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Tapped area detection and new
tapping line location for natural
rubber trees based on improved
mask region convolutional
neural network

Yaya Chen1, Heng Zhang1, Junxiao Liu2, Zhifu Zhang2

and Xirui Zhang1,2*

1School of Information and Communication Engineering, Hainan University, Haikou, China,
2Mechanical and Electrical Engineering College, Hainan University, Haikou, China
Aiming at the problem that the rubber tapping robot finds it difficult to accurately

detect the tapped area and locate the new tapping line for natural rubber trees due

to the influence of the rubber plantation environment during the rubber tapping

operation, this study proposes amethod for detecting the tapped area and locating

the new tapping line for natural rubber trees based on the improved mask region

convolutional neural network (Mask RCNN). First, Mask RCNN was improved by

fusing the attention mechanism into the ResNeXt, modifying the anchor box

parameters, and adding a tiny fully connected layer branch into themask branch to

realize the detection and rough segmentation of the tapped area. Then, the fine

segmentation of the existing tapping line was realized by combining edge

detection and logic operation. Finally, the existing tapping line was moved down

a certain distance along the center line direction of the left and right edge lines of

the tapped area to obtain the new tapping line. The tapped area detection results

of 560 test images showed that the detection accuracy, segmentation accuracy,

detection average precision, segmentation average precision, and intersection

over union values of the improved Mask RCNN were 98.23%, 99.52%, 99.6%,

99.78%, and 93.71%, respectively. Compared with other state-of-the-art

approaches, the improved Mask RCNN had better detection and segmentation

performance, which could better detect and segment the tapped area of natural

rubber trees under different shooting conditions. The location results of 560 new

tapping lines under different shooting conditions showed that the average location

success rate of new tapping lines was 90% and the average location time was

0.189 s. The average values of the location errors in the x and y directions were 3

and 2.8 pixels, respectively, and the average value of the total location errorwas 4.5

pixels. This research not only provides a location method for the new tapping line

for the rubber tapping robot but also provides theoretical support for the

realization of rubber tapping mechanization and automation.

KEYWORDS

Mask RCNN, object detection, image segmentation, attention mechanism, natural
rubber tree, new tapping line location
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1 Introduction

Natural rubber is an indispensable industrial raw material

and a strategic material. Tapping rubber trees is the most

important way to obtain natural rubber (LimaGouvêa et al.,

2022; Qin et al., 2022). Rubber tapping is the central link and key

technical link of rubber production, which requires high physical

and technical requirements of laborers, and its labor input

accounts for about 70% of the entire natural rubber

production (Meksawi et al., 2012; Zhang et al., 2019). At

present, natural rubber tapping mainly uses manual tapping,

and the commonly used tapping tools include traditional

tapping knives, hand-held electric tapping knives, etc. (Arjun

et al., 2016; Soumya et al., 2016; Zhou et al., 2021)

Manual rubber tapping is labor-intensive, time-consuming,

and laborious, with low work efficiency and high labor costs

(Zhang et al., 2022a). Therefore, there is an urgent need for an

automatic machine with a simple structure, high stability, and

suitability for natural rubber tapping to realize the natural

rubber tapping operat ion. In order to real ize the

mechanization and automation of natural rubber tapping, it is

particularly important to detect the tapped area and locate the

new tapping line for natural rubber trees. In the rubber tapping

operation of natural rubber trees, the environment of the rubber

plantation is complex (uneven light, similar colors of the object

and the environment, etc.), and the appearance (color, texture,

shape, etc.) of the tapped area of natural rubber trees of different

varieties, tree ages, and tree shapes is greatly different. These

unstructured and uncertain factors make it difficult to detect the

tapped area and locate the new tapping line for natural

rubber trees.

In recent years, with the development of computer vision

technology, machine vision has been widely used in the field of

agricultural engineering (Rehman et al., 2019). Some scholars

have researched the detection technology of the natural rubber

tree tapping line and have achieved some results. Wongtanawijit

and Khaorapapong (2022) used image differencing with a

connected component labeling algorithm and the sub-array

searching technique to detect the natural rubber tree tapping

line under low light conditions. Sun et al. (2022) detected the

natural rubber tree tapping line based on the threshold

segmentation, binary processing, morphological operation, and

edge extraction operator of traditional machine vision. The

traditional computer vision processing method is adopted in

the above method. The type of tapping line detected by the

method is single, and the adaptability to situations such as no

rubber liquid flowing out of the natural rubber tree, a complex

rubber garden environment, and large light changes is poor.

Compared with the traditional methods above, the object

detection algorithms in deep learning have a strong feature

extraction ability and self-learning ability, which are widely

used in crop object detection (Coulibaly et al., 2022). Wan and

Goudos (2020) adopted the improved Faster RCNN to realize
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the detection of multiple types of fruits. Song et al. (2019) used

VGG16 to construct and train a Faster RCNN model to detect

kiwifruit under different lighting conditions. Bai et al. (2022)

proposed an automatic cucumber segmentation and recognition

method combining data processing, single-stage object

recognition networks (YOLO-v3 and SSD), the U-Net

semantic segmentation network, and migration learning to

improve the accuracy of localization and grasping ability of

cucumber-picking robots. Zhang et al. (2022b) proposed an

RTSD-Net network based on YOLOv4-tiny for real-time

detection of strawberries in the indoor environment. However,

the abovementioned deep neural network algorithms (such as

Faster RCNN, YOLO, and SSD) can only roughly calculate the

object position through the bounding box and can't accurately

obtain the object profile and shape information (Yu et al., 2019).

As we all know, similar to circular targets such as apples and

kiwifruit, the location accuracy of the bounding box can already

meet the location requirements of the object (Liu et al., 2019). In

contrast, rubber tapping can only be carried out along the

existing rubber tapping line of natural rubber trees to prevent

tree damage and production reduction. Therefore, the location

of the new tapping line of natural rubber trees requires a high

precision profile and shape recognition of the tapped area, which

means that the above method can't meet the detection

requirements of the tapped area of natural rubber trees, and

pixel-level segmentation with higher accuracy is required.

Currently, pixel-level segmentation methods based on deep

learning include FCN, SegNet, DeepLab, Mask RCNN, etc. (Jia

et al., 2020; Peng et al., 2020; Wang et al., 2021) Among them,

FCN, SegNet, and DeepLab can only achieve semantic

segmentation tasks (Badrinarayanan et al., 2017; Shelhamer

et al., 2017; Yurtkulu et al., 2019). While Mask RCNN (He

et al., 2017) integrates the object detection task and the semantic

segmentation task into a single framework by adding an FCN

(Shelhamer et al., 2017) branch to the back end of the Faster

RCNN (Ren et al., 2017) framework. In this way, Mask RCNN

has both the functions of object detection and semantic

segmentation, which greatly improves the accuracy of object

detection. In an unstructured environment, Mask RCNN can

not only obtain a high accuracy of target detection on the tapped

area of natural rubber trees but also obtain the mask of target

pixel-level segmentation in the image to be detected. Moreover,

Mask RCNN is very flexible and can be used to complete a

variety of tasks, including object classification, object detection,

semantic segmentation, instance segmentation, and other tasks,

which improves the generalization ability of the detection

algorithm (He et al., 2017). In addition, the research on the

application of Mask RCNN related technology to detect the

tapped area and locate the new tapping line for natural rubber

trees has not been reported. To sum up, this paper uses Mask

RCNN to detect the tapped area and locate the new tapping line

for natural rubber trees. However, the original Mask RCNN

framework is designed to meet the detection needs of thousands
frontiersin.org
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of different types of objects (Liu et al., 2019). It is difficult to

