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Rice is the world’s most important food crop and is of great importance to

ensure world food security. In the rice cultivation process, weeds are a key

factor that affects rice production. Weeds in the field compete with rice for

sunlight, water, nutrients, and other resources, thus affecting the quality and

yield of rice. The chemical treatment of weeds in rice fields using herbicides

suffers from the problem of sloppy herbicide application methods. In most

cases, farmers do not consider the distribution of weeds in paddy fields, but use

uniform doses for uniform spraying of the whole field. Excessive use of

herbicides not only pollutes the environment and causes soil and water

pollution, but also leaves residues of herbicides on the crop, affecting the

quality of rice. In this study, we created a weed identification index based on

UAV multispectral images and constructed the WDVINIR vegetation index from

the reflectance of three bands, RE, G, and NIR.WDVINIRwas compared with five

traditional vegetation indices, NDVI, LCI, NDRE, and OSAVI, and the results

showed that WDVINIR was the most effective for weed identification and could

clearly distinguish weeds from rice, water cotton, and soil. The weed

identification method based on WDVINIR was constructed, and the weed

index identification results were subjected to small patch removal and

clustering processing operations to produce weed identification vector

results. The results of the weed identification vector were verified using the

confusion matrix accuracy verification method and the results showed that the

weed identification accuracy could reach 93.47%, and the Kappa coefficient

was 0.859. This study provides a new method for weed identification in

rice fields.
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1 Introduction

China is a large country of rice cultivation, and there are more

varieties and classifications of rice in China. Field weeds plague the

development of rice production and are a major factor in

preventing high and stable rice yields (Feng et al., 2018).

According to statistics, weed damage alone in 150 million acres of

arable land worldwide causes more than $7 billion in losses each

year, accounting for approximately one-third of the total damage

caused by diseases, insects, and weeds, and directly causes 125

million tons of grain loss (Liu et al., 2014).Since weeds have a fast

growth rate and well-developed root system, they are in an

advantageous position to compete with rice for growth resources,

thus inhibiting rice growth (Liu et al., 2020).Among them,weeds in

paddy fields are diverse, with complex grass phase and a long

occurrence period (Duarte et al., 2021; De Simone et al., 2022). By

competing with rice for water, fertilizer, light, and space, they

change the microecological environment of paddy fields, affect the

photosynthesis, nutrition, and reproductive growth of rice, and are

intermediatehostsofpests anddiseases, aggravating theoccurrence

of pests and diseases, leading to yield reduction and decline of rice

quality, andcausinghuge losses to rice production (Luoet al., 2020).

In the current rice weed management process, chemical weed

control is currently the most effective and widely used method of

weed control in rice fields, commonly used to spray herbicides

uniformly and covering the entire operating area in a disorderly

“spot” or “sheet” form (Eppinga et al., 2020; Druskin et al., 2021;

Wang et al., 2021). The presence of weeds can lead to excessive

sprayingof herbicides (SivaKumar et al., 2020; Su et al., 2022).How

to achieve accurate application of weed and reduce the use of

agrochemicals is a key issue; theprerequisite to solving thisproblem

is to achieve accurate and rapid detection and identification of

weeds (Maes and Steppe, 2019). The rice weeds management

process, chemical weed control, is currently the most effective

and widely used method of weed control in rice fields, commonly

used to spray herbicides uniformly and cover the entire operating

area in a disorderly “spot” or “sheet” form. The presence of weeds

can lead to overspray of herbicides. How to achieve accurate

application of weed and reduce the use of agrochemicals is a key

issue, and the prerequisite to solving this problem is to achieve

accurate and rapid detection and identification of weeds (Carroll,

2020). Based on low-altitude UAV remote sensing technology, we

can carry out accurate monitoring of weeds in rice fields and

generate agricultural UAV weed application prescription maps,

and carry out UAV precision weeding for rice, (Otsu et al., 2019),

which is a new idea to solve the current herbicide overapplication

problem. The prerequisite of herbicide precision application is to

obtain remote sensing images of rice fields and analyze the weed

distribution status in them, get a grid-shaped weed distribution

map, and generate an herbicide operation prescription map

(Matsunami et al., 2009). The use of UAVs to collect remote

sensing images of rice fields and perform weed analysis has been

similarly reported around the world.
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The use of UAV remote sensing technology has enabled

rapid image acquisition and weed mapping in crops such as

sunflower, mango, and rice (Jin et al., 2022). While identifying

weeds in rice, an important issue is the need to locate weeds

against a green vegetation background (Stroppiana et al., 2018).

