two

categories: class noise and attribute noise. Then they analyze

their impacts on the model’s performance separately. Flatow D

et al. (Flatow and Penner, 2017) examine how sensitive the CNN

model is to noise in the training set, particularly when the

training set contains mislabeled or subjectively-labeled

examples. They took an approach to simulate noise in the

training set, which introduced a hyperparameter P to control

the mislabeling proportion. Nazari Z et al. (Nazari et al., 2018)

evaluated the class noise impact on the performance of three

widely used machine learning algorithms namely discrete

legendre transforms, support vector machine, and k-nearest

neighbor. Xu M et al. (Xu et al., 2019) studied the missing

instance-level label problem in object detection. They presented

a novel framework that gives a trade-off between collecting fewer

annotations and building a more accurate object detector. Liu

et al. (2022) designed a novel noise-based data augmentation

method to improve robustness for models towards unforeseen

malicious inputs in black-box test settings.
TABLE 1 Details of related datasets. Cls, Seg, and Det denote classification, segmentation, and detection respectively.

Datasets Environment Plant Task Images/
Instances

Classes Main annotation strategy

Plant Village(2015) (Hughes and
Salathé, 2015)

Laboratory Multiple Cls 54309/- 38 One whole leaf per image

Ginkgo biloba(2020) (Li et al., 2020) Laboratory and
field

Ginkgo Cls 3727/- 3

Apple Leaf(2017) (Liu et al., 2017) Laboratory Apple Cls 13689/- 4

RoCoLe(2019) (Parraga-Alava et al.,
2019)

Field Coffee ClsSeg 1560/- 4

PlantDoc(2020) (Singh et al., 2020) Internet Multiple Det 2598/9216 27 One whole leaf per bounding box, multiple bounding
boxes per imageDiaMOS(2021) (Fenu and Malloci,

2021)
Field Pear Det 3505/- 6

Corn2018(2018) (Wiesner-Hanks et al.,
2018)

Field Maize Det 18222/105705 1

Tomato(2018) (Fuentes et al., 2018;
Fuentes et al., 2021)

Field Tomato Det 8927/49662 11 Part of a leaf or whole leaf per bounding box, multiple
bounding boxes per image
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Li Y et al. (Li and Chao, 2021) analyzed crop pest and disease

datasets regarding data quality. The results showed that the

selected good data with less quantity could reach the same

performance with all training data in some recognition tasks.

In other words, the limited good data can beat a lot of low-

quality data. In addition, they found that high-quality data can

bring about 10% to 20% performance improvement. Algan G

et al. (Algan and Ulusoy, 2021) make a comprehensive survey of

methodologies centered explicitly around deep learning in the

presence of noisy labels. Most works focus on classification and

object detection tasks on typical datasets rather than domain-

specific ones.

In plant disease detection, the definition of the object is

significantly different from generic objects in MS-COCO and

PASCAL VOC, because the symptoms appear in a specific part

of the leaf. In contrast, almost all bounding boxes in the MS-

COCO dataset cover the complete target except for the

incompletely displayed objects. However, there is no related

work on noise impact for plant disease detection tasks.
2.3 Inconsistency from data augmentation

Data augmentation is usually used to solve shortages and

unbalanced data problems. Almost all methods used data

augmentation techniques to improve the feature diversity on

plant disease recognition tasks, such as classification and

detection. Xu M et al. (Xu et al., 2022) performed a

comprehensive survey on image augmentation for deep

learning with a novel informative taxonomy. They considered

that algorithms should be split into three categories: model-free,

model-based, and optimizing policy-based. The model-free

category employs standard image processing methods such as

geometry and color changes. Barbedo J G A et al. (Barbedo,

2019) explored using individual lesions and spots for the task

rather than considering the entire leaf. Specifically, they

expanded the original Plant Village dataset with various

partitioning methods based on the symptoms of the disease.

The extended dataset includes local disease areas such as a single

lesion and clusters of lesions. However, there are some

limitations to be aware of when using this method. For

example, the cropped regional symptoms are more similar to

other disease symptoms, which will mislead the model in

judging the category. In contrast, a model-based method

leverages trainable image generation models to achieve data

augmentation. Xu et al. (2021) proposed a novel data

augmentation paradigm that can adapt variations from one

class to another. For example, a healthy tomato leaf image is

translated into a powdery mildew leaf image. In this way, the

data variation in the variation-minority classes is enlarged by the

variation-majority class, which can improve the accuracy of

abnormality recognition. However, such methods usually
Frontiers in Plant Science 05
require two steps: the first step is generating the image, and

the second is implementing the classification or detection task.

The model’s performance for downstream tasks depends on the

quality of the data augmentation of the generative model.

Besides, the optimizing policy-based approach aims to find the

optimal operations or their combinations. Some deep learning

theories (Cubuk et al., 2019; Cubuk et al., 2020) were proposed

to search for improved data augmentation policies

automatically. However, regarding plant disease detection

(Kobayashi et al., 2018; Afzaal et al., 2021), data augmentation

strategies are empirical rather than based on an automatic search

method. These works generally focus on methodological

refinement but lack discussion of label consistency in the

extended dataset. In real scenarios, original inconsistent labels

are extended, and new inconsistent labels may also be generated

when we implement data augmentation. This paper aims to

study the impacts of inconsistent labels generated from

data augmentation.
2.4 Data-centric deep-learning technics

CNN-based architectures in deep learning are proven to be

the best in learning representations and solving complex

computer vision and general artificial intelligence problems.