achieve its best effect when it is only used for the detection of the

tapped area and the location of the new tapping line for natural

rubber trees. There are some shortcomings, such as the poor

ability to extract subtle features in natural rubber tree images, the

low segmentation accuracy of the detail part, the poor network

detection accuracy and segmentation accuracy, and the poor

quality of the generated mask effect. To this end, this paper

proposes a method for detecting the tapped area of natural

rubber trees and locating the new tapping line based on the

improved Mask RCNN to realize the mechanization and

automation of natural rubber tapping operations. The main

innovations and contributions are summarized as follows:
Fron
(1) The dataset of natural rubber tree tapped area detection

and new tapping line location was established. The

image was preproce s s ed by us ing b i l inea r

interpolation, data enhancement, and other methods

to diversify the image dataset, enhance the anti-

interference ability under complex conditions, and

improve the network training model effect and

generalization ability.

(2) The attention mechanism was fused into the ResNeXt to

enhance the feature extraction capability of the

backbone network, the relevant parameters of

generating the anchor box were modified in the region

proposal network to improve the matching degree

between the anchor box and the natural rubber tapped

area, and a tiny fully connected layer branch was added

into the mask branch to improve the mask quality to

improve the Mask RCNN. The improved Mask RCNN

was used to realize the detection and rough

segmentation of the tapped area of natural rubber trees.

(3) On the basis of the detection and rough segmentation of

the tapped area, the fine segmentation of the existing

tapping line of natural rubber trees was realized by

combining the edge detection and logic operation.

Then, the existing tapping line was moved down a

certain distance along the center line direction of the

left and right edge lines of the tapped area to obtain the

position of the new tapping line, and the new tapping

line was smoothed to realize the location of the new

tapping line.

(4) The tapped area detection and the new tapping line

location method based on improved Mask RCNN were

trained and tested to accurately detect and segment the

tapped area and effectively locate the new tapping line.
The method proposed in this paper not only provides technical

support for the location of the new tapping line of the rubber

tapping robot in the rubber garden environment but also provides

theoretical support for the realization of mechanization and
tiers in Plant Science 03
automation of rubber tapping. The rest of this paper is organized

as follows: The "Materials and Methods" section introduces the

dataset and methods adopted in this study. In the "Results and

Discussion" section, the experimental results of the performance

evaluation of the natural rubber tree tapped area detection model

and the experimental results of the new tapping line location are

presented, and the experimental results are discussed. Finally, the

"Conclusion and Future Work" section gives the main conclusions

of the study and makes suggestions for future research.
2 Materials and methods

2.1 Image acquisition

In this research, natural rubber trees in their natural growth

state were taken as the test objects, and a Sony DSC-RX100

camera was used for multi-angle shooting. The imaging range

was 400-800 mm, and the image resolution was 5472×3648

pixels. To ensure the diversity of image samples, the dataset was

divided into direct sunlight on sunny days, backlight on sunny

days, and cloudy days according to the light conditions at the

time of the shooting, and was divided into one year, two years,

and three years according to the year when the natural rubber

tree tapped area had been cut at the time of the shooting. A total

of 1800 images of natural rubber trees were collected in the

natural rubber garden in Danzhou, Hainan, China. All images in

the dataset included the tapped area, the existing tapping line

(the existing tapping line was on the tapped area) (Figure 1A),

the natura l rubber tree , and the complex rubber

garden environment.
2.2 Image preprocessing

To reduce the training time of the network model, a bilinear

interpolation algorithm (Du et al., 2022) was used to scale the

acquired images to 652×552 pixels. To improve the effectiveness

of the network training model and the generalization ability of

the model, the data enhancement method was adopted to

increase the number of natural rubber tree image samples for

the collected images and prevent the network from being over-fit

due to insufficient training samples. The dataset images were

expanded to 3600 by a random combination of increasing and

decreasing brightness, color, contrast ratio, and Gaussian noise.

After the image preprocessing, the data labeling software

Labelme was used to manually mark the polygons of the

image to complete the production of the image data label.

During labeling, only the tapped area (Figure 1B) in the

natural rubber tree image was marked. 560 images of the

whole dataset were randomly selected as the test set, and the

remaining 3040 images were selected as the training set.
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2.3 Improved Mask RCNN's natural
rubber tree tapped area detection and
segmentation model

The convolutional neural network algorithm based on

region is the most representative method in the current object

detection field. As a relatively new achievement in this series,

Mask RCNN has a very flexible framework, which can add

different branches to complete different tasks and can complete

object classification, object detection, semantic segmentation,

instance segmentation, human posture recognition, and other

tasks (He et al., 2017). In this paper, the improved Mask RCNN

object detection model is used to identify, detect, and segment
Frontiers in Plant Science 04
the tapped area of natural rubber trees, mainly to improve and

optimize the backbone network, structural parameters, and the

mask branch of the Mask RCNN. Figure 2A shows the structure

of the natural rubber tree tapped area detection and

segmentation method based on the improved Mask RCNN

network. First, input images went through the backbone

network composed of a ResNeXt fused with the attention

mechanism and a feature pyramid network (FPN) for feature

extraction. Then, feature maps were input into the region

proposal network (RPN) to generate the region proposals.

Region of interest align (RoIAlign) extracted features from

each region proposal and aligned them one-to-one with the

input of the RPN to generate fixed size feature maps. Finally, two
BA

FIGURE 1

Natural rubber tree images. (A) Acquired natural rubber tree image and (B) visualization of mask image.
B

A

FIGURE 2

(A) Structure of natural rubber tree tapped area detection and segmentation method based on improved Mask RCNN and (B) improved
backbone network structure.
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parallel operations were performed. Classification and bounding

box regression of the tapped area were achieved by the fully

connected (FC) layers, and a high-accuracy segmentation mask

was generated by the FCN with a tiny FC layer to obtain the area

where the tapped area was located. The details will be elaborated

on in the following subsections.
2.3.1 Backbone network
The backbone network is a feature extraction network,

which extracts features from images to facilitate subsequent

image processing tasks (Wang and He, 2022). The original

Mask RCNN network uses ResNet and FPN to form the

backbone network for feature extraction, which has some

problems. When the ResNet is deep or has many parameters,

issues such as poor subtle feature extraction ability, low

segmentation accuracy of the detail part, and gradient

dispersion are common. To solve the above problems, improve

the accuracy of the model in extracting the features of the tapped

area, prevent the model from generating gradient dispersion,

and reduce the use of hyper-parameters, the improved Mask

RCNN adopted a ResNeXt fused with an attention mechanism

and FPN to form the backbone network to extract the features of

the tapped area. As shown in Figure 2B, the parallel connected

attention mechanism module, the convolutional block attention

module (CBAM), was integrated at the end of each level from C2

to C5 of the ResNeXt to enhance the subtle feature extraction

ability of the backbone network and improve the network

detection and segmentation accuracy.

(1) ResNeXt

The block of the ResNeXt (Panta et al., 2020) (shown in

Figure 3B) combines the residual block of the ResNet (shown in

Figure 3A) and the structural characteristics of the split-

transform-merge of the inception network, selects a consistent

topological structure to realize hyper-parametric sharing, and

changes the number of branches through the number of groups.