When the technologies of remote sensing data acquisition,

stitching and correction are more mature, backward research

on the resolution of remote sensing data becomes the main

bottleneck of remote sensing development (Tao and Wei, 2022).

When parsing remote sensing data, machine learning is widely

used for image classification, and weed image recognition

models have been developed using deep learning neural

networks in an increasing number of literatures (Kawamura

et al., 2021). Andrea et al. used convolutional neural networks to

distinguish maize plants from weeds in the early growth stage of

the crop, and trained the convolutional neural networks using

the data set generated in the segmentation stage, and the

recognition accuracy reached 97.23% (Punithavathi et al.,

2023). Flores et al. used support vector machine model (SVM),

neural network (NN), random forest (RF), GoogLeNet and

VGG-16 models for recognition detection after collecting

image shape, color and texture feature values in a greenhouse

environment to simulate field conditions, and finally the

recognition accuracy of the VGG-16 model in distinguishing

soybean seedlings from corn weeds reached. The accuracy of the

VGG-16 model in distinguishing soybean seedlings from corn

seedlings was 96.2%, which was the highest among the above five

model methods (Hirohiko, 2002; Liu and Yu, 2013; Druskin

et al., 2021). Sujaritha designed an automatic image classification

system for extracting leaf texture using fuzzy real-time

classification counting, which was able to correctly identify

sugarcane crops among 9 different weeds, and the accuracy of

the system in detecting weeds was 92.9% (Sujaritha et al., 2017).

Spectral index can provide an important basis for the

identification of rice weeds. Many studies have added spectral

index to improve the identification accuracy of rice weeds. Barrero

et al. used Neural Networks to detect gramineous weeds 50 days

after the emergence of rice field using visible light band and

NGRDI index image fusion. The M/MGT index values obtained

from the detection results ranged from 80 to 108%. MP values

range from 70 to 85% (Barrero and Perdomo, 2018). Stroppiana

et al. used spectral information, SAVI and GSAVI spectral indices

and unsupervised clustering algorithms to classify weeds in the

early stages of the growing season, with an overall accuracy higher

than 94% (Stroppiana et al., 2018). Kawamura et al. used a

combination of hue-saturation-brightness, canopy height model,

spatial texture, color index of vegetation extraction and excess

green. A classifier combining simple linear iterative clustering

algorithm and random forest algorithmwas used to identify weeds

in the early growth stage of small rice plants. out-of-bag accuracy

is higher than 0.915 (Kawamura et al., 2021).

Currently, related researchmainly focuses on the identification

anddetectionofweeds inpaddyfields,while relatively little research
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has been conducted on how to generate accurate operation

prescription maps for agricultural drones through weed

distribution information in paddy fields (Mohidem et al., 2021).

Northern coldland rice is usually weeded 15-20 days after

transplanting, therefore, in this study, remote sensing images of

rice tillering stage were selected to identify weeds. By observing the

UAV remote sensing images, weeds in northern cold rice were

found to have less differences in textural characteristics, similar

shapes and the same color as rice at the tillering stage (Motavalli

et al., 2012; Souri et al., 2022).Weedshave group aggregation, and it

is difficult to distinguish them from rice using UAV visible remote

sensing images, while spectra can reflect their physicochemical

information and highlight their aggregation characteristics.

Therefore, this paper uses spectra to identify weeds in rice fields.

In this study, theDJI Phantom4UAVand itsmultispectral camera

were used to collect multispectral remote sensing images of paddy

fields (Zhu et al., 2020).With rice weeds as the identification target,

the vegetation index was constructed to highlight the spectral

characteristics of weeds (Lu and Zhang, 2020; Nawaz et al., 2021).