Researchers revisited the architecture of CNNs throughout the

recent years and proposed a series of famous works. A typical

view is that the feature extractor’s capacity benefits from several

factors, such as a wider and deeper network, a higher resolution

input, and more powerful hardware (Tan and Le, 2019; Tan and

Le, 2021). It is also applied to Transformer-based methods,

which have been widely used in computer vision tasks (Liu et al.,

2022). An interesting observation in (Tan and Le, 2019): with a

similar architecture, by scaling the network depth, width, and

input resolution, the image classification performance on

ImageNet only improved by 2.4%, while the number of

parameters increased from 22M to 208M. In (Liu et al., 2022),

the cost becomes extensively huge, from 88 million increase to 3

billion. It is unwise to spend a considerable cost for a slight

improvement in practical applications.

Data-centric deep learning approaches attempt to improve

performance by analyzing the relationship between data quality,

quantity, and networks. Some studies (Schmarje et al., 2022;

Davani et al., 2022) have shown that inconsistent labels are

unavoidable in the annotation process. Even where there is a

single answer, disagreement among annotators is ubiquitous,

making it difficult to decide on a gold standard. This

disagreement may be generated from the annotator, the data,

and the context (Basile et al., 2021). Reasonable use of noisy

labels can make the model achieve the same performance as

using clean labels (Uma et al., 2021). Therefore, the community

also devotes itself to detecting and fixing inconsistencies
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generated by the data collection and annotation. Up to now, it

remains an open issue. For example, a poor instance

initialization could render failure during training (Liu et al.,

2022). This conclusion is the same as our intuition: with the

same data size, a clean dataset leads to better performance.

This paper is more concerned with the annotation strategy

and consistency in object detection, which the above studies

ignored. Data annotation strategies and consistency are crucial

in object detection, affecting feature extraction performance

from objects. To our best knowledge, there are no related

works to analyze annotation strategy and consistency in plant

disease detection.
3 Materials and methods

Depending on the disease of the plant, the form of the

disease appears in various ways in the plant. Some occur only in

small parts of the leaf, and some occur in a wide range. In

addition, some diseases can be locally observed and diagnosed,

but some diseases can be diagnosed only when viewed in a wider

area or even as a whole. Therefore, it is necessary to change the

strategy of annotation according to the disease. At the same time,

it should also be considered how these various annotation

strategies will affect the performance of the detection system.

In this section, we first introduce the datasets and propose four

strategies to annotate plant disease regions. Furthermore, we

redefine the concept of annotation inconsistency related to plant

disease detection tasks. To explore the robustness of the neural

network to inconsistency, noisy bounding boxes are simulated

by perturbing the clean ones. As a complement, we study the

annotation inconsistency due to data augmentation in real

scenarios. An overview of the annotation analysis involved in

this work is shown in Figure 2.
Frontiers in Plant Science 06
3.1 Dataset

In this paper, paprika is used as a target plant for annotation

analysis in plant disease detection, and its target diseases are four

leaf diseases, gray mold, powdery mildew, spider mite, and

spotting disease, and one fruit disease, blossom end rot. Plants

are cultivated in controlled greenhouse environments. Paprika is

used because is a target crop in our project. The dataset consists

of 5928 paprika images. The samples of leaf diseases were

collected in the well-lit greenhouse during the morning time,

while fruit disease was collected in the well-lit greenhouse and

laboratory. The dataset was collected in batches over the entire

plant growth cycle by different mobile devices and other digital

cameras to ensure data diversity. Resolutions range from

320x320 to 3024x4032. In addition, our dataset is much more

complex because more than one disease may appear on a single

leaf. Experts provide plant disease domain knowledge, and

images are annotated by annotators and finally corrected by

experts. After the annotation, the domain experts observed that

some blurry instances should not have been annotated because

they cannot fully guarantee the accuracy of these instances. In

other words, these instances have a low confidence score.

Experts also ensure the accuracy of the bounding box through

careful screening and inspection. Finally, the blurry instances

were filtered out to analyze the impact on model performance.

Samples and annotation strategies are shown in Figure 3. More

details are shown in Table 2, where the number of different

disease instances is imbalanced.
3.2 Annotation strategy

In this work, the performance of neural networks to detect

plant diseases under different annotation strategies is explored.
FIGURE 2

An overview of annotation analysis in this work. It contains four aspects: annotation strategy, annotation inconsistency, annotation inconsistency
due to data augmentation, and performance.
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A publicly available toolbox called ‘Labelimg’ is used to annotate

our dataset. We consider four annotation strategies for all

categories depending on the region and symptom: local label,

global label, semi-global Label, and symptom-adaptive label, as

shown in Figure 3.

3.2.1 Local label
Intuitively, humans expect the bounding box to cover the

object as tightly as possible. In this case, we annotate suspicious

areas by using a small bounding box, and the background area in

a box is much less. This method leads the neural network to

focus more on learning the feature representation of the disease

area, which can increase the inter-class feature distance. For

instance, in powdery mildew and spider mite diseases, the

boundary of pathological features is hard to distinguish for

labelers, which will significantly challenge keeping annotation

consistency. Thus, we assume that too many bounding boxes not
Frontiers in Plant Science 07
only increase the annotation cost, but may also cause problems

in annotation consistency, affecting the model’s performance.

3.2.2 Global label
In this case, bounding boxes cover the whole fruit or leaf and

include more background and suspicious instances. This is hard

to focus on extracting the feature of the disease region for CNNs.