The block of ResNeXt greatly improves the scalability of the

model and improves the accuracy of network detection without

increasing the complexity of parameters. The split-transform-

merge structure of the ResNeXt is expressed by formula (1).
Frontiers in Plant Science 05
Fy = Fx +o
c

i=1
Ti(Fx) (1)

Where Fx is the input feature, Fy is the output feature, Ti is

the same branch structure, and c is the number of branches, that

is, cardinality. In this model, c is 32.

(2) Attention mechanism

The attention mechanism adopted in deep learning is similar

to the selective visual attention mechanism of human beings.

The attention mechanism enables the model to select the

information most critical to the current task from a large

amount of information during the training process. The

attention mechanism allows the neural network to focus on

the relevant elements of the object in the input image while

suppressing the irrelevant elements (Wang and He, 2022). As a

lightweight attention mechanism module, CBAM (Ma et al.,

2022) is composed of two parts: the channel attention module

(CAM) and the spatial attention module (SAM). CBAM pays

attention to features of the channel and space, which not only

saves parameters and computational power but also ensures that

it can be integrated into the existing network architecture as a

plug-and-play module. Since CBAM is a serial structure, CAM

has a certain degree of influence on the features learned by SAM.

Therefore, in this study, CBAM adopted a parallel connection

method to carry out feature fusion on the outputs of the two

modules by element, so that there was no need to pay attention

to the ordering of SAM and CAM.

Let the output F∈RC×H×W of layer C3 be the input feature

map of CBAM, as shown in Figure 2B. First, F passed the global

max-pooling and global average-pooling in parallel to obtain

two feature maps with a size of C×1×1 and two feature maps

with a size of 1×H×W. Second, two feature maps with a size of

C×1×1 were merged by using element-wise summation after

entering a weight-sharing network composed of a multi-layer

perceptron (MLP) with one hidden layer, and then the sigmoid

activation operation was performed to generate the final channel

attention MC∈RC×1×1. Two feature maps with a size of 1×H×W

were convolved after the channel dimension splicing, and then

the sigmoid activation operation was performed to generate the

final spatial attentionMS∈R1×H×W. Then,MC and F were merged
B CA

FIGURE 3

(A) A block of ResNet, (B) a block of ResNeXt, and (C) aspect ratio distribution of tapped area.
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by using element-wise multiplication to obtain the feature map

F ' after channel attention adjustment, and MS and F were

merged by using element-wise multiplication to obtain the

feature map F '' after spatial attention adjustment. Finally, we

added the feature maps F ' and F '' to get the input F ''' of the C4

layer. The calculation process of parallel connected CBAM

generating attention is shown in formula (2).

F 000 = MC(F)⊗ F +MS(F)⊗ F (2)

Where F is the input feature map, F ''' is the output feature

map, MC(F) is the output of CAM, MS(F) is the output of SAM,

and⨂ is the element-wise multiplication (multiply the elements

at the corresponding positions of two matrices).

(3) FPN

In the improved Mask RCNN backbone network, the image

passed through the bottom-up ResNeXt fused with the attention

mechanism to obtain 4-level feature maps (D2, D3, D4, and D5)

from low to high. Then, these feature maps were used as the

input of FPN to establish a feature pyramid network and output

new features (P2, P3, P4, P5, and P6). P6 was obtained by the

maximum pooling operation of P5. The specific corresponding

relationship between feature maps is shown in formula (3).

P2  =  conv sum upsample P3ð Þ,  conv D2ð Þð Þð Þ
P3  =  conv sum upsample P4ð Þ,  conv D3ð Þð Þð Þ
P4  =  conv sum upsample P5ð Þ,  conv D4ð Þð Þð Þ
P5  =  conv(conv(D5))

P6  = maxpoolingðP5Þ

8>>>>>>>><
>>>>>>>>:

(3)

Where conv is the convolution operation, sum is the

element-by-element alignment operation, upsample is the up

sampl ing opera t ion , and maxpool ing i s the max

pooling operation.

FPN adopted the convolution layer with a convolution

kernel of 1×1 and the top-down and horizontal connection

methods to fuse the 4-level feature maps generated by the

ResNeXt fused with the attention mechanism. After fusion,

each feature map (P2, P3, P4, P5, and P6) had different levels

of features.

2.3.2 RPN and RoIAlign
RPN generated sliding windows of various sizes on the

feature map obtained by the backbone network. The sliding

windows slid through convolution and selected multiple

candidate targets on the feature map. Then, the classifier and

regression determined whether the target belonged in the

foreground or background and determined the best candidate

box position. After obtaining the candidate box, the RoIAlign

layer pooled the corresponding area in the feature map into a

fixed-size feature map according to the position coordinates of

the candidate box to input the fully connected network for

classification, bounding box regression, and mask prediction.
Frontiers in Plant Science 06
The anchor box ratio of the original Mask RCNN network is

0.5:1:2. However, the aspect ratio of these anchor boxes does not

match the shape of the tapped area of natural rubber trees, which

will reduce the detection and segmentation accuracy of the

tapped area of natural rubber trees. Therefore, the aspect ratio

of the anchor box needs to be adaptively modified to match the

shape of the anchor box with the shape of the tapped area of

natural rubber trees. To obtain statistics on the aspect ratio of the

tapped area of natural rubber trees, 2000 natural rubber tree

images were randomly selected from the sample images, and the

tapped area on the 2000 images was manually marked with a

rectangular box, and then the aspect ratio of the marked box was

counted. The statistical results are shown in Figure 3C. In the

figure, the abscissa represents the aspect ratio, and the ordinate

represents the number of the tapped area corresponding to the

corresponding aspect ratio. It can be seen from the figure that

the aspect ratio of the tapped area of natural rubber trees was

more than 90% between 1 and 2. To adapt to the aspect ratio of

the tapped area of most natural rubber trees, the anchor box

ratio was set to 1:1.5:2 in this study.
2.3.3 Three-branch network and loss function
The three-branch network is used to obtain the bounding

box, category, and mask of the tapped area. In the original Mask

RCNN network, the three-branch network inputs the feature

map output by the RoIAlign to the FC layers for the classification

and bounding box regression of the tapped area and inputs it to

the FCN layer for the segmentation of the tapped area.

Classification and bounding box regression are implemented

by 7×7 convolution operations and two fully connected layers

with 1024 feature vectors, and the mask is implemented by four

consecutive convolutional layers and one de-convolutional layer.

Among them, the kernel size of each convolutional layer is 3×3

with 256 channels.

In this paper, to increase the diversity of information,

achieve feature enhancement, and generate a better quality

mask effect, a tiny FC layer branch was added to the mask

branch, which was connected from conv3 to the fc layer by a

branch, passing two conv4_fc and conv5_fc with a 3×3 size of

256 channels, as shown in Figure 4. Among them, the number of

channels in the conv5_fc convolutional layer was halved to

reduce the amount of computation. The 784×1×1 vector

generated by the fc layer was reshaped to the same spatial size

as the mask predicted by FCN, and the output of a tiny FC layer

was added to the output of FCN to obtain the final mask

prediction. The fully connected layer and the original FCN

had complementary characteristics, which were used to predict

unknown background or foreground, had high efficiency and

strong generalization ability, and avoided the hiding of spatial

features by using a fully connected layer (Wang et al., 2021).