Thedensity partitioningalgorithm is used toobtain thedistribution

information of the weeds in the rice field and generate the weed

distribution map with the best classification effect (Wang et al.,

2019). It provides a decision basis for the application of precision

pesticides by agriculture UAV.
2 Materials and methods

2.1 Study area and experimental details

The trial site was located at the precision agriculture aerial

research base of Shenyang Agricultural University, Gengzhuang

Town, Haicheng City, Liaoning Province (40° 58’ 45.39” N, 122°

43’ 47.01” E), and the test variety was “Japonica 653”, a variety

widely grown in Liaoning. In this study, the UAV multispectral

images and visible images were collected separately from the test

field on June 23, 2021. The weeds in the study area were mainly

barnyard grass and Monochoria korsakowii Regel & Maack,

which were verified in the field.
2.2 Data acquisition

The multispectral remote sensing image data collection

equipment was Phantom 4 RTK UAV combined with ground

station software DJI GS PRO for route planning. Multispectral

remote sensing UAV flight altitude of 25 meters, UAV

longitudinal and lateral route overlap rate of 85%. six 1/2.9-

inch CMOS, including five monochrome sensors for

multispectral imaging single sensor, effective pixels 2.08

million. five characteristic wavelength specific information as

shown in Table 1.
Frontiers in Plant Science 03
The multispectral camera has an FOV of 62.7°, a focal length

of 5.74 mm, and an aperture of f/2.2. Monochrome sensors gain

in the range of 1-8 multiples.The flying speed of the UAV is set

to 5m/s, the altitude is 30m, and the heading and side-direction

repetition rate is 80%.

The Phantom 4 RTK quadrotor UAV was used as the flight

platform to acquire visible light remote sensing images, with a

built-in RTK differential positioning system and a positioning

accuracy of 1 cm + 1 ppm, 1 ppm means that the error increases

by 1 mm for every 1 km of flight (Lambert et al., 2019; Niu et al.,

2021). DJI flight software was used to plan the route of the test

area, and orthophoto raw data from the test field were obtained

by taking photos at regular intervals.

In this study, multispectral and visible images were acquired

for weed identification using a Phantom 4 RTK UAV on June 18,

2021 (Wei et al., 2021). The validation data in this study were

visually interpreted using a manual visual interpretation method

for the visible images, and a total of 141,483 pixel points were

selected, including 48,255 pixel points for the weed category and

93,228 pixel points for the non-weed category.
2.3 UAV remote sensing image
processing

Pix4D image processing software was used to orthorectify

and crop the visible images of the test area collected by UAV,

and finally high-resolution orthophotos of the rice fields

were obtained.

When the Phantom 4 RTKmultispectral UAV remote sensing

platformobserves the target radiant energy, the radiationdistortion

caused by the sensor response characteristics and external natural

conditions (including solar radiation conditions and atmospheric

transmission conditions, etc.) causes distortion of the remote

sensing images and affects the interpretation and decoding of

remote sensing images; therefore, the radiation calibration of

multispectral images is needed. In this study, first, three

reflectivity plates with 60% reflectivity were laid flat on the

ground near the measurement area, and the Phantom 4 RTK

multispectral took off to a height of 7 times the side length of the

plates, adjusted the aircraft position so that the plates were in the

center of the camera frame and ensured that there was no shadow
TABLE 1 Characteristic wavelengths of multispectral UAV remote
sensing platform.

