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Hyperspectral imaging technique combined with machine learning is a

powerful tool for the evaluation of disease phenotype in rice disease-

resistant breeding. However, the current studies are almost carried out in the

lab environment, which is difficult to apply to the field environment. In this

paper, we used visible/near-infrared hyperspectral images to analysis the

severity of rice bacterial blight (BB) and proposed a novel disease index

construction strategy (NDSCI) for field application. A designed long short-

term memory network with attention mechanism could evaluate the BB

severity robustly, and the attention block could filter important wavelengths.

Best results were obtained based on the fusion of important wavelengths and

color features with an accuracy of 0.94. Then, NSDCI was constructed based

on the important wavelength and color feature related to BB severity. The

correlation coefficient of NDSCI extended to the field data reached -0.84,

showing good scalability. This work overcomes the limitations of

environmental conditions and sheds new light on the rapid measurement of

phenotype in disease-resistant breeding.
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1 Introduction

Rice bacterial blight (BB) is a bacterial vascular bundle

disease caused by Xanthomonas oryzae pv. Oryzae (Xoo).

Since it was discovered in Japan in 1884, the incidence of BB

has gradually expanded and spread to major rice-producing

countries such as East Asia and Southeast Asia (Elizabeth Sunny

and Kumar Shanmugam, 2021). Now BB has spread to various

rice-producing areas in the world, such as Africa, America, and

Asia, to varying degrees (Fiyaz et al., 2022). BB can occur during

the whole growth period of rice and reduce rice production by

10%-20% (Ezuka and Kaku, 2000). The infection is most serious

in the late booting stage, which can cause more than 50% yield

loss (Kim and Reinke, 2019).

Chemical control is the main measure for rice disease

control. Long-term use of chemical agents may lead to drug

resistance of pathogens, which will not only fail to control the

disease effectively but also cause environmental pollution (Li

et al., 2014). In contrast, applying disease-resistant breeding to

control BB is an economic and effective alternative method and

an important strategy for implementing green disease

prevention and control (Martıńez-Diz et al., 2019). Disease

resistance breeding relies on the mining of BB resistance

genes. 44 BB resistance genes have been identified with the

development of whole genome sequencing techniques, and 15 of

them have been cloned (Yin et al., 2018; Yang et al., 2022). For

disease-resistant information mining and identification, accurate

measurement of phenotypic information is an essential step.

Due to the complexity and dynamic characteristics of plant

phenotypes, the traditional evaluation method of disease severity

in breeding disease-resistant cultivars has the problems of time-

consuming and labor-intensive and uneven data quality (N.

Devasena et al., 2018).

Although the study of phenomics is relatively lagging

compared to the development of genomics, optical technique,

remote sensing, and machine learning methods support the

high-throughput collection and intelligent processing of crop

phenotypic information (Barbedo, 2019; Bock et al., 2020).

Hyperspectral imaging (HSI) technique provides a method to

obtain plant phenotypic traits rapidly and non-destructively.

The images acquired by HSI contain rich information, which are

three-dimensional data cubes composed of hundreds of spectral

images. Narrow bands in the visible and near-infrared

hyperspectral images are sensitive to the subtle changes of

plants caused by diseases, providing the possibility for disease

identification and diagnosis (Yuan et al., 2019; Lin et al., 2020).

Screening important bands related to target tasks as features

(such as calculating vegetation index) is effective to reduce

redundant data in hyperspectral bands (Marin et al., 2021;

Zhang et al., 2021). There are also related researches on

constructing new indices for disease detection by screening

sensitive bands. Abdulridha et al. (2020b) tested 29 spectral

vegetation indices and determined the most suitable indices for
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distinguishing different developmental stages of powdery

mildew in squash. Zhang et al. (2018a) found three important

bands for the identification of the damage severity of pine by

different waveband selection algorithms. Moreover, texture,

color, shape and other features in the image provide diverse

and useful information (Lu et al., 2018; Smigaj et al., 2019). Guo

et al. (2020) have improved the evaluation accuracy of wheat leaf

yellow rust with different damage severity by 6.3% by using the

fusion of six characteristic wavelengths of hyperspectral images

and the preferred four texture features. It can be seen that multi-

feature fusion provides a new idea for evaluating crop disease,

and extracting the feature related to the target in the

hyperspectral images is the key to the process of

hyperspectral data.