Furthermore, when multiple diseases are on a leaf, it cannot

simultaneously assign multiple labels to the same leaf. As shown

in Table 1, in the dataset based on the global labeling strategy,

each leaf contains only one disease. When two categories of

global labels overlap, the detection capacity of CNNs may be

weakened. This overlap may interfere with the feature extractor

for classification, reducing the inter-class distance. Nevertheless,

the global label annotation strategy is more widespread because

it does not need to distinguish disease boundaries. When a leaf

contains only one disease class and symptoms vary significantly
TABLE 2 Details of bounding box under different annotation strategies.

Category Images Number of Bounding Boxes

Local Semi-global Global Symptom-adaptive

Blossom end rot 1183 1577 + 39 1243 + 32 1243 + 32 1577 + 39

Gray mold 441 662 + 47 598 + 28 598 + 28 662 + 47

Powdery mildew 416 1372 + 96 417 + 25 417 + 25 417 + 25

Spider mite 420 2180 + 245 1239 + 93 1239 + 93 1239 + 93

Spotting disease 3468 9525 + 347 4021 + 122 4021 + 122 9525 + 347

Total 5928 15316 + 774 7518 + 300 7518 + 300 13420 + 551
C+R is used to denote the total number of labels, where C contains clear instances and R contains blurred instances used as redundant labels in Section 3.3.1.
A

B

FIGURE 3

Four annotation strategies. (A) Blue boxes, red dashed boxes, and yellow boxes represent local, semi-global, and global labels, respectively.
(B) Symptom-adaptive annotations are shown. Diseases with specific symptoms are labeled by semi-global boxes, while others are labeled
by local boxes.
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from disease to disease, the global label is sufficient for the model

to learn representative features. However, real-world scenarios

are always unpredictable. For instance, a leaf may suffer from

more than one disease. Therefore, global labels cannot meet the

needs of complex scenarios.

3.2.3 Semi-global label
We operate a larger bounding box than local labels to

annotate the suspicious area. A semi-global bounding box

merges local labels of the same class in one leaf, which leads to

a bounding box that may include more than one instance of the

same class. As a result, a bounding box contains the disease area

and more background. Although more background in one box

may affect the model’s performance in extracting disease

features, the semi-global label strategy significantly reduces the

annotation cost and improves annotation consistency. It does

not need to distinguish the boundaries of multiple suspicious

regions. Annotation under the semi-global is beneficial to extract

more representative features and improve the performance for

specific diseases due to better annotation consistency, even if it

includes some background information.

3.2.4 Symptom-adaptive label
Although local labels are more conducive to the neural

network to learn the characteristics of lesions, annotation with

a single strategy is problematic in meeting the demand for

labeling complex datasets. As mentioned above, even an

experienced annotator cannot distinguish the boundary of

certain diseases, resulting in many noisy labels. Barbedo J G A

et al. (Barbedo, 2019) divided symptoms into five categories:

scattered small, scattered large, isolated, widespread, and

powdery. They use different tailoring methods for diseases

with various symptoms to implement data augmentation,

which improves the accuracy of disease classification. Inspired

by their work, we believe that the annotation strategies employed

by different symptoms also should be different. In this work, a

principle is proposed to divide symptoms into two categories:

boundary-separable and boundary-inseparable.
Fron
● For a leaf with a clear color difference between the

abnormal and normal area, and with a distinguishable

boundary, we consider it belongs to boundary-separable

diseases.

● Suppose the color of the lesion area gradually fades from

center to edge of the leaf, and the color is similar to the

normal area. In this case, we consider it belongs to

boundary-inseparable diseases.
Specifically, in the paprika dataset, blossom end rot, gray

mold, and spotting disease belong to boundary-separable

diseases because their lesions are distinct from healthy areas.

On the contrary, in powdery mildew and spider mite, it is hard
tiers in Plant Science 08
to demarcate the boundaries of instances of those classes to

annotate precisely. Therefore, these two categories belong to

boundary-inseparable diseases. A local label strategy is

performed for boundary-separable diseases, which helps the

neural network better learn the lesion area’s features.

Simultaneously, a semi-global label strategy is performed for

boundary-inseparable diseases, which avoids potential problems

caused by labeling inconsistencies. It is worth noting that, like

the local labeling strategy, the semi-global labeling strategy also

allows two or more diseases to appear on a leaf.
3.3 Annotation inconsistency

Fully supervised object detection (FSOD) requires that each

instance should be annotated by an accurate bounding box.

However, affected by empirical and systematic errors, the quantity

and attributes of the factual bounding boxes in the label set cannot

accurately represent all instances. In studies (Zhu and Wu, 2004;

Flatow and Penner, 2017; Nazari et al., 2018), this issue is called

label noise, while in this paper, call it annotation inconsistency.

From a novel perspective, class noise is one of the annotation

inconsistencies. Although CNNs are relatively robust to class noise,

it is worthwhile to investigate in a more comprehensive study of

inconsistency. We define five different types of inconsistency

existing in real scenarios according to the practical task of plant

disease detection into quantity-based inconsistency and attribute-

based inconsistency. Figure 4 shows examples of several different

types of inconsistency.

3.3.1 Quantity-based inconsistency
Due to subjective or objective factors, the number of

bounding boxes deviates from the correct during the

annotation process. We call quantity-based inconsistency. It

mainly includes redundant labels and missing labels.

Redundant Label. A redundant label is used to describe an

instance that should not have been labeled or is labeled multiple

times. In a plant disease detection task, some blurred disease

areas are generated due to the focus problem of the camera.

These blurry disease areas are sometimes annotated. In this

paper, we refer to a bounding box that includes a blurry instance

as a redundant label. An example of a redundant label is shown

in Figure 4A.