The loss function of the three-branch network is shown in

formula (4).
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L = Lcls + Lbox + Lmask (4)

Where L is the total loss function of the network, Lmask is the

mask loss function, Lcls is the classification loss function, and

Lbox is the bounding box regression loss function. In view of the

actual situation of this study, the number of categories is set at 2

(tapped area class and background class).
2.4 Fine segmentation of existing
tapping line based on edge detection
and logic operation

The fine segmentation of the existing tapping line is an

important prerequisite for the location of the new tapping line.

To accurately obtain the existing tapping line, this research used

the Canny algorithm based on edge detection (Wang et al., 2022)

and logic operation to finely segment the existing tapping line on

the basis of improved Mask RCNN’s tapped area detection and

rough segmentation. The segmentation process is shown in

Figures 5A–D, and the specific implementation steps are

as follows:

Step 1: Input the image into the improved Mask RCNN

model to generate a prediction map (Figure 5A) and obtain the

rough segmentation results and position information of the

natural rubber tree’s tapped area.

Step 2: The obtained rough segmentation result image of the

tapped area of the natural rubber tree was converted into a gray-

scale image, and the gray-scale image was smoothed by

Gaussian filtering.
Frontiers in Plant Science 07
Step 3: The gradient amplitude and angle of a pixel point of

the gray-scale image through the gradient in the x and y

directions were calculated, as shown in formulas (5)-(8). The

smoothed gray-scale image was subjected to non-maximum

signal suppression processing based on the calculated gradient

amplitude and angle.

Gx(x, yÞ =
P x, y + 1ð Þ − P x, yð Þ + P x + 1, y + 1ð Þ − P x + 1, yð Þ

2
(5)

Gy(x, y) =
P x, yð Þ − P x + 1, yð Þ + P x, y + 1ð Þ − P x + 1, y + 1ð Þ

2
(6)

S =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2
x(x, y) + G2

y(x, y)
q

(7)

q = arctan (
Gy(x, y)

Gx(x, y)
) (8)

Where Gx(x, y) is the gradient of the image in the x direction,

Gy(x, y) is the gradient of the image in the y direction, P(x, y) is

the pixel value of the image at a certain point, S is the gradient

magnitude of the pixel point, and q is the angle of the pixel point.
Step 4: After double threshold edge connection processing

was performed on the image obtained in step 3, binarization was

performed, and the result was output to obtain the edge line and

position information of the tapped area of the natural

rubber tree.

Step 5: The upper left extreme pointA1 (xA, yA) (Figure 5B) and

the lower right extreme point B1 (xB, yB) (Figure 5B) of the edge line

of the tapped area were calculated. Starting from point B1, along the
FIGURE 4

Improved three-branch network.
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ordinate direction from point B1 to point A1, that is, from xB to xA,

find the minimum value yi of the abscissa corresponding to each

ordinate xi until it reaches point A1. And then the minimum value

yi of the abscissa corresponded to each ordinate xi was

corresponded to xi one by one to obtain the coordinate set of

each point on the lower left edge line of the tapped area. Among

them, i = 1, 2,…, n; B1 = P1, and B1 is the end point of the existing

tapping line.

Step 6: The first 50 points of the point set Pi were saved in the

point sets N and Q, and the 50th point of the point set Pi was set

as the initial point Pstart.

Step 7: Starting from the initial point Pstart, we judged

whether the angle a (Figure 5B) between the line segment

formed by the initial point Pstart and the next point Pnext and

the abscissa xstar satisfied the angle constraint 0 ≤ a ≤ p/2 in the

point set Pi. If so, the next point Pnextwas saved in the point set N

and step 7 continued to be performed until the point Pn
was reached.

Step 8: Starting from the initial point Pstart, we judged whether

the distance d (Figure 5C) between the initial point Pstartand the

next point Pnextsatisfied the distance constraint d ≤ 1.5 in the point

set N. If so, the next point Pnext was saved in the point set Q, and

step 8 was continued to be performed until the distance between the

two points Pstart and Pnext did not meet the distance constraint and

the existing tapping line points Qj (xj, yj) (Figure 5D) of the natural
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rubber tree were obtained. Among them, j = 1, 2,…, n1; C1 = Qn1,

and C1 is the starting point of the existing tapping line.
2.5 Position calculation of new
tapping line

During the rubber tapping operation of natural rubber trees,

to ensure rubber production, reasonably plan the tapping area,

and reduce the dead skin rate of rubber trees, the new tapping

line is generated by moving the existing tapping line down a

certain distance along the center line of the left and right edge

lines of the tapped area. The implementation process is shown in

Figures 5D–F, and the specific solution process is as follows:

2.5.1 Obtain center line of left and right edge
lines of tapped area

The center line of the left and right edge lines of the tapped

area is obtained based on the starting point and end point of the

existing tapping line and the edge line of the tapped area. The

specific calculation steps are as follows:

First, starting from point C1 (Figure 5D), along the ordinate

direction from point C1 to point A1 (Figure 5D), that is, from xC
to xA, the minimum values of the abscissa corresponding to the

ordinates xC–30 and xC–60 were obtained to form coordinate
B C

DE

F

A

FIGURE 5

Fine segmentation of existing tapping line and location process of new tapping line. (A) Prediction image. (B, C) Edge line images of tapped area
of natural rubber tree. (D) Existing tapping line image of natural rubber tree. (E) Schematic diagram of position calculation of new tapping line.
(F) New tapping line image of natural rubber tree.
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points D1 (xD1, yD1) and D2 (xD2, yD2), and the line segment

D1D2 (Figure 5E) was taken as the left edge line of the tapped

area. Then, starting from point B1 (Figure 5D), along the

ordinate direction from point B1 to point A1 (Figure 5D), that

is, from xB to xA, the maximum values of the abscissa

corresponding to the ordinates xB–30 and xB–60 were obtained

to form coordinate points E1 (xE1, yE1) and E2 (xE2, yE2), and the

line segment E1E2 (Figure 5E) was taken as the right edge line of

the tapped area. Finally, the center line F1F2 (Figure 5E) of the

left and right edge lines of the tapped area was calculated by the

formula (9).

M =
xF1, yF1ð Þ = xD1, yD1ð Þ + xE1,yE1ð Þ− xD1,yD1ð Þ

2

xF2, yF2ð Þ = xD2, yD2ð Þ + xE2,yE2ð Þ− xD2,yD2ð Þ
2

8<
: (9)

Where M denotes the center line F1F2, (xF1, yF1) denotes the

coordinates of the lower endpoint of the center line F1F2, and

(xF2, yF2) denotes the coordinates of the upper endpoint of the

center line F1F2.
2.5.2 Determination position of new
tapping line

It was known that the coordinates of each point of the

existing tapping line wereQj (xj, yj), and the coordinatesQ1j (x1j,

y1j) (Figure 5E) of each point of the new tapping line could be

calculated by the formula (10). Among them, j = 1, 2,…, n1.

y1j − yj
x1j − xj

=
yF1 − yF2
xF1 − xF2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x1j − xj
� �2+ y1j − yj

� �2q
= m

8>><
>>:

(10)

Where m is the number of pixels that the existing tapping

line moves down along the center line of the left and right edge

lines of the tapped area and is also the bark consumption along

the trunk axis direction of the natural rubber tree during the

rubber tapping operation. m is 8 here.