Establishing effective analytical models for data

interpretation is a significant part of phenotyping based on

hyperspectral imaging. Deep learning methods have been

applied to the phenotypic analysis of crop diseases in lab and

field environments with the advantages of powerful automatic

learning and feature extraction (Zhang et al., 2018b; Too et al.,

2019; Prabhakar et al., 2020). Duarte-Carvajalino et al. (2018)

found that convolutional neural network (CNN) network was

better than multilayer perceptron and support vector machine

(SVM) in predicting the severity of potato late blight.

Geetharamani and Arun Pandian (2019) proposed a nine-layer

deep convolutional neural network model to identify plant leaf

diseases. They acquired the prediction accuracy was 9.78%

higher than that of the K-nearest neighbors model. Compared

with conventional methods, deep learning methods have better

performance and advantages (Zhang et al., 2019).

In addition, deep learning methods have shown good

capabilities in feature selection. Garg and Alam (2022)

proposed a method combining a pre-trained CNN network

and long short-term memory (LSTM) network, which made

the proposed model more focused on finding target-related

information in the input data and improved the classification

results of apple leaf diseases. Mi et al. (2020) embedded the

convolution block attention module in the CNN to make

the network pay more attention to the key areas in making the

decision and realized the classification of wheat stripe rust in a

lab environment with an accuracy of 97.99%. Almost all studies

were conducted in a lab environment and based on a single

period to evaluate the disease. However, crop diseases become

severe over time. It is significant to grasp the dynamic

development of disease severity for disease control and

disease-resistant breeding. Moreover, most existing research

results were obtained in a controlled environment. In fact,

crops grow in a complex field environment. The data acquired

in the field are affected by various factors such as soil, water,

light, etc. We will focus on that whether the results obtained in

the lab environments can be extended to complex environments.

This study aims to explore the development of rice BB

severity based on time-series hyperspectral images and deep
frontiersin.org
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learning methods and achieve an accurate evaluation of disease

severity. The specific content is as follows: (1) screening out

important information from a large amount of raw data; (2)

establishing a robust and accurate BB severity evaluation model;

(3) proposing a disease index construction strategy to achieve BB

severity evaluation from the lab to the field. Figure 1 shows the

workflow of the study.
2 Material and methods

2.1 Plant materials

Three rice cultivars, IR24, 3A26, and 4A37, were used in this

study. IR24 is susceptible to BB. 3A26 and 4A37 are resistant to

BB by introducing the quantitative trait loci (QTL) related to the

resistant ability into IR24. The resistant QTL of 3A26 is mapped
Frontiers in Plant Science 03
on chromosome 5, and the resistant QTLs of 4A37 are mapped on

chromosome 5 and chromosome 3. Their resistance to BB has

been reported in the study by Han et al. (2014). The rice samples

were provided by State Key Laboratory Breeding Base for Zhejiang

Sustainable Pest and Disease Control, Hangzhou, China. The

samples were planted in the experimental field at Zhejiang

Academy of Agricultural Science, Hangzhou, China. The size of

the planting plot was 2m×15m with a row spacing of 50cm.

Growth management followed normal agricultural practices.

On September 6, 2021, rice was inoculated with pathogens at

the beginning of the booting stage (approximately 40 days after

transplanting). An artificial leaf tip removal method was used to

inoculate rice with BB. Using a scissor which should be dipped in

the solution of Xoo with the optical density of 0.8, cut off the tip

tissues of the fully expanded rice leaves about 3 mm. Then, the

solution was poured into a watering can for spraying to ensure

that all the rice in the infected group could be fully covered by
FIGURE 1

Workflow of the study.
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the solution droplets. At the same time, the healthy control

group was cut by a scissor dipped in pure water and sprayed with

pure water. The samples were collected on the 3rd, the 13rd, the

33rd, and the 39th days after inoculation according to the

development of BB lesions. The complete inoculated full

expanded leaves were selected as experimental samples for

subsequent acquisition of hyperspectral images and

physiological parameters. A total of 450 samples were

collected. The specific sample collection is detailed in Table S1.
2.2 Hyperspectral image acquisition and
spectra extraction

A visible/near-infrared (VIS-NIR) hyperspectral imaging

system was used to acquire hyperspectral images of rice leaves.

The spectral range is 414-1017nm with 473 bands. The whole

system consists of an imaging spectrometer (ImSpector V10E;

Spectral Imaging Ltd., Oulu, Finland), a highly sensitive

EMCCD camera (Raptor EM285CL, Raptor Photonics limited,

Larne, United Kingdom) with a long camera lens (OLES23;

Specim, Spectral Imaging Ltd., Oulu, Finland), two 150 W

tungsten halogen lamps (3900 Lightsource, Illumination

Technologies Inc., United States), and a conveyor belt driven

by a stepper motor (Isuzu Optics Corp., Taiwan, China). The

two 150 W tungsten halogen lamps are placed symmetrically on

both sides of the lens as the illumination. The system is

controlled by a computer through the Spectral Image-V10E

software (Isuzu Optics Corp., Taiwan, China).