Missing Label. Satisfactory results have been achieved on

large-scale detection benchmarks by FSOD methods. FSOD

assumes that every example belonging to the target class

should be annotated. A missing label is used to describe an

instance that is ignored. The missing label profoundly affects the

performance of FSOD methods. We also focus on studying the

relationship between missing labels and the model ’s

performance on plant disease detection. An example of a

missing label is shown in Figure 4B.
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3.3.2 Attribute-based inconsistency
Bounding boxes have several representations in object

detection tasks. The VOC-based representation use (c,xmin,ymin,

xmax,ymax) o represent the box’s properties. In the COCO-based

representation method,.s used to represent the box’s attribute,

where.epresent the category, coordinates of the upper left corner,

and coordinates of the lower right corner of the box, respectively.

In YOLO-based methods, (c, x, y, w, h) enotes the attribute of the

bounding box, where.enotes the coordinates of the center point,

and (w, h) epresents the width and height of the bounding box. All

these methods explicitly or implicitly represent the box category,

position, and size. Due to random factors and human error,

instances are assigned a bounding box with inaccurate attributes.

In this paper, three kinds of attribute inconsistencies are defined:

class noise, position inconsistency, and size inconsistency.

Class noise. A universal noise is assigning an instance with a

wrong category, which called class noise. This paper only

discusses of the impact of random class noise on the model’s

performance rather than empirical errors. An example of class

noise is shown in Figure 4C.

Position inconsistency. Human annotators are accustomed

to using the center point to represent the position of an instance.

Also, the bounding box’s centric coordinates are crucial for the

model to regress the target’s position. In this paper, position

inconsistency refers to the degree of centric coordinate deviation

between noisy ground truth and original ground truth. An

example of position inconsistency is shown in Figure 4D.
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Size inconsistency. The size of a bounding box determines

how well the frame fits the target. Just as a person needs to wear

well-fitting clothing, each disease area needs to be allocated a

reasonably sized bounding box. In this paper, size inconsistency

is used to describe that a bounding box does not match the size

of the instance. An example of size inconsistency is shown

in Figure 4E.
3.4 Inconsistency from data
augmentation

Data augmentation is widely used in machine learning as an

essential technique to improve performance. It usually consists

of two parts: image augmentation and label augmentation. Sort

by order, data augmentation can be divided into two cases:

Case 1. First, images are augmented and divided by version.

Then, labelers annotate various versions of the image. In this

case, data augmentation may lead to contradictory examples,

which cause the same instance may be labeled with a different

category, position, and size. Meanwhile, it will increase a

considerable annotation cost.

Case 2. In the first step image annotation is conducted, and

then followed by data augmentation. This way is preferred in

most cases because it can save annotation cost. Nevertheless, in

this case, inconsistent labels are also extended while
A B

D E F

C

FIGURE 4

Different types of annotation inconsistencies. Blue bounding boxes represent the ground truth. (A) Redundant labels. The red dashed box
includes a blurry instance. (B) Missing labels. Three bounding boxes are missing. (C) Class noise. There are two instances assigned the wrong
class label. (D) Position inconsistency. The yellow bounding boxes deviate from the correct position. (E) Size inconsistency. The yellow
bounding boxes do not cover the actual object as tight as possible. (F) Mixed attribute inconsistency. A mix of three inconsistencies, class noise,
position inconsistency, and size inconsistency. Best view in color.
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implementing the data augmentation, which can lead to

persistent misjudgment of some examples by the network.

We investigate the impact of inconsistency on the

performance gain due to data augmentation. In addition, we

observed that some geometric-based data augmentation

methods change the size consistency of the labels. For

example, rotation and cropping are the most common

geometry-based data augmentation methods. The bounding

box is automatically adjusted to fit the instance correctly when

the image is cropped. In contrast, random rotation can cause the

size of the bounding box to deviate from the correct and cannot

be fixed automatically. As a complement, we investigate the

impact of inconsistency on the performance gain due to random

rotation. Figure 5 shows the size inconsistency caused

by rotation.
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3.5 Evaluation metrics

The performance of the bounding box detector is evaluated

using the following metrics:

Intersection-over-Union metric (IoU): We utilized a

threshold of 0.5 to capture true positive detections generated

by the model, as:

IoU =
A ∩ B
A ∪ B

����
���� (1)

where A and B represent the ground-truth and predicted

box, respectively.

Mean Average Precision score (mAP): mAP is the area

under the precision-recall curve calculated for all classes.
A B

DC

FIGURE 5

Size inconsistency from rotation. The purple solid line box represents the label box of the original image; the red dotted line box represents the
real position of the label box after rotation; and the purple dotted line box represents the correct position of the label box after rotation. In the
range of 0°-45°, the larger the rotation angle, the larger the size deviation. (A) 0°. (B) 15°. (C) 45°. (D) 90°.
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AP =
1
11 o

r∈ 0,0:1,…,0:9,1½ �
P rð Þ (2)

P rð Þ = max
~r :~r≥r

p ~rð Þ (3)

where, P(r) s the maximum precision for any recall values greater

than r, andp(~r) s the measured precision at recall ~r:
4 Experiments and results
4.1 Implementation

Experiments are performed on our paprika disease dataset,

which includes five annotated disease categories. As mentioned

in the previous section, images in our dataset are fixed, while

trainable instances are different among annotation strategies.