After obtaining the coordinates Q1j (x1j, y1j) of each point of

the new tapping line, the cubic polynomial was used to fit the

curve of the new tapping line (Zhang et al., 2020), eliminate

redundant points, realize smooth processing of the new tapping

line, and form a new tapping path that was conducive to the

execution of the end effector of the rubber tapping robot.

The mathematical expression of the polynomial curve is

given in formula (11).

pn(y) = o
n

k=0

aky
k (11)

Where n is the degree and ak is the polynomial coefficient. ak
is obtained by substituting the coordinates Q1j of each point of

the new tapping line into formula (12) and then substituting the

obtained ak into formula (11) to generate a smooth new tapping

line Q2 (Figure 5F).
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(12)

Where m is the total number of points on the new tapping

line, x is the abscissa of each point on the new tapping line, and y

is the ordinate of each point on the new tapping line.
2.6 Model training and algorithm
performance evaluation

The network model training and the new tapping line

location algorithm test of this study were carried out on two

computers, respectively. The model training was carried out on

the hardware platforms of an Intel (R) Xeon (R) Silver 4210

processor, 32GB memory, and an NVIDIA RTX 4000 (8GB

memory). The detection and segmentation of the tapped area of

natural rubber trees and the location test of the new tapping line

were carried out on the hardware platform of an Intel Core i7-

11800H processor, 16GB memory, and an NVIDIA RTX 3050

(4GB memory). The software environment used in the

experiment was a Windows 64-bit system, the PyTorch deep

learning framework, and the Python programming language.

2.6.1 Network model training
To verify the detection and segmentation effects of the

improved network model and determine the optimal network

model, six models of two different backbone networks were used

for comparative experiments, namely the original Mask RCNN

model based on ResNet50 and ResNet101, the improved Mask

RCNN model based on ResNeXt50 and ResNeXt101 fused with

the attention mechanism, and the improved Mask RCNN model

based on ResNeXt50 and ResNeXt101 fused with the attention

mechanism, which changed the structural parameters and mask

branches. Based on the above comparative experiments, the

optimal Mask RCNN network model was determined, and the

comparative experiments were carried out with YOLACT,

Cascade Mask RCNN, PointRend, Swin-B Cascade Mask

RCNN, FCN, and DeepLabv3 to compare the detection and

segmentation performance of different models and further verify

the detection and segmentation effect of the improved model. All

of the above model training’s learning rate, batch size,

momentum factor, weight decay, and number of iterations

were set to 0.01, 2, 0.9, 0.0001, and 30 epochs, respectively.

2.6.2 Model evaluation metrics
To test the performance of the algorithm proposed in this

study, 560 images of the test set were tested and evaluated for the
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detection of the tapped area and the location of the new tapping

line. The precision (P, %), recall (R, %), F1 score (F1, %), average

precision (AP, %), and intersection over union (IOU, %) were

used as indicators to evaluate the effectiveness of the model, and

the location success rate (Y, %) of the new tapping line was

counted. P, R, F1, AP, IOU, and Y are calculated as follows:

p =
TP

TP + FP
� 100% (13)

R =
TP

TP + FN
� 100% (14)

F1 =
2� p� R
p + R

(15)

AP =
Z 1

0
p(R)dR (16)

IOU =
MTP

MTP +MFP +MFN
(17)

Y =
ST
S
� 100% (18)

Where Tp, Fp, and FN represent true positive, false positive,

and false negative, respectively. F1 is the harmonic mean value of

the R and P; the value range is 0 to 1, where 1 represents the best

model output and 0 represents the worst model output. AP is the

integral of the P on the R. Generally, the higher the AP value, the

better the model’s performance. MTP, MFP, and MFN represent

the number of correct divided pixels, wrong divided pixels, and

miss divided pixels, respectively. S is the number of the existing

tapping line, and ST is the number of the new tapping line’s

location success.
3 Results and discussion

3.1 Improved Mask RCNN for
natural rubber tree tapped area
detection and segmentation

In order to verify the detection and segmentation

performance of the improved Mask RCNN model proposed in

this paper, six models with two different backbone networks

were compared. The comparative experiments were divided into

training and testing stages. The loss functions of the six models

are compared in the training stage, as shown in Figures 6A, B. In

the test stage, 560 natural rubber tree images from the test set

were used to test six models. The results are shown in Table 1,

Figures 6C–F, and Figure 7.

According to Figures 6A, B, during the training stage, the

total loss value of the six models gradually decreased and tended
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to be stable with the increase in the number of epochs, and the

decline speed was the fastest within the range of 0 to 10 epochs.

The network reached a convergence state when the number of

epochs was increased from 15 to 29. The total loss value of the

training tended to be stable and did not change much. Among

them, the overall training loss value of the IMRA(XA101+FC)

model was lower than the other models, indicating that the

IMRA(XA101+FC) model utilized image features more

thoroughly than the other five models and showed better

performance (Tian et al., 2020). In addition, with the increase

in the number of epochs, the training set loss value and the test

set loss (validation loss) value of the IMRA(XA101+FC) model

decreased continuously. When the number of epochs was greater

than 15, the training set loss value and the test set loss value

gradually converged. The loss values were less than 0.2 and

tended to be stable around 0.17. This indicated that the IMRA

(XA101+FC) model had a good training effect.

In the testing stage, it can be seen from Table 1 that

compared with MR(50), the AP0.5, AP0.75, and AP0.5-0.95 of

IMRB(XA50) and IMRA(XA50+FC) increased by 1.98%, 3.4%,

0.57%, and 1.96%, 6.35%, 0.75%, respectively. Compared with

MR(101), the AP0.5, AP0.75, and AP0.5-0.95 of IMRB(XA101) and

IMRA(XA101+FC) increased by 1.89%, 5.91%, 1.5%, and 2.02%,

6.14%, 4.81%, respectively. The AP values of MR(101), IMRB

(XA101), and IMRA(XA101+FC) were higher than MR(50),

IMRB(XA50), and IMRA(XA50+FC), indicating that compared

with ResNet50, ResNet101, and ResNeXt50 fused with the

attention mechanism, the ResNeXt101 fused with the attention

mechanism had a strong ability to extract features, and the object

detection performance of the model was significantly improved

(Panta et al., 2020; Du et al., 2022; Ma et al., 2022). The AP0.5-0.95
of IMRA(XA50+FC) and IMRA(XA101+FC) with changing

structural parameters and mask branches increased by 0.18%

and 3.31%, respectively, when compared to IMRB(XA50) and

IMRB(XA101). It showed that IMRA(XA101+FC), which

modified the anchor box parameters and added a tiny FC

layer to the mask branch, paid more attention to the object

itself and had the best object detection performance (Wang

et al., 2021).

In terms of image segmentation performance, the network

model of Mask RCNN using ResNeXt fused with the attention

mechanism as the backbone network was significantly superior to

the Mask RCNN model using ResNet as the backbone network in

the IOU index, and the IOU values of IMRA(XA50+FC) and IMRA

(XA101+FC) were increased by 0.57% and 1.52%, respectively,

compared with IMRB(XA50) and IMRB(XA101). It showed that a

tiny FC layer branch was added to the mask branch to further

increase the information diversity, realize feature enhancement, and

improve the segmentation performance of the model (Wang et al.,

2021). When combined with Figure 7, it is clear that IMRA(XA101

+FC) had a better segmentation effect than other models, and its

segmentation results were more accurate. Among them, the

segmentation of the tapped area of the deeper backbone network
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fused with the attention mechanism was more accurate, and after a

tiny FC layer branch was added to the mask branch, the diversity of

information was increased and a better quality mask was generated,

as shown in Figure 7H.