The distance between the camera lens and samples was set to

29 cm, the exposure time of the camera and the intensity of the

illumination module were set to 45 ms and 180, and the speed of

the conveyor belt was set to 2.2 mm/s. The acquired

hyperspectral images of samples should be corrected to be

analyzed. The correction method and formula were consistent

with the previous study (Bai et al., 2020). Then, the whole leaf

was defined as the region of interest (ROI), and the hyperspectral

image at 792 nm was selected to build a mask to remove

background information with a threshold value of 0.1. Each

pixel of the ROI could be extracted. Wavelet transform

(Daubechies: 10; Decomposition level: 3) was used to de-noise

the extracted pixel-wise spectra. The average spectra of each ROI

were calculated as the corresponding sample spectrum. The

extracted spectra were processed by baseline correction to

prevent errors caused by different acquisition times. The

spectra in the 490-978 nm (380 bands) were used for analysis

due to obvious noise in the head and tail spectra.
2.3 Disease severity definition

The threshold segmentation method was used to calculate

the area of the healthy and diseased parts. In section 2.2, the ROI
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hyperspectral image without background information could be

acquired. Experts manually marked the lesion parts in the ROIs

by utilizing software ENVI 4.7 ((ITT Visual Information

Solutions, Boulder, CO, USA). The pixel summation of the

infected area and the whole rice leaf area were obtained, and

the ratio of the infected area over the whole rice leaf area could

be calculated according to the following equation:

Rl =
oSleision

oSWL
� 100%

where Rl represents the ratio of the infected area and the

whole rice leaf area, ∑Sleision and ∑SWL represent the pixel

summation of the infected area and the whole rice leaf area,

respectively. A scale of 0-5 was used to measure the disease

severity, as shown in Table 1. 0 indicated no infection of leaves.
2.4 Color feature extraction

The distribution information of color is mainly concentrated

in the low-order moments, which are the first-order moment

(mean), second-order moment (var), and third-order moment

(ske) (Markus Andreas and Markus, 1995). The first-order

moment represents the mean response intensity of the color

channel, the second-order moment is the response variance of

the color channel, and the third-order moment denotes the

skewness of the data distribution. The calculation formula could

be found in Jiang et al. (2020). RGB values of each pixel in the

hyperspectral image of each sample were output (R channel at

657 nm, G channel at 552 nm, and B channel at 450 nm), and a

total of 9 color features were extracted.
2.5 Data analysis methods

2.5.1 Statistical methods
The differences of spectral data and color features were

analyzed by one-way analysis of variance (ANOVA) at a

significance level of 0.05. The p-value shows the difference

between the data, and the smaller the p-value, the greater the
TABLE 1 The evaluation criteria of disease severity.

Disease severity Rl

0 0

1 0~10%

2 10%~20%

3 20%~50%

4 50%~75%

5 >75%
front
Rl represents the ratio of the infected area and the whole rice leaf area.
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difference (Mokarram et al., 2012). Correlation analysis was used

to analyze the correlation between color features and disease

severity, and the absolute value of correlation coefficient (r) close

to 1 indicated a strong correlation (Xiao et al., 2016).

2.5.2 Conventional machine learning methods
Univariate feature selection (UFS) and recursive feature

elimination (RFE) are used for feature extraction. UFS screens

important variables based on statistical tests of each variable

(Verma and Pal, 2020). The Chi-square test was used to select

important wavelengths in this paper. RFE uses a machine

learning model to screen important features through multiple

training rounds recursively. We use RFE based on SVM to select

important wavelengths. SVM-RFE is commonly used, and its

detailed formula can be found in (Yan and Zhang, 2015).

SVM is a widely used pattern recognition method and is also

used for evaluating disease severity in this study. The SVM

model was established using spectral data and color features as

input. The radial basis function was used, and the optimal

performance is determined by the penalty coefficient (c) and

the kernel function parameter (g) (Chandra and Bedi, 2021). The

optimal c and g were determined by grid search in 10-8 to 108.

UFS, RFE and SVM are all implemented based on scikit-learn

(https://scikit-learn.org/stable/).