Our dataset was divided into 80% training set, 10% validation

set, and 10% testing set in all experiments. Training is proceeded

on the training set, and then the evaluation is performed on the

validation set. When the experiments achieve the expected

results, the fnal evaluation is done on the testing set. In

experiments related to data augmentation, data augmentation

is only performed on the training set and validation set, ensuring
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that the test set is fixed. YOLO-v5 is a representative work of

real-time detection in the industry. Therefore, we evaluate the

effectiveness of different annotation strategies based on the

YOLO-v5 model. The architecture and the main modules

of YOLO-v5 are shown in Figure 6. To evaluate our methods,

YOLO-v5 was trained and tested on 3 GTX 3090 GPUs and

implemented in PyTorch 1.10.1.
4.2 Annotation strategy

The paprika disease dataset is used to evaluate four

annotation strategies proposed for all categories. The

performances of the different annotation strategies are shown

in Table 3A. We train the dataset using YOLO-v5 architecture

with different scales, from small to extra-large. A smaller model

means that the neural network contains fewer layers and

channels. As a result, a smaller model runs faster and requires

less computation than a larger model. On the contrary, a larger

model has more robust feature representation capabilities but

requires more computation. In addition, for a rigorous

conclusion, we employ a ten-fold cross-validation method for

evaluation. However, we only validate four different annotation

strategies on the YOLO-v5-Extra-large model due to the huge

computational cost of cross-validation. Following the evaluation

method in (Rafało, 2022), we provide the mean precision,

standard deviation, minimum, and maximum for each disease.

Additionally, we compute the median of the mAP. Table 3B
FIGURE 6

The architecture of YOLO-v5. The individual modules included are explained in the diagram.
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shows the detailed statistical test results of ten-fold

cross-validation.

The result indicates that the performances of the same model

are different by using distinct annotation strategies. From the

view of diseases, as for blossom end rot, gray mold, and spotting

disease, compared to larger bounding boxes containing more

background, we found that the best results were obtained when

adopting the local label strategy. The residual theory argues that

the fewer healthy regions (background) a bounding box contain,

the greater the inter-class distance of features, which also

indirectly supports our results. However, powdery mildew and

spider mite do not follow this theory. We consider that this

phenomenon is symptom-related. Specifically, the diseased area

of the former contrasts significantly with the green background,

which is much easier to distinguish for CNNs. On the contrary,

it is hard to distinguish the boundary of suspicious areas for

powdery mildew and spider mite because of small regions and

discontinuous distribution. Therefore, it significantly challenges

the labeler to keep annotation consistency.

The result also shows that the mAP@0.5 of powdery mildew

and spider mite significantly improved by adopting the semi-global

bounding box for annotation. An important reason is that a semi-

global label strategy avoids this tricky problem by merging

suspicious regions. It makes the trade-off better consistency and

less background. Also, it helps decision-makers reduce labeling

costs. Moreover, we found that labeling methods using a single

strategy can perform well in specific classes, but fail to generalize to
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all classes. Symptom-adaptive annotation strategies define a specific

strategy for each disease based on symptoms, which ensures that

each bounding box can be utilized efficiently.

From a perspective of model size, we usually get the best

performance at the extra-large YOLO-v5 model. From small to

extra-large model, the performance is only improved by around 3%,

while the floating-point operations per second (FLOPs) and

parameters considerably increase by approximately twelve times.

Especially from middle to extra-large size, the model’s performance

is only improved by around 1%. However, adjusting the annotation

strategy improves the model’s performance by more than 9%.

According to this observation, we believe that an effective

annotation strategy can reduce the cost of annotation and

significantly improve the model’s performance. Therefore, it is

worth exploring how to design a more efficient annotation

scheme for agricultural plant disease detection.
4.3 Annotation inconsistency

In this part, we analyze the impact of inconsistency on the

model’s performance, including redundant labels, missing labels,

class noise, position inconsistency, and size inconsistency. We

show the results of the YOLO-v5-x model under the symptom-

adaptive label strategy. We treat the annotated boxes of blurred

instances as redundant labels. The number of blurred instances for

each disease is shown in Table 2. Table 4 shows the comparison of
TABLE 3 (A) Result of four different annotation strategies trained on various scales of YOLO-v5. L, SG, G, and SA denote local, semi-global,
global, and symptom-adaptive respectively.

(A) YOLO-v5-Small YOLO-v5-Middle YOLO-v5-Large YOLO-v5-Extra-large

L SG G SA L SG G SA L SG G SA L SG G SA

Blossom end rot (%) 91.9 87.2 83.6 92.1 91.7 90.5 84.3 93.7 92.6 90.9 88.4 93.9 94.2 91.6 86.9 94.3

Gray mold (%) 88.5 80.3 79.3 89.3 87.7 82.1 78.6 90.8 89.6 82.6 80.6 90.6 89.0 84.4 83.1 90.8

Powdery mildew (%) 62.1 82.8 80.2 83.1 66.3 83.6 79.8 84.7 63.9 84.5 79.7 87.1 65.3 85.7 85.7 85.3

Spider mite (%) 62.5 78.9 76.9 82.0 68.6 84.9 77.1 84.5 67.0 86.6 75.6 85.6 65.9 84.8 78.1 88.6

Spotting disease (%) 91.0 79.8 79.6 93.0 93.2 83.9 81.6 93.8 93.9 84.0 80.2 94.3 94.6 84.5 78.6 94.0

mAP@0.5 (%) 79.2 82.0 79.9 87.9 81.5 85.0 80.3 89.5 81.4 85.7 80.9 90.3 81.8 86.2 82.5 90.6

Parameters (M) 7.2 21.2 46.5 86.7

FLOPs (B) 16.5 49.0 109.1 205.7

(B) YOLO-v5-Extra-large *
Local Semi-global Global Symptom-adaptive

Blossom end rot (%) 93.8 ± 0.6 (92.9~94.7) 91.1 ± 0.9 (89.9~93.1) 86.4 ± 0.7 (85.2~87.6) 93.7 ± 0.4 (93.4~94.6)