In addition, ROC curves and confusion matrices were used

to summarize the detection and segmentation performance of

IMRA (XA101+FC). It can be seen from Figures 6C, D that, in

the test stage, the detection and segmentation ROC curve of

IMRA(XA101+FC) was the most convex, closest to the upper

left corner, and the area under the curve was the largest

compared with ROC curves of other models. It showed that,

compared with other models, IMRA(XA101+FC) had the

highest detection and segmentation accuracy and the best

detection and segmentation performance. As shown in
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Figures 6E, F, diagonal lines in the matrix were correctly

detected and segmented, while all other items were incorrectly

detected and segmented. From Figures 6E, F, it can be seen that

the accuracy of detection and segmentation of the tapped area of

natural rubber trees reached 98.23% and 99.52%, respectively.

In the total time spent on detection and segmentation,

IMRA(XA50+FC) and IMRB(XA50) were 0.032 s slower than

MR(50), while IMRA(XA101+FC) and IMRB(XA101) were

0.044 s and 0.043 s slower than MR(101), which indicated that

the ResNeXt50 and ResNeXt101 fused with the attention

mechanism had slowed down the detection and segmentation

speed of the Mask RCNN model to a certain extent, but the

impact was not very obvious. IMRB(XA50) spent the same time

as IMRA(XA50+FC), while IMRA(XA101+FC) was 0.001 s
B

C D

E F

A

FIGURE 6

Comparative experiment results of six models. (A) Loss curves of different models in the training stage. (B) Loss curves of IMRA(XA101+FC).
(C) Detection ROC curves of different models. (D) Segmentation ROC curves of different models. (E) Detection confusion matrix of IMRA(XA101+FC).
(F) Segmentation confusion matrix of IMRA(XA101+FC). (“tapped area”: TA, “background”: BG).
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faster than IMRB(XA101), which indicated that changing the

anchor box ratio and adding a tiny FC layer branch into the

mask branch had a weak impact on the model detection and

segmentation speed. In terms of model parameters, IMRB

(XA50) and IMRB(XA101) decreased by 0.37 and 0.23,

respectively, compared with MR(50) and MR(101). When

compared to MR(50) and MR(101), IMRA(XA50+FC) and

IMRA(XA101+FC) increased by 0.81 and 0.95, respectively. It

showed that ResNeXt50 and ResNeXt101, which fused with the

attention mechanism, reduced the parameters of the Mask

RCNN model. However, modifying the anchor box parameters

and adding a tiny FC layer to the mask branch increased the

parameters of the Mask RCNN to a certain extent, but the

impact was not significant.

To sum up, all the detection and image segmentation

indexes of IMRA(XA101+FC) were optimal in both the

training and testing stages. The detection and segmentation

accuracy of IMRA(XA101+FC) reached 98.23% and 99.52%,

respectively. Compared with MR(101), AP0.5, AP0.75, AP0.5-0.95,

and IOU were increased by 2.02%, 6.14%, 4.81%, and 4.62%,

respectively. Although IMRA(XA101+FC) was 0.043 s slower

than MR(101) in detection and segmentation speed, and 0.95 M
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more than MR (101) in model parameters, it could meet the task

requirements. In addition, considering that the fine

segmentation of the existing tapping line and the location of

the new tapping line were based on the detection and

segmentation results of the tapped area. Therefore, IMRA

(XA101+FC) was determined as the improved Mask RCNN

network model, MR(101) was the Mask RCNN network model,

and the improved Mask RCNN network model was used as the

pre-network for the fine segmentation of the existing

tapping line.
3.2 Detection and segmentation
performance of natural rubber tree
tapped area based on different methods

To further verify the detection and segmentation

performance of the improved Mask RCNN network model on

the tapped area of natural rubber trees, it was compared with the

Mask RCNN, YOLACT, Cascade Mask RCNN, PointRend,

Swin-B Cascade Mask RCNN, FCN, and DeepLabv3 models

(He et al., 2017; Shelhamer et al., 2017; Bolya et al., 2019; Cai and
TABLE 1 Performance results of different models in the test set.

Model AP0.5 AP0.75 AP0.5-0.95 IOU Parameters (M) Time (s)

MR (50) 97.2 89.6 75.02 87.9 43.92 0.097

MR (101) 97.58 91.48 75.78 89.09 62.86 0.130

IMRB (XA50) 99.18 93 75.59 91.15 43.55 0.129

IMRB (XA101) 99.47 97.39 77.28 92.19 62.63 0.174

IMRA (XA50+FC) 99.16 95.98 75.77 91.72 44.73 0.129

IMRA (XA101+FC) 99.6 97.62 80.59 93.71 63.81 0.173

MR is the Mask RCNN network model. IMRB is the improved Mask RCNN network model that changes the backbone network. IMRA is the improved Mask RCNN network model
that changes the backbone network, structural parameters, and mask branches. 50 is the ResNet50. 101 is the ResNet101. XA50 is the ResNeXt50 fused with attention mechanism.
XA101 is the ResNeXt101 fused with attention mechanism. FC is a tiny fully connected layer branch. AP0.5 is the average precision when the IOU threshold is greater than 0.5, AP0.75 is
the average precision when the IOU threshold is greater than 0.75, and AP0.5-0.95 is the average precision when the IOU threshold is between 0.5 and 0.95. Time is the total time spent on
detecting and segmenting a single image.
fro
B C D E F G HA

FIGURE 7

Tapped area segmentation results of natural rubber trees of different models. (A) Original images. (B) Label images. (C) MR(50). (D) MR(101). (E)
IMRB(XA50). (F) IMRB(XA101). (G) IMRA(XA50+FC). (H) IMRA(XA101+FC).
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Vasconcelos, 2019; Yurtkulu et al., 2019; Kirillov et al., 2020; Liu

et al., 2021). The test results of the improved Mask RCNN

network model and the other models on the tapped area

detection and segmentation of 560 natural rubber tree images

in the test set are shown in Table 2 and Figure 8.

It can be seen from Table 2 that the APbox and APmask values

of the improved Mask RCNN reached 99.6% and 99.78%,

respectively. Compared with YOLACT, Cascade Mask RCNN,

PointRend, Swin-B Cascade Mask RCNN, and Mask RCNN, the

APbox value of the improved Mask RCNN increased by 0.8%,

0.8%, 0.6%, 0.7%, and 2.02%, respectively, and the APmask value

of the improved Mask RCNN increased by 0.98%, 0.98%, 0.78%,

0.88%, and 2.81%, respectively. Compared with FCN and

DeepLabv3, the APmask value of the improved Mask RCNN

increased by 0.67% and 2.47%, respectively. This indicated that,
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among these models, the improved Mask RCNN model had the

best detection and segmentation performance.