2.5.3 Deep learning method
A self-built long short-term memory network with an

attention mechanism (ATT-LSTM) was used to evaluate the

disease severity. The architecture of the designed ATT-LSTM

model is shown in Figure 2.

The first block was ATT block, which was realized by two

dense layers:

YATT = frelu W2 ⊗ frelu(W1 ⊗X + b1ð Þ + b2)⊗X

where YATT is the output of the ATT block, X denotes

the input data, W and b represent the weights and bias of the

attention layer,⊗ indicates matrix multiplication, and frelu is the

activation function. The number of neurons of the first dense

layer was set to 128, and that of the second dense layer was set as

the number of input variables. The attention mechanism helps

the model assign different weights to each input variable, which

makes the network pay more attention to important information

(Li et al., 2020). Thus, the ATT block could also be used to

extract the feature variables. Define the value of frelu(W2⊗frelu
(W1⊗X+b1)+b2) as the ATT weight. Variables with larger weight

values are more important. In this study, the important

wavelengths were screened based on the ATT weight.

The second part was the LSTM block. It contained two

LSTM units with 128 and 32 hidden units, respectively. Each

LSTM unit was followed by a max pooling layer and a batch

normalization layer. LSTM is a special recurrent neural network

that stores long-term states by adding a memory neuron. The
Frontiers in Plant Science 05
neuron can decide which states are forgotten or retained, thus

solving the recurrent neural network gradient disappearance or

gradient explosion (Zhelev and Avresky, 2019). It has advantages

for the processing of time-series data. The specific introduction

of LSTM can be seen in http://colah.github.io/posts/2015-08-

Understanding-LSTMs/.

The LSTM block was followed by a fully connected layer

containing 128 neurons, and a dropout layer was used to prevent

overfitting. Finally, output category. The output of this study was

the disease severity with 6 categories.

The deep learning model was implemented based on the

MXNET framework. The Softmax cross-entropy loss function

and adaptive moment estimation were applied to train the

model. In the training phase, the batch size was set as 20, and

a dynamic learning rate was used. In the beginning, a relatively

large learning rate of 0.001 was set to speed up the training

process for the first 500 epochs, and then it was reduced to

0.0001 for the next 300 epochs.

2.5.4 Model evaluation
The disease severity evaluation model was established based

on spectral data, color features, and the fusion of spectral data

and color features. The input data was divided into calibration

set and prediction set at a ratio of 7:3 to train the model. To

quantitatively evaluate the performance of the model, the

accuracy of different severity (ACC.), precision (Pre.), recall

(Rec.), and F1-score (F1.) were calculated. The calculation

formulas were referred (Vujovic, 2021).
2.6 New index for disease
severity evaluation

A disease index—that could reflect the disease severity based

on important wavelengths and color features was constructed.

The strategy for constructing the new spectral index is to rely on

the combination of the most important wavelength through the

disease degree evaluation model and the color feature with the

highest correlation with disease severity. Inspired by the idea of

normalized difference vegetation index, the normalized

difference spectral color index (NDSCI) was established, and

the formula is as follows:

NDSCI =
Hc − Ri

Hc + Ri

where Hc is the color feature most related to disease severity

in hyperspectral images and Ri is the reflectance of the most

important wavelength selected from spectral data.

The selected color feature and spectral reflectance values

were normalized to the range of [0,1] for displaying the variation

of NDSCI intuitively. For the NDSCI, normalized difference

vegetation index (NDVI), renormalized difference vegetation
frontiersin.org
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Index (RDVI), red-edge vegetation stress index (RVSI), red-edge

chlorophyll index (CIred-edge), green chlorophyll index

(CIgreen), MERIS terrestrial chlorophyll index (MTCI), Green

Normalized Different Vegetation Index (GNDVI), different

spectral index (DSI), optimized soil-adjusted vegetation index

(OSAVI), photochemical reflectance index (PRI), enhanced

vegetation index (EVI), and water index (WI) were compared

by correlation analysis with the disease severity. The formulas

for calculating the spectral indices are shown in Table S2. The

wavelength of 682nm and the first moment of the B channel

(Bmean) were used to construct the NDSCI in this study. The

results are described in section 3.4.

3 Results

3.1 Spectral profile and color
features analysis

Figure 3A shows the average spectra with a standard

deviation of different disease severity. With the seriousness of
Frontiers in Plant Science 06
BB, the spectral reflectance gradually increased in the visible

range of 480-780 nm, and the spectra were significantly different

in the near-infrared (NIR) spectral range of 780-980 nm. The

spectral differences between the healthy and infected rice were

analyzed by ANOVA. As shown in Figure 3B, p values are less

than 0.05 at all wavelengths, and the minimum value appears in

the 680-690 nm range. It indicated significant differences

between the spectra of the different disease severity.