Gray mold (%) 89.2 ± 1.2 (87.6~91.2) 84.1 ± 1.2 (82.5~86.4) 83.6 ± 1.1 (81.0~85.7) 92.1 ± 0.9 (88.9~92.1)

Powdery mildew (%) 68.1 ± 1.5 (65.1~71.6) 85.6 ± 1.0 (83.4~87.3) 85.5 ± 0.8 (84.0~87.2) 85.7 ± 0.9 (83.8~87.1)

Spider mite (%) 66.0 ± 1.9 (62.9~69.7) 86.0 ± 0.9 (85.1~88.2) 78.9 ± 2.0 (75.9~83.4) 88.5 ± 1.2 (86.1~90.4)

Spotting disease (%) 94.3 ± 0.6 (93.4~95.1) 84.9 ± 1.1 (82.9~86.4) 78.8 ± 1.4 (76.4~82.3) 94.1 ± 0.4 (93.4~94.7)

mAP@0.5 (%) 82.2 ± 0.7 (81.2~83.4) 86.4 ± 0.5 (85.4~87.2) 82.6 ± 0.7 (81.7~84.1) 90.4 ± 0.4 (89.4~91.3)

Median of mAP@0.5 (%) 82.2 86.3 82.5 90.4
frontiers
* The values inside of the parenthesis represent the minimum and maximum values. Ten-fold cross-validation result of four different annotation strategies trained on YOLO-v5-Extra-large
model. Bold fonts and background indicate the best performance (Maximum).
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model’s performance on the label set with and without the redundant

label. As for missing labels and class noise, we randomly perturb or

remove the bounding box, where the probability ranges from 5% to

50%. In YOLO-based methods, (c, x, y, w, h) enote attribute of a

bounding box, where (x, y) enotes the coordinates of the center point,

and (w, h) epresents the relative width and height of the bounding

box. I used to indicate the deviation degree of position inconsistency

and size inconsistency, where. I range from 5% to 50%. The

perturbing method is shown in Eq. 4. In this way, we can analyze

whether the different types of inconsistency have the same impact on
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each disease. Finally, we add three attribute noises simultaneously,

which we call mixed attribute inconsistency.

xinc = x ± 0:5*Δx*w,   yinc = y ± 0:5*Δy*h

winc = w ± Δw*w,   hinc = h ± Δh*h

(
(4)

where xinc,yinc,winc,hinc enote the attribute of a bounding box

after perturbing. re perturbation coefficients. While I qual to

30%, the Δx,Δy,Δw, Δh re in the range of [-0.3, 0.3]. Note that

Eq.4 is performed on every bounding box in the training data.

As shown in Figure 7, the training accuracy linearly

decreases with the increasing level of annotation inconsistency

but varies among different types of inconsistency. Our

observations are consistent with those observed in related

work on noise. In the five types of inconsistency, positional

inconsistency devastated the model’s performance. Conversely,

the model is less sensitive to size inconsistency and missing

labels, but the accumulated size inconsistency and missing label

can still cause severe problems for the model. From the

decreasing tendency, diseases with fewer instances are more

susceptible to inconsistency. For example, when the mixed

attribute inconsistency continued to increase, the average
TABLE 4 Comparison of with(w) or without(w/o) redundant label.

Category w Redundant Noise w/o Redundant Noise

Blossom end rot (%) 91.2 94.3 (+3.1)

Gray mold (%) 84.8 90.8 (+6.0)

Powdery mildew (%) 80.9 85.3 (+4.4)

Spider mite (%) 82.1 88.6 (+5.5)

Spotting disease (%) 91.5 94.0 (+2.5)

mAP@0.5 (%) 86.1 90.6 (+4.5)
Bold fonts indicate the best performance in comparative experiments (Maximum).
A B

D
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C

FIGURE 7

Sensitivity of YOLO-v5 extra-large model to different types of inconsistency. The mAP denotes and mAP@0.5.
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precision of gray mold, powdery mildew, and spider mite

diseases dropped from around 90% to 0.
4.4 Inconsistency from data
augmentation

In section 3.4, we discussed label inconsistencies caused by

data augmentation. Figure 8 shows the experimental results,

where Case 1 and Case 2 correspond to the two cases in the

previous section. For fairness of comparison, we implement data

augmentation with the same amount and policies for Case 1 and

Case 2. Data augmentation policies include horizontal flip,

vertical flip, center symmetry, and specific rotation ± (9, 180°).

The experimental results show that the mAP@0.5 of Case 1 is

always higher than that of Case 2, which indicates Case 1 is more

robust to random errors than Case 2. However, Case 1 cannot be

adopted when the dataset is enormous because the labeling cost

will linearly increase. On the other hand, data augmentation by

flipping and rotating by a specific angle can improve the model’s

performance on our dataset even if the label set is inconsistent.

In addition, random rotation can lead the size of the rotated

box to deviate from the correct, causing size inconsistency.

Table 5 shows the results of operating random rotation, right-

angle rotation, and flipping. The results show that the

inconsistency caused by rotation affects the performance gain

brought by data augmentation to a certain extent. In the range of

0°-45°, the larger the rotation angle, the smaller the performance

gain obtained by the model.
Frontiers in Plant Science 14
4.5 Visualization

The community often criticizes the interpretability of CNNs,

since these networks usually look like complicated black boxes.