Name Central wavelength Wavelength range

Blue (B) 450 nm ± 16 nm

Green (G) 560 nm ± 16 nm

Red (R) 650 nm ± 16 nm

Red edge (RE) 730 nm ± 16 nm

Near Infrared (NIR) 840 nm ± 26 nm
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on theplates, thenadjusted thegimbal to -90°, kept theEVvalue at0

and took a set of photos manually (Naji, 2018). The multispectral

image is used to correct the reflectivity of the acquiredUAV remote

sensing image.
2.4 Research methods

2.4.1 Construction of Vegetation Index
Most of the existing multispectral remote sensing UAV

images are used as input of the weed identification model by

the NDVI, EVI, DVI and other indices, but the above vegetation

indices are more used to carry out inversion studies of physical

and chemical parameters of rice, while the accuracy of rice weed

identification still has some shortcomings (Clevers and Verhoef,

1993). In this study the characteristic vegetation indices of the

weed(WDVI) were constructed by analyzing the spectral

characteristics between the weeds and the rice, and the specific

construction methods are as follows.
Fron
(1) UAV multispectral wavelengths of xB、xG、xR、xRE、

xNIR .

(2) Selection of the band xt(t∈B、G……NIR) as the

characteristic transfer band.

(3) Construct the characteristic spectral ratio of multiple

groups using other characteristic bands xf(f∈B、G……

NIR, and f≠t) as a ratio to xt , both Wf =
xf
xt
.

(4) After taking the logarithm of the ratio result, the

correlation with nitrogen content remained good.

Therefore, two sets of characteristic spectral ratios Wf

(f∈B、G……NIR) , were selected and the characteristic

transfer index of weeds(WDVI) was constructed using

Equation 1:
WDVI = logWf
Bf = logxb

xt

xa
xt

(1)

In this study, five vegetation indices were constructed using

five bands, as shown in Table 2
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2.4.2 Weed identification modeling methods
Threshold segmentation is the earliest method studied and

used in image segmentation, which has the characteristics of clear

physical meaning, easy implementation, and good real-time

performance (Setojima et al., 1989; Qin et al., 2013). According to

the regional weed distribution map after visual interpretation of

visible light remote sensing images and experience knowledge, this

study adjusts the gray segmentation threshold of the multispectral

index todetermine the distribution rangeofweeds in the index.The

grid threshold partition mapping function is as follows:

f (x, y) =
0 0 ≤ f (x, y) ≤ t

L − 1 t < (x, y) ≤ L − 1

(
(2)

Let the size of the raster image be M × N, and the gray level

number be L, and f (x, y) denotes the gray level of the pixel with

coordinates (, y), where x ∈ [1, M] and y ∈ [1, N].

According to the gray segmentation threshold, the grid

image of weed distribution is extracted (Bouman et al., 1992).

The algorithm to remove small patches is used to remove

scattered grids in the grid images, and the spatial distribution

map of weeds is obtained. The grid resampling algorithm was

used to resample the grid to 1m × 1m, and the UAV application

prescription diagram was generated. Weed analysis process as

shown in Figure 2.
2.5 Evaluation indicators

Confusion matrix is a standard format for representing

accuracy evaluation in the form of a matrix with n rows and n

columns. In image accuracy evaluation, it is mainly used to

compare the classification results with the actual measured

values, and the accuracy of the classification results can be

displayed inside a confusion matrix. The confusion matrix is

calculated by comparing the position and classification of each

actual measured image element with the corresponding position

and classification in the classified image. In this study, the overall

accuracy of the confusion matrix and the Kappa coefficient are

used as classification effectiveness evaluation metrics.
3 Results and analysis

3.1 Results of vegetation index for weed
identification in rice

The WDVI construction method was used and in this study

five weed-sensitive indices were selected (Wan et al., 2020; Xia

et al., 2021). Five traditional vegetation indices such as GNDVI

(Green Normalized Difference Vegetation Index), NDVI

(Normalized Difference Vegetation Index), LCI(Leaf

Chlorophyll Index), NDRE(Normalized Differential Red Edge
TABLE 2 Five medium Combination Vegetation Index.

Name Formula

WDVI1
WDVINIR = log G

NIR

RE
NIR

WDVI2
WDVINIR = log R

NIR

RE
NIR

WDVI3
WDVINIR = log RE

NIR

R
NIR

WDVI4
WDVINIR = log R

NIR

G
NIR

WDVI5
WDVINIR = log G

NIR

R
NIR
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vegetation inde), and OSAVI(Optimized Soil Adjusted

Vegetation Index) were selected for comparison, and a total of

ten vegetation indices were used to generate pseudo-color maps

for the identification of the rice weed vegetation index, and the

results are shown in Figure 3.