The color features of different disease severity are shown in

Figure 3C and Table S3. With the seriousness of BB, the first-

order moment of the B component gradually decreased, the

third-order moment of the R and B components gradually

increased, and the second-order moment of all color

components showed a trend of first decreasing and then

increasing. Although the trends of these color components

were different, it could be proved that there were differences

among different disease severity.

The changes and differences in spectral and color features of

rice with different BB severity indicated that it is feasible to use

these to evaluate the disease severity.
FIGURE 2

The architecture of ATT-LSTM model.
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3.2 Disease severity evaluation based on
full spectra and color features

Spectral data and color features were inputted to ATT-LSTM

and SVM models. Table 2 and Table S4-1 show the statistical

results of the prediction and calibration sets, respectively. In

contrast, no matter which model was used, the accuracy of the

evaluation of disease severity based on spectral data was higher

than that of analysis based on color features. This might be due

to the spectral data containing more information than color

features, which was more conducive to evaluating disease

severity. The ATT-LSTM model based on spectral data

achieved satisfactory results, with an accuracy of 0.89.

In addition, the fusion of spectral data and color features was

considered. Table 3 shows the prediction results of ATT-LSTM

and SVM models, and Table S4-2 shows the calibration results.

Compared with Table 2, better results could be obtained after the

data fusion. The prediction results of the ATT-LSTM model and

the SVM model after data fusion were 4.49% and 1.16% higher

than those using spectral data, respectively. Correspondingly, for

color features, the prediction results were increased by 12.48%

and 4.82%, respectively. Data fusion could effectively improve

the evaluation effect of disease severity.

Although both ATT-LSTM and SVM models exhibit good

performance, the ATT-LSTM model obtained better results. By
Frontiers in Plant Science 07
comparison, the results of the ATT-LSTM model were better

than that of the SVM model when the disease severity was less

than 4 (Table 2). For example, when the disease severity of 2, the

Pre., Rec., and F1. of the ATT-LSTMmodel based on the spectral

data were 0.89, 0.80, and 0.84, respectively, while those of the

SVM model were 0.82, 0.76 and 0.76, respectively. Similarly, the

values of Pre., Rec., and F1 of the SVM model were lower than

those of the ATT-LSTM model when modeling with color

features. ATT-LSTM model was better at subtle mining

features, which benefited the discrimination of the mild

disease severity. In the case of data fusion, the accuracy of the

ATT-LSTM model was 6.90% higher than that of the SVM

model, and the values of Pre., Rec., and F1. under different

disease severity were higher than that of the SVM

model (Table 3).
3.3 Disease severity evaluation based on
feature extraction

There was a correlation between spectral bands, as illustrated

in Figure S1. Extracting useful information could reduce the

burden of the model with less information redundancy. The

values of attention weight of each band based on the ATT block

in the ATT-LSTM model are shown in Figure 4A. There were
B

CA

FIGURE 3

The spectral features and color features of the samples with different disease severity. (A) The average spectra with standard deviation. (B) The p
value obtained by ANOVA for the spectra with different disease severity. (C) Bar charts with error bars of color features and different letters
indicate significant differences between different disease severity using the Tukey method (P<0.05).
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differences in the ATT weight values among different disease

severity. Wavelengths with the weight value greater than 1 were

selected as important features for subsequent analysis. Figure 4B

shows the locations of important wavelengths selected by ATT,

UFS, and RFE methods. The UFS method selected 30 important

wavelengths, mainly in the range of 660-698nm. The important

wavelengths found by the RFE method were distributed in 521-

542nm, 632-697nm, 714-720nm, 753-759nm, and 974-978nm,

with a total of 86 important wavelengths. The 34 important

wavelengths selected by the ATT method were relatively

uniformly distributed in the visible range. The important

wavelengths selected by the abovementioned methods were

highly coincident in the 634-692nm range, indicating that this

range was extremely important.

ATT-LSTM and SVM models were established based on the

important wavelengths selected by different feature extraction

methods. Figure 4C and Table S5 show the accuracy of the

prediction set and the results of the calibration set, respectively.

The important wavelengths selected by ATT methods could
Frontiers in Plant Science 08
achieve the highest prediction accuracy regardless of the

modeling method. It even surpassed the results based on the

full spectra for the SVMmodel. It proved the validity of the ATT

feature extraction method. For the ATT-LSTM model, the

lowest accuracy was obtained using the UFS method. This

could be due to the screened important wavelengths being

clustered in a region containing limited effective information.