Therefore, the interpretability of CNNs has received extensive

attention. For example, the class activation map (CAM)

(Selvaraju et al., 2017; Muhammad and Yeasin, 2020; Wang

et al., 2020; Jiang et al., 2021) focuses on making sense of what a

model learns from the data or why it behaves poorly in a given

task. Eigen-CAM (Muhammad and Yeasin, 2020) has proven to

be a very efficient and convenient visualization method, which

takes advantage of the principal components to improve the

weights. It works with all CNN models without the need to

modify layers or retrain models. More conveniently, Eigen-CAM

can visualize the activation map of any layer in the neural

network, which helps us understand the feature extraction of

different layers. As shown in Figure 9, we compare the class

activation maps learned by the YOLO-v5-x model under

different annotation strategies. Cross-Stage-Partial-connections

(CSP) is a crucial component of YOLO-v5 to implement a

feature pyramid. As Figure 6 shows, CSP modules No. 2, 3, 4,

and 5 connect the backbone to the bottleneck, and CSP modules

No. 6, 7, and 8 connect to the prediction layer. Therefore, we

extracted the output of all CSP modules in the YOLO-v5 model

for visualization to understand what the CNN learns.

Figure 9 shows the visualization results of YOLO-v5-x model

learning on datasets with different annotation strategies. We

observed that the first two CSP modules can almost learn the

edges and veins of leaves for all strategies. CSP modules 3, 4, and
FIGURE 8

Comparison of data augmentation schemes in different scenarios. Case 1: expand the image and then annotate the dataset. Case 2: annotate
the dataset first and then expand the dataset.
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5 seem more inclined to capture global features, leading to the

features not being activated under the local labeling strategy. The

last three CSP modules are connected to the output layers, which

extract higher-level semantic features. In the local label strategy,

the red areas are very scattered, which indicates that the model

can focus on local lesions under this strategy. However, for
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boundary-inseparable diseases (refer to row 4 and row 7 of

Figure 9), it is difficult for the model to accurately regress the

location of multiple small lesions in the prediction layer because

it cannot demarcate the boundaries of symptoms. It leads to low

performance. On the contrary, for boundary-separable diseases

(refer to row 1 of Figure 9), the local label strategy can accurately
FIGURE 9

Class activation maps for three annotation strategies. We visualize all the CSP modules in the YOLO-5-x model from left to right. Rows 1-3, 4-6,
and 7-9 show a sample of gray mold, powdery mildew, and spider mite, respectively. Class activation map (CAM) shows the output of the
prediction layer. The red areas represent the areas that the model focuses on. From red to blue, the level of attention gradually decreases. Best
viewed in color.
TABLE 5 Comparison of different rotation angles for data augmentation in Case 2.

Category OriginalDataset Specific rotation
(±90°, 180°)

Random rotation
(0°-5°)

Random rotation
(0°-15°)

Random rotation
(0°-30°)

Random rotation
(0°-45°)

Blossom end
rot (%)

94.3 95.3(+1.0%) 95.1 (+1.0%) 94.9 (+0.6%) 94.0(-0.3%) 94.2(-0.1%)

Gray mold
(%)

90.8 95.7(+4.9%) 95.7 (+4.9%) 94.1 (+3.3%) 92.4 (+1.6%) 91.4 (+0.6%)

Powdery
mildew (%)

85.3 90.2(+4.9%) 89.5 (+4.2%) 88.7 (+3.4%) 87.5 (+2.2%) 87.0 (+1.7%)

Spider mite
(%)

88.6 89.9(+1.3%) 89.9 (+1.3%) 89.6 (+1.0%) 89.1 (+0.5%) 88.8 (+0.2%)

Spotting
disease (%)

94.0 94.5(+0.5%) 94.8 (+0.8%) 94.1 (+0.1%) 94.5 (+0.5%) 94.1 (+0.1%)

mAP@0.5 (%) 90.6 93.1(+2.5%) 93.0 (+2.4%) 92.3 (+1.7%) 91.5 (+0.9%) 91.1 (+0.5%)
The original dataset denotes the dataset without data augmentation. Bold fonts indicate the best performance in comparative experiments (Maximum).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1037655
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Dong et al. 10.3389/fpls.2022.1037655
return the location of the disease. In addition, under the global

label strategy, the features of the output layer are not activated.

Although the model regresses a global bounding box to avoid the

problem of boundary demarcation, the model does not pay more

attention to the lesion area, which will lead to the model will

miss detection if the lesions are small (refer to the last column of

Figure 9). Therefore, the symptom-adaptive label strategy is used

on our dataset, which enables the model to achieve good

performance for each disease detection.
5 Discussion

Which annotation strategy is recommended? In this part,

we compare the pros and cons of four annotation strategies. The

local label strategy has advantages that it can maximize the inter-

class distance and reduce the intra-class distance. Meanwhile,

more instances can be obtained from a local label strategy when

the dataset is limited. Thus, the local label is often adopted in

plant disease detection tasks. A local label can also support

deeper tasks. For example, the severity of the disease can be

judged by calculating the ratio of the disease area to the whole

leaf. However, it is difficult for even humans to annotate

precisely for boundary-inseparable diseases, which reduces the

model’s performance. Therefore, a semi-global labeling scheme

is a peaceful solution for these specific categories. We also

visualize the rate of change in performance based on

annotation strategy in Figure 10. As shown in Figure 10,

symptom-adaptive strategy shows 10.76%, 5.10%, and 9.82%

better than local strategy, semi-global strategy, and global

strategy respectively. The symptom-adaptive annotation

strategy achieves the best performance in almost all disease

categories, which is a way to trade off annotation cost and the

model’s performance. Although related works (Hughes and

Salathé, 2015; Liu et al., 2017; Wiesner-Hanks et al., 2018;

Parraga-Alava et al., 2019; Li et al., 2020; Singh et al., 2020;

Fenu and Malloci, 2021) that employ a global labeling strategy
Frontiers in Plant Science 16
have also achieved good results, we observe that each leaf of

these datasets contains only one disease. Therefore, the global

label strategy is a good choice for relatively simple datasets. As

for a complex dataset containing multiple diseases on one leaf,

we do not advocate the global labeling strategy. Through

visualization analysis, we found that when there is only a

single lesion on the leaf, it is tough for CNN to focus on

smaller lesion areas under the global label strategy.