It can be seen from Figure 3 that different vegetation indices

have different sensitivities to weeds in rice fields, and some fields

have water cotton in them, but water cotton is different fromweeds

and requires different agents, so water cotton cannot be considered

as a weed. From the effect of weed identification by different

vegetation indices, the best result was obtained by usingWDVINIR.

WDVINIR = log G
NIR

RE
NIR

(3)

InWDVINIR , NIR is the near-infrared wavelength reflectance

of the multispectral UAV, G is the green wavelength reflectance,

and RE is the red edge.WDVINIR can distinguish weeds from rice

and spirogyra communis more clearly (Figure 4).
3.2 Results of rice weed classification
based on density splitting

Since the test area was large, the manual visual interpretation

workload would be very large if the entire area were analyzed, so

field 9 at Figure 1, where the number of weeds was at a medium

level, was selected for analysis, and the visible light from the

UAV in field 9 is shown in Figure 5. Using the manual visual

interpretation method, the density segmentation threshold was

determined using the criterion of covering all weeds. The results

show that the density segmentation results can cover all weeds

when the threshold values are 0 and 5. The results of the density

segmentation are shown in Figure 6.
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After density segmentation, the results were analyzed by

removing small patches operation, using majority analysis

method to remove small patches, and setting the transform

kernel size as 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,

33, respectively. The results of the analysis are verified using the

confusion matrix for accuracy, and the overall accuracy verification

curve is shown in Figure 7, and the manual visual interpretation

vector diagram used to verify the accuracy is shown in Figure 8. The

verification results show that the highest accuracy of the confusion

matrix verification is achieved when the size of the transformation

kernel is set to 27, i.e., the best effect of removing small patches. The

results after removing the small patches are shown in Figure 9.

The images processed by density segmentation and removal

of small patches lack spatial continuity, which is not conducive

to raster resampling operations during the production of UAV

prescription maps. Therefore, the Clump Clustering algorithm is

used for smoothing. The expansion kernel size and erosion

kernel size are set to 3, 4, 5, 6, 7, 8, 9, respectively, and the

kernel values are all 1 for cluster processing. The processed

results are verified with precision using a confusion matrix, and

the overall accuracy verification curves are shown in Figure 10.

The validation results show that the overall accuracy of the

confusion matrix is the highest when the expansion kernel size

and the erosion kernel size are set to 3. The results after the

clustering process are shown in Figure 11.
3.3 Weed UAV precision operation
prescription map generation

The UAV application operation must consider parameters

such as flight speed and spray width of the plant protection UAV,

and the prescription map must be raster data during the
FIGURE 1

Location map of test site.
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operation. Therefore, this study converts the vector data of weed

identification results into raster data and resamples the raster data

to the appropriate size. Take DJI plant protection drone T30 as an

example, DJI T30 plant protection drone can operate 240 mu of

fields per hour, the maximum operating flight speed is 7m/s, the

volume of the operating tank is 30L, the number of nozzles is 16,

the maximum effective spraying width is 4-9m, and the size of the

prescription map grid required for operation is 1m*1m.Therefore,

the raster data identified in this study are resampled to 1m*1m,

and the raster data before resampling is shown in Figure 12, and

the raster data after resampling are shown in Figure 13.

4 Discussion

Using UAV remote sensing technology to monitor weeds in

rice fields and generate prescription maps to provide a decision

basis for accurate herbicide application by plant protection

machinery is one of the important methods to guide accurate
Frontiers in Plant Science 06
rice weeding and is also a research focus of precision agriculture.