In addition, the accuracies of the ATT-LSTMmodels established

on different feature extraction methods were higher than those

of SVM models, except for the UFS method. It also showed the

proposed ATT-LSTM model was suitable for evaluating the

BB severity.

The important wavelengths selected by different methods

were fused with color features to evaluate the disease severity,

and the results are shown in Figure 4D and Table S6. The ATT-

LSTM model based on the wavelengths selected by the ATT

method realized the highest prediction accuracy of 0.94, which

was higher than that of the model based on full spectra.

Moreover, the prediction accuracies of the different models
TABLE 3 The prediction results of ATT-LSTM and SVM models by fusing spectral data and color features.

Classa ATT-LSTM Class SVM

Pre. Rec. F1. Acc. Pre. Rec. F1. Acc.

0 0.95 0.95 0.95 0.93 0 0.90 0.95 0.92 0.87

1 0.95 0.93 0.94 1 0.92 0.86 0.89

2 0.81 0.81 0.81 2 0.80 0.75 0.77

3 0.88 0.92 0.90 3 0.85 0.96 0.90

4 1.00 1.00 1.00 4 1.00 0.75 0.86

5 1.00 1.00 1.00 5 1.00 1.00 1.00
frontiers
Acc., Accuracy; Pre., Precision; Rec., Recall; F1., F1-score.
aClass represents the label of the disease severity.
TABLE 2 The prediction results of ATT-LSTM and SVM models by using spectral data and color features.

Model Classa Spectral data Class Color features

Pre. Rec. F1. Acc. Pre. Rec. F1. Acc.

ATT-LSTM 0 0.98 0.98 0.98 0.89 0 0.93 0.95 0.94 0.83

1 0.91 0.98 0.94 1 0.9 0.86 0.88

2 0.89 0.80 0.84 2 0.76 0.81 0.79

3 0.92 0.92 0.92 3 0.88 0.88 0.88

4 1.00 0.67 0.80 4 0.67 0.50 0.57

5 1.00 1.00 1.00 5 0.75 1.00 0.86

SVM 0 0.96 0.98 0.97 0.86 0 0.86 0.97 0.92 0.83

1 0.91 0.93 0.92 1 0.92 0.79 0.85

2 0.82 0.70 0.76 2 0.63 0.75 0.69

3 0.85 0.92 0.88 3 0.81 0.71 0.76

4 1.00 0.67 0.80 4 0.60 0.75 0.67

5 1.00 1.00 1.00 5 1.00 1.00 1.00
Acc., Accuracy; Pre., Precision; Rec., Recall; F1., F1-score.
aClass represents the label of the disease severity.
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FIGURE 4

Important wavelength selection results. (A) Attention weights of different disease severity calculated by the attention block. (B) Important
wavelengths selected by different methods. The black lines represent spectral profiles and are used only to visualize the selected wavelengths.
The results of disease severity evaluation models were established by using the selected important wavelengths (C) and important wavelengths
fused with color features (D) (RFE, UFS, and ATT represent for modelling with the extracted important wavelengths using the corresponding
feature extraction methods, respectively; Full represents for modelling with all wavelengths).
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were improved after data fusion compared with Figure 4C.

Effective wavelength selection and data fusion were positive in

evaluating the disease severity.
3.4 NDSCI index

From the foregoing results, the wavelength of 682nm was the

important spectral feature. In addition, Bmean had the highest

correlation with disease severity, with a correlation coefficient of

-0.84 (Figure 5A and Table S7), which was the important color

feature. NDSCI was constructed based on the important

wavelength and color feature. The variation of the NDSCI is

shown in Figure 5B. It could be observed that the value of

NDSCI continuously decreased with the seriousness of BB. The

correlation coefficient between the NDSCI and disease severity

was -0.93. The value of NDSCI was less than 0 when the disease

severity exceeded 2. In this way, the critical point of disease

severity could be distinguished.

The correlation between common spectral indices and

disease severity is shown in Table 4, and the variations of

these indices are shown in Figures 5C–N. The spectral indices

have a good correlation with disease severity except for PRI and

WI, among which the correlation coefficient of NDVI and CIred-

edge reached -0.91. However, there was a certain overlap between

the values of NDVI and CIred-edge among different disease

severity by comparing Figures 5B, C, F. For the value of

NDSCI, the differences in the disease severity were obvious.