As can be seen from Figure 8, compared with the improved

Mask RCNN, the detection and segmentation effects of YOLACT,

Cascade Mask RCNN, PointRend, Swin-B Cascade Mask RCNN,

FCN, DeepLabv3, and Mask RCNN models were not ideal. For

example, FCN and DeepLabv3 had the phenomenon of object

over-segmentation; Mask RCNN had the phenomenon of object

incomplete segmentation and object over-detection; Cascade

Mask RCNN and Swin-B Cascade Mask RCNN had the

phenomenon that the object edge segmentation was not smooth;

PointRend had the phenomenon of object incomplete detection;

and YOLACT had the phenomenon of object incomplete

detection and segmentation. However, the improved Mask

RCNN still maintained a good detection and segmentation effect.
TABLE 2 Detection and segmentation performance of different models on tapped area in test set.

Model YOLACT Cascade Mask
RCNN PointRend Swin-B Cascade Mask

RCNN
Mask
RCNN FCN DeepLabv3 Improved Mask

RCNN

APbox 98.8 98.8 99 98.9 97.58 / / 99.6

APmask 98.8 98.8 99 98.9 96.97 99.11 97.31 99.78

APbox is the average precision of natural rubber tree tapped area detection. APmask is the average precision of natural rubber tree tapped area segmentation. / indicates that the average
precision value of natural rubber tree tapped area detection does not exist.
FIGURE 8

Tapped area detection and segmentation results of natural rubber trees of different models.
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Through comprehensive comparison, the improved Mask

RCNN model had higher values in APbox and APmask and had a

better detection and segmentation effect on the tapped area of

natural rubber trees, which indicated that the improved Mask

RCNN had better detection and segmentation performance and

that the network’s accuracy, robustness, and generalization

performance were better.
3.3 Comparison of natural rubber tree
tapped area detection effects under
different shooting conditions

To further verify the detection effect of the improved Mask

RCNN network model on the tapped area of natural rubber trees

under different shooting conditions, the 560 images of the test

set were divided into direct sunlight on sunny days, backlight on

sunny days, cloudy days, the tapped area had been cut for one

year, the tapped area had been cut for two years, and the tapped

area had been cut for three years. The comparative experiment of

the detection effect before and after the model improvement was

carried out on the divided test set (Ning et al., 2021). The specific

effects are shown in Figure 9 and Table 3.

It can be seen from Figure 9 that under different shooting

conditions, the unimproved model had a false detection

phenomenon. It was analyzed that the reason was that the color

and shape of the natural rubber tree’s shadow in the rubber garden

were too close to the color and shape of the tapped area under direct

sunlight on sunny days. However, the improved model could

accurately detect the position and category of the tapped area of

natural rubber trees without false detection and had higher

detection accuracy. In the segmentation of the natural rubber tree

tapped area, the unimproved model had the phenomena of

incomplete segmentation, over-segmentation, the segmentation

boundary was not detailed, and there were burrs. It was analyzed

that the appearance of this phenomenon was due to the irregular

shape of the natural rubber tree tapped area, uneven tapped area

color, uneven illumination, etc. However, the improved model
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significantly improved this phenomenon, making its

segmentation accuracy closer to the real area.

The detection results of the tapped area before and after the

model improvement under different shooting conditions are

shown in Table 3. It can be seen from Table 3 that under

cloudy days, the P, R, and IOU of the improved model reached

95.35%, 98.7%, and 94.16%, respectively, indicating that the

tapped area of natural rubber trees under this condition was

easier to detect by the model. However, on sunny days, the P, R,

and IOU of the improved model were lower than those on

cloudy days. On cloudy days, the color, texture, and profile of the

tapped area of natural rubber trees were clear; improved model

detection was less difficult; and detection and segmentation

effects were better. However, on sunny days, due to the strong

light and uneven light distribution, the tapped area experienced

an exposure phenomenon. The shadow generated by the light

overlapped with the tapped area’s color, and the color of the

tapped area was similar to the background. Therefore, the

improved model was more difficult to detect the tapped area

under the conditions of direct sunlight and backlight on sunny

days, and the detection and segmentation effects were poor. It

can be seen from Table 3 that, under the conditions that the

tapped area had been cut for two and three years, the P, R, and

IOU of the improved model were significantly higher than those

of the tapped area that had been cut for one year, indicating that

the tapped area of natural rubber trees that had been cut for two

or three years was easier to detect by the improved model. The

reason was that the tapped area of natural rubber trees that had

been cut for two or three years was relatively large and

conspicuous, which made it easy to detect, and the model

detection and segmentation effects were better. However, the

tapped area of natural rubber trees that had been cut for one year

was smaller and less obvious than the tapped area of natural

rubber trees that had been cut for two or three years, which made

it difficult to detect, resulting in poor detection and segmentation

effects of the improved model. In addition, the F1 and IOU

values of the improved model proposed in this study were higher

than those of the unimproved model under different shooting
B

A

FIGURE 9

Tapped area detection and segmentation results of natural rubber trees of different models under different shooting conditions. (A) Mask RCNN.
(B) Improved Mask RCNN.
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conditions, indicating that the detection and segmentation

performance of this method was better than that of the

unimproved model under different shooting conditions.

Aiming at the situation that the improved model mentioned

above has poor detection and segmentation effects under the

conditions of direct sunlight on sunny days, backlight on sunny

days, and the tapped area has been cut for one year, we will

further improve the feature extraction ability of the model by

expanding the training dataset in the future to solve

this situation.
3.4 New tapping line location for natural
rubber trees

To verify the influence of different shooting conditions on

the location accuracy and speed of the new tapping line, the

images taken under different shooting conditions in the test set
Frontiers in Plant Science 15
were tested. The location effects of the new tapping line are

shown in Figure 10 and Table 4.

It can be seen from Figure 10 and Table 4 that under

different shooting conditions, the average success rate of the

new tapping line location was 90% and the average time spent

was 0.189 s, which could meet the task requirements. On cloudy

days, the success rate of locating the new tapping line was

92.11%, which was 1.57% and 3.18% higher than that under

direct sunlight on sunny days and backlight on sunny days,

respectively. On cloudy days, because the color, texture, profile,

shape, and other characteristics of the tapped area of natural

rubber trees were more obvious, the detection and segmentation

accuracy of the improved Mask RCNN network model was

higher, resulting in a higher location success rate for the new

tapping line. On sunny days, factors such as strong light and

uneven light distribution affect the image quality. The most

obvious one was the tapped area. As shown in Figures 10A, B,

the tapped area that failed to be successfully located had an
B C D E FA

FIGURE 10

Location effects of new tapping line under different shooting conditions. (A) Sunny and sunlight. (B) Sunny and backlight. (C) Cloudy. (D) One
year. (E) Two years. (F) Three years.
TABLE 3 Detection results before and after model improvement under different shooting conditions.

Shooting condition Before and after the model improvement P R F1 IOU

Sunny and sunlight
Before 89.69 98.06 92.43 88.01

After 95.09 97.98 96.45 93.25

Sunny and backlight
Before 92.1 97.23 93.93 89.69

After 94.99 97.19 96.02 92.44

Cloudy
Before 92.62 98.61 95.13 91.42

After 95.35 98.7 96.98 94.16

A year
Before 89.27 97.33 91.97 87.03

After 94.3 96.68 95.41 91.33

Two years
Before 89.92 97.87 92.52 88.08

After 94.97 98.14 96.46 93.28

Three years
Before 93.27 98.29 95.38 91.75

After 95.68 98.38 96.99 94.18
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exposure phenomenon, the shape and texture characteristics

were fuzzy, and the color was similar to the background. As a

result, the improved Mask RCNN failed to effectively detect and

segment the tapped area of natural rubber trees, resulting in the

new tapping line location failure.