Furthermore, annotating a leaf with more than one disease is

unavailable under a global label strategy. We cannot give the best

solution due to the different subsequent tasks and datasets.

However, we recommend a symptom-adaptive label strategy

for plant disease detection, mainly consisting of local and semi-

global label strategies. In addition, it allows multiple diseases to

be annotated on the same leaf while reducing annotation costs to

a certain extent.

Annotation consistency. Annotation consistency is an

essential indicator in evaluating the quality of data. Li Y et al.

(Cubuk et al., 2019) concluded that limited good data could beat

a lot of bad data. In our work, we found that datasets with

inconsistent labels (bad data) caused a much more significant

drop in performance than missing labels (limited good data),

which is consistent with their conclusion. Although achieving

50% of any inconsistency levels is almost impossible, it is

possible to reach 15%. Figure 7 shows that the model’s

performance decreased to less than 70%, with the mixed

attribute inconsistency level increasing to 15%. In contrast,

with 30% of the labels missing, the model’s performance is still

above 70%. Therefore, we argue that an inconsistent label may

significantly impact the network model more than a missing

label. Besides, the results in (Liu et al., 2022) show that the CNN

method can achieve the same performance as a clean dataset on

a dataset with 10% label noise with advanced annotation

correction techniques. Nonetheless, we still recommend that

annotators strive to improve the consistency and accuracy

during the annotation process rather than using correction

techniques directly.
FIGURE 10

Rate of change in performance based on annotation strategy. L, SG, G, and SA denote local, semi-global, global, and symptom-adaptive
respectively. The data comes from the YOLO-v5-Extra-large in Table 3B.
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Data augmentation by random rotation. The result in

Table 5 indicated that when the size inconsistency caused by

the rotation angle is small (the rotation angle is slight), data

augmentation can achieve considerable performance gains,

which is also the logic behind controlling the rotation angle in

a detection task. While for classification and segmentation tasks,

arbitrary rotations do not cause size inconsistencies since the

labels are either image-level or pixel-level in these tasks. The

target’s physical orientation also needs to be considered for

larger rotation angles. In our dataset, however, since the leaves

are oriented arbitrarily, the physical orientation does not need to

be considered. As a result, we can use multiples of 90° of

rotation, vertical flipping, and horizontal flipping, to avoid size

inconsistency generated from a random rotation.

Limitations and future work. Due to the enormous

annotation cost, there is currently a lack of research on

annotation strategies in plant disease detection. Our work

provides guidelines to some extent but still has limitations. For

instance, our dataset only contains no more than 6,000 images.

Hence, we cannot guarantee that we will still reach the same

conclusions on large datasets with ten or one hundred times as

many images as ours. In addition, the performance of deep

learning models may be overestimated due to train-test data

leakage (Nalepa et al., 2019). For a fair comparison, cross-

validation is generally used to evaluate the model ’s

performance, which causes a huge computational cost,

especially in deep learning methods. However, we focus on the

impact of annotation strategy and consistency on the model’s

performance, instead of evaluating the overestimation of the

model performance. In addition, we emphasize the tendency of

different types of consistency to lead to significant differences in

model performance rather than obtaining a precise value.

Nevertheless, to a certain extent, our work still reflects

annotation strategy’s and consistency’s considerable impacts

on deep learning models. In this work, we get a low-quality

dataset by perturbing clean bounding boxes. Our future work

will focus on automatically repairing the errors in the data labels

and turning the low-quality data into high-quality data.

Furthermore, we observed that disease symptom textures

might be the same or similar across plants, while backgrounds

(leaf vein, fruit, etc.) are different. Using different plant datasets

to solve the problem of open-set domain adaptation across

plants is also the focus of our future work.
6 Conclusion

The detection of plant diseases using digital images is a

challenging task. Deep learning techniques seemingly can

adequately address most of the technical challenges associated

with plant disease classiffication. In this work, we argue that the

model’s performance can be further improved by optimizing the
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annotation strategy instead of increasing the model’s complexity.

Symptom-adaptive annotation strategy improves the feature

representation ability of the model by improving the annotation

consistency. Simultaneously, it can also reduce annotation costs and

requirements for labelers. Moreover, analyzing annotation

inconsistency in advance is necessary for plant disease detection.

Experiments demonstrated that the impacts of inconsistency are

severe in many circumstances. Compared with other kinds of

inconsistency, position inconsistency is more damaging than class

noise. The size inconsistency is usually less harmful but still could

lead to a slight reduction in the performance of learning algorithms.

Furthermore, data augmentation by rotating at random angles can

cause size inconsistency, which affects the performance gain brought

by data augmentation to a certain extent. Therefore, the random

rotation should be used with caution to avoid size inconsistencies.

We found that annotating the same instance multiple times can

offset the impact of random errors when the inconsistency is

unavoidable, but the cost will significantly increase. In addition to

the above work, we also emphasized the interpretability of our

methods. We explained the high efficiency of the symptom-adaptive

strategy through visualization technics. With these conclusions,

instead of adopting some ‘blind’ annotation strategies, noise

handling mechanisms, and data augmentation policies, interested

readers can design their own inconsistency handling approaches to

enhance data quality from their perspectives.
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