Especially when the disease severity was greater than 2, the value

of NDSCI was less than 0, which provided the feasibility of

evaluating the disease severity rapidly. Figure 6 shows the

pseudo-color images calculated by NDSCI. Compared with

RGB images, the difference between the lesion area and

healthy area was digitalized and displayed on the NDSCI

visualization images. It could be obviously observed that the

NDSCI value of the healthy area was significantly higher than

that of the lesion area, and the lesion areas were highlighted.

Moreover, the area of the disease-health junction that could not

be easily observed through the RGB image could be visually

displayed on NDSCI visualization images. The NDSCI value of

the disease-health junction was between the value of the healthy

area and the lesion area, which showed the changes of the

disease vividly.

To test the scalability of NDSCI, images of rice fields stressed

by Xoo collected by an unmanned aerial vehicle platform on

September 26, 2021, were used for validation. Detailed

information is shown in Figure S2 and Table S8. The acquired

RGB images were converted to HSV space to reduce the impact

of changes in lighting conditions. Based on the NDSCI strategy,

we found that the most important wavelength was 675nm and

the color feature was the first moment of the S channel. There
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was a correlation between the finally established NDSCI and the

disease severity, and the r reached -0.84, as shown in Figure 7A.

Figure 7B shows the correlations between some commonly used

indices and disease severity. NDSCI obtained the highest

correlation with the disease severity, showing the feasibility

and scalability of its application in the field. In addition, the

distribution of disease severity in the field was visualized using

NDSCI and vegetation indices, as presented in Figure 7C. The

scores of CIred-edge and CIgreen were close among different plots,

and the two spectral indices were not suitable for evaluating the

severity of BB. For NDVI, RDVI, RVSI, MTCI, DSI, OSAVI and

EVI, the scores of different plots were different, but the plots with

similar disease severity could not be well distinguished. In

contrast, NDSCI values could clearly show the disease severity

development in the field.
4 Discussion

4.1 Attention mechanism is suitable for
feature selection

Compared with conventional machine learning methods,

deep learning methods have advantages in feature learning and

classification tasks. When using the self-built ATT-LSTM model

to evaluate the disease severity, the weight value obtained by the

ATT block showed that the weight value of each wavelength was

different under different disease severity (Figure 4A). This was

different from the results obtained by conventional feature

selection methods. For example, UFS is an unsupervised

feature selector which performs variable selection based on a

chi-square test between each feature and has nothing to do with

the output. According to Figure 4B, it could be found that the

important wavelengths selected were gathered in the parts with

large differences between different spectra. The valid

information identified by UFS was limited. For the RFE

method, the results depend on the selection of the base model,

and the number of features to retain needs to be specified before

filtering. However, how many features will be valid is generally

unknown. The severity of rice was constantly changing after BB

infection, and different samples have their characteristics. The

different weight values of ATT demonstrated the superiority of

deep learning methods. In this study, the attention mechanism

made the model more focused on the important features, and the

LSTM model could capture and process the information well in

the time-series data. The ATT-LSTM model performed better

than the SVMmodel. Compared with Zhang et al. (2022)’s study

on rice BB severity evaluation based on attention mechanism

and convolutional neural network model, the accuracy of this

study increased by 4.82%. The proposed ATT-LSTM is suitable
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FIGURE 5

Results of the construction of new spectral index. (A) The correlation of the color features and disease severity. The variation of (B) NDSCI, (C)
NDVI, (D) RDVI, (E) RVSI, (F) CIrededge, (G) CIgreen, (H) MTCI, (I) GNDVI, (G) DSI, (K) OSAVI, (L) PRI, (M) EVI, and (N) WI. Different letters indicate
significant differences between different disease severity using the Tukey method (P<0.05). Black plots represent the lodging of rice in the plot,
which are not considered in the experiment.
Frontiers in Plant Science frontiersin.org11

https://doi.org/10.3389/fpls.2022.1037774
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bai et al. 10.3389/fpls.2022.1037774
for evaluating rice BB severity, and the attention block is

conducive to feature selection.
4.2 Data fusion improves the results of
disease severity evaluation

In the research of crop diseases, it is feasible to detect the disease

based on spectral data or features of images (Muhammed, 2005;

Yuan et al., 2019; Zhang et al., 2020). Better results in the evaluation

of rice BB severity can be obtained by the data fusion of spectra and

color features in this study.