We established a new weed-sensitive vegetation index using a

low-cost UAV multispectral remote sensing platform, then used

image recognition to accurately identify rice weeds and

combined with GIS information to generate a prescription

map for precise operation of agricultural drones for weeds in

rice fields. The main idea of vegetation index construction in this

study is to use mathematical transformation method to combine

multispectral bands into a new vegetation index, and after RE

and G are compared with NIR respectively, it is found that the

ratio results have better sensitivity with weeds. The proposed

WDVI vegetation index may also have decreased recognition

accuracy and lack of generalizability when used in other field

data sets. The reason for this may be that the vegetation index

was constructed using data statistics and the mathematical

mapping relationship between sensitive bands and weeds was

not explored in the agronomic mechanism; the influence of

different regions and varieties on the change in rice weeds was
FIGURE 2

Rice weed identification process.
FIGURE 3

Results of weed identification with different vegetation indices.
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not considered in the research process (Yu et al., 2021).

However, because the calculation of the vegetation index is

simple and easy to realize the development and integration of
Frontiers in Plant Science 07
detection devices, the method of rice weed identification based

on the vegetation index still has considerable research value (Xia

et al., 2022). The above problems should be explored and studied

more deeply in future research experiments.

In this study, the accuracy of weed recognition in rice field

was 93.47%. Compared with other scholars (Lan et al., 2021), it

was found that the accuracy of weed recognition was

comparable. However, compared with deep learning, spectral

recognition of weeds has higher efficiency, saves time and

requires less computing power, so it has more advantages.

In this study, we used manual labeling to tag multispectral

remote sensing images from UAVs at pixel level for weed model

training and accuracy verification. However, the manual labeling

process is inefficient and time consuming. Manual tagging will

affect the process of model development if remote sensing data

increases substantially (Tobajas et al., 2020; Amziane et al., 2021).

Therefore, in future research, it is necessary to introduce semi-

supervised or weakly supervised analysis methods to reduce the

workload of manual labeling. At the same time, remote sensing

images are collected by a UAV, and a server is used offline to

identify weeds and generate application prescription maps. In this

mode of operation, data collection and data analysis are separated,

and the best time for weed control is easily missed for weeds in

larger rice production fields. Due to the current rapid

development of the computing performance of embedded chips

(Yang et al., 2022), which makes the real-time acquisition and

analysis of UAV multispectral images possible, if the embedded

chips can be deployed on UAVs and the analysis models on
FIGURE 4

Results of WDVINIR vegetation index.
FIGURE 5

Visible image of field No. 9.
FIGURE 6

Density segmentation results.
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servers can be migrated to UAVs to realize the real-time

processing of weed identification, the interval between data

acquisition and data analysis can be effectively broken, and the

process integration of UAV identification of weeds in fields can be

realized, which will greatly enhance the application scope of

remote sensing identification of weeds by UAV.
Frontiers in Plant Science 08
4.1 Conclusion

In this study, we created a weed identification index based on

multispectral UAV images and constructed theWDVINIRvegetation

index from the reflectance of three bands, RE, G, and NIR.

WDVINIR was compared with five traditional vegetation indices,
FIGURE 7

Confusion matrix verification accuracy curve after removing small patches.
FIGURE 8

Manual visual interpretation vector map.

FIGURE 9

Results after removal of small plaques.
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NDVI, LCI, NDRE, and OSAVI, and the results showed that

WDVINIR was the most effective for weed identification and

could clearly distinguish weeds from rice, water cotton, and soil.

In this study, a weed identification method based on

WDVINIR was constructed, and the weed index identification
Frontiers in Plant Science 09
results were subjected to small patch removal and clustering

processing operations to output weed identification vector

results. The weed identification vector results were verified by

using the confusion matrix accuracy verification method, and

the results showed that the weed identification accuracy could
FIGURE 10

Confusion matrix verification accuracy curve after clustering process.
FIGURE 11

The result after clustering process.

FIGURE 12

Before raster resampling.
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reach 93.47%, and the Kappa coefficient was 0.859. Moreover,

this study integrates the parameters of plant protection UAV

operation and takes DJI UAV as an example to convert the weed

recognition vector results into raster data with raster size of

1m*1m to make a UAV application prescription map for field

application, which provides a new method for weed recognition

in rice fields.
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