The success rates of the location of the new tapping line of

natural rubber trees where the tapped area had been cut for two

and three years were 90.24% and 90.76%, respectively, which

were higher than those of the tapped area that had been cut for

one year. In the images of the natural rubber tree, where the

tapped area had been cut for two or three years, the tapped area

was a large target, which was more conspicuous and easy to

detect, and the image processing process was relatively simple.

The tapped area was a small target in the images of the natural

rubber tree where the tapped area had been cut for one year,

making it difficult to detect, and the segmentation effect was

poor. As shown in Figure 10D, the segmentation effect of the

tapped area was poor, which led to errors in the fine

segmentation of the existing tapping line based on edge

detection and logic operations, resulting in the failure of the

new tapping line to locate.

An error analysis was performed on 200 sample images that

successfully located the new tapping line to calculate the location

accuracy of the algorithm. Labelme was used to mark the
Frontiers in Plant Science 16
rectangular area [(Xmin, Ymin), (Xmax, Ymax)] of the optimal

new tapping line. The pixel location error was calculated

according to the formula (19) (Du et al., 2022). The location

error analysis results are shown in Figure 11.

It can be seen from Figure 11 that the maximum values of

the location errors in the x and y directions and the total location

error were 5.5, 7, and 8.2 pixels, respectively, and the average

errors were 3, 2.8, and 4.5 pixels, respectively. Compared with

the average errors, the maximum deviations were 2.5, 4.2, and

3.7 pixels, respectively, which indicated that the location errors

in the x and y directions and the total location error were small

and that change was relatively stable compared with the average

error. Considering that the rubber tapping operation of natural

rubber trees is an operation with high precision requirements, it

is required to have a certain fault tolerance range when designing

the rubber tapping end effector, and its location tolerance is 10

pixels (Zhang et al., 2019). Therefore, the location results of the

new tapping line can meet the location accuracy requirements of

natural rubber tree tapping machinery.

ex =
Xmin−xminj j+ Xmax−xmaxj j

2

ey =
Ymin−yminj j+ Ymax−ymaxj j

2

e =
ffiffiffiffiffiffiffiffi
e2x+e2y

p
2

8>>>><
>>>>:

(19)
TABLE 4 Location results of new tapping line under different shooting conditions.

Shooting condition S ST Y Time spent (s)

Sunny and sunlight 296 268 90.54 0.188

Sunny and backlight 188 166 88.93 0.19

Cloudy 76 70 92.11 0.188

A year 130 115 88.46 0.191

Two years 246 222 90.24 0.188

Three years 184 167 90.76 0.19

Mean 560 504 90 0.189

Time spent is the total time of single image object detection, segmentation, and new tapping line location.
B CA

FIGURE 11

Location error of new tapping line. (A) Location error in x, (B) location error in y, and (C) total location error.
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Where (xmin, xmax) and (ymin, ymax) are the abscissa and

ordinate coordinates of the rectangular area that successfully

locates the new tapping line, ex is the abscissa error, ey is the

ordinate error, and e is the total error.

Although this research provided an effective solution for

locating the new tapping line of natural rubber trees, it was still

affected by many factors, such as the direct sunlight and backlight

conditions on sunny days, which affected the image quality,

especially the tapped area, which caused the shape and texture

characteristics of the tapped area to be fuzzy and the color of the

tapped area to be similar to the background, resulting in the failure

of the new tapping line location. The tapped area in the natural

rubber tree images that had been cut for one year was difficult to

detect as a small target, and the segmentation effect was poor,

resulting in the failure to locate the new tapping line. In future

research, we will further study the segmentation of the tapped area

and the location method of the new tapping line when the natural

rubber tree is under direct sunlight on sunny days, backlight on

sunny days, and the tapped area has been cut for one year, and

explore the method of locating the new tapping line by detecting the

key points on the edge of the tapped area.
4 Conclusion and future work

To realize the autonomous operation of the rubber tapping

robot in the rubber garden environment, this paper proposes a

method based on the improved Mask RCNN to detect the

tapped area and locate the new tapping line for natural rubber

trees. By improving the backbone network, structural

parameters, and mask branch of the Mask RCNN, combined

with edge detection and logic operation, the detection and

segmentation of the tapped area of natural rubber trees and

the fine segmentation of the existing tapping line were realized.

Finally, the position of the new tapping line was calculated,

providing technical support for the automatic natural rubber

tapping machine. The specific conclusions are as follows:

(1) Compared with MR(50), IMRB(XA50), IMRA(XA50

+FC), MR(101), and IMRB(XA101) network models, IMRA

(XA101+FC) had the highest AP and IOU values. Its AP0.5,

AP0.75, AP0.5-0.95, and IOU values were 99.6%, 97.62%, 80.59%,

and 93.71%, respectively. Compared with MR(101), the AP0.5,

AP0.75, AP0.5-0.95, and IOU values of IMRA(XA101+FC)

increased by 2.02%, 6.14%, 4.81%, and 4.62%, respectively,

indicating that compared with ResNet50, ResNet101, and

ResNeXt50 fused with the attention mechanism, ResNeXt101

fused with the attention mechanism had a stronger ability to

extract features, and the object detection and segmentation

performance of the model had been significantly improved.

IMRA(XA101+FC), which changed the anchor box ratio and

added a tiny FC layer branch to the mask branch, paid more

attention to the target itself, increased information diversity,

realized feature enhancement, had the best object detection
Frontiers in Plant Science 17
performance, and improved the segmentation performance of

the model.

(2) Compared with Mask RCNN, YOLACT, Cascade Mask

RCNN, PointRend, Swin-B Cascade Mask RCNN, FCN, and

DeepLabv3, the improved Mask RCNN model proposed in this

study had better detection and segmentation performance. The

detection accuracy, segmentation accuracy, detection average

precision, segmentation average precision, and IOU values of the

improved Mask RCNN were 98.23%, 99.52%, 99.6%, 99.78%,

and 93.71%, respectively. In addition, under different shooting

conditions, the F1 and IOU values of the improved Mask RCNN

were higher than those of the Mask RCNN, indicating that,

compared with the Mask RCNN, the improved Mask RCNN

could better detect and segment the tapped area of natural

rubber trees.

(3) The location results of 560 new tapping lines under

different shooting conditions showed that the location success

rate of new tapping lines on cloudy days was the highest, at

92.11%, which was 1.57% and 3.18% higher than that on direct

sunlight on sunny days and backlight on sunny days,

respectively. The location success rates of the new tapping line

of natural rubber trees where the tapped area had been cut for

two and three years were higher than those of the tapped area

that had been cut for one year. Under different shooting

conditions, the average success rate of the new tapping line

location was 90%, the average location time was 0.189 s, the

maximum values of the location errors in the x and y directions

were 5.5 and 7 pixels, respectively, and the maximum value of

the total location error was 8.2 pixels, which met the location

accuracy and speed requirements of the natural rubber tree

tapping machine.

At present, the method proposed in this paper can accurately

detect the tapped area of natural rubber trees, but the network

model is slightly larger, and the segmentation accuracy needs to

be further improved. In future research, we will collect images of

natural rubber trees of different varieties, expand the dataset of

natural rubber trees under different conditions, and study

methods to further simplify the network structure and improve

the segmentation accuracy. For the location of the new tapping

line of natural rubber trees, there is a situation of location failure.

The reason for this is that the segmentation effect