The evaluation of disease severity using spectral data and

color features could obtain acceptable results. It was noted that

both SVM and ATT-LSTM models acquired better results than

before after using the fused data (Table 2). The fusion of spectral

and color features provided information about the disease’s

development. Extracting the information on disease

development from multiple perspectives could fully reveal the

development of disease. In addition, the hyperspectral data

contained 380 bands, and the correlation analysis showed a
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strong correlation between the adjacent bands (Figure S1). After

feature wavelength selection by the ATT block in the proposed

ATT-LSTM model, the evaluation effect of the disease severity

was improved, indicating that there was data redundancy in the

raw hyperspectral data. The model’s performance improved

further when the selected wavelengths and color features were

fused. The fusion of effective data could achieve satisfactory

results. In this study, only the spectral data and color features

were simply the primary fused of the raw data. Feature-level and

decis ion-leve l data fus ion can be explored in the

subsequent analysis.
4.3 NDSCI can be used to evaluate BB
severity from lab to field

Guided by the ATT mechanism and data fusion strategy, the

NDSCI index was obtained. The ATT weight values indicated

the highest score at the wavelength of 682nm, where the

ANOVA also showed significant differences between

the spectra of different severity (Figure 3B). Currently, the

extraction of information from hyperspectral images is mainly

based on the differences of different bands or through statistical

methods to select target-sensitive bands. In fact, the color change

of rice under BB stress could also be reflected in hyperspectral

images. Color moments are simple and effective representations

of color features. In this study, the color features of samples with

different disease severity were different in the RGB color space,

which was consistent with the result of Sabrol and Kumar

(2016). Bmean was selected, which was the mean response

intensity of the B channel. The B channel is sensitive to crop

disease infection and can reflect the color change of rice under

Xoo stress. Satisfactory results were obtained by combining the
B C D E FA

FIGURE 6

RGB images and corresponding visualization images of NDSCI. From left to right are disease severity of (A) 0, (B) 1, (C) 2, (D) 3, (E) 4, and (F) 5,
respectively.
TABLE 4 Correlation coefficient (r) values between different spectral
indices and disease severity.

Spectral index r value Spectral index r value

NDSCI -0.93 GNDVI -0.79

NDVI -0.91 DSI -0.62

RDVI -0.81 OSAVI -0.84

RVSI 0.73 PRI -0.37

CIred-edge -0.91 EVI -0.77

CIgreen -0.82 WI -0.24

MTCI -0.77
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important wavelength and color feature to construct the new

disease index.

High-quality hyperspectral data can be obtained in the lab

environment, while the quality of data obtained in the field

environment is affected by changes in environmental conditions

such as sunlight intensity and wind. Differences in data quality

make it difficult for results to cross from lab to field. The

important features we got in the lab setting were not the same

as in the field, which was the same as the result of Abdulridha

et al. (2020a). The important features varied with the

environmental conditions change, but these features were

closely related to BB severity. The strategy of constructing

NDSCI relied on the important features of the acquired data

to associate with the target task, which overcame the
Frontiers in Plant Science 13
phenomenon of differences in the lab and field environments.

Few studies have explored the extension from the lab

environment to the field environment. It is commendable that

research based on the lab environment can be truly extended to

various applications. The current research is a preliminary

attempt, and it is necessary to explore the principle in the

future further.
5 Conclusion

In this study, time-series VIS-NIR hyperspectral images

collected from different resistant rice cultivars infected with BB

were analyzed for the evaluation of the disease severity. The
B

C

A

FIGURE 7

Results of NDSCI extension to field data. (A) Scatter plot of the NDSCI of the field. (B) The correlation of the indices and disease severity.
(C) Disease severity maps calculated by NDSCI, NDVI, RDVI, RVSI, CIred-edge, CIgreen, MTCI, DSI, OSAVI, and EVI.
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results indicated that spectral data and color features were

reliable for evaluating rice BB severity, and the data fusion

could further improve the evaluation results. The idea of data

fusion provided a new idea for the precise measurement of plant

phenotypes. Moreover, compared with conventional machine

learning methods, the proposed ATT-LSTM model showed

better performance. Deep learning provided a reliable method

for the evaluation of rice BB severity and the selection of

important features. Inspired by satisfactory results that could

be obtained by the fusion of spectra data and color features,

NDSCI was constructed. NDSCI showed the advantages of

evaluating the BB severity compared with commonly used

spectral indices. The NDSCI strategy realized the leap from

the lab to the field, providing a basis for future related research.

Timely and effectively controlling the occurrence and

development of BB is a benefit for the growth and production

of rice. This study could provide a reliable method for

understanding the development of rice BB, and provide

assistance for breeders to obtain the disease extent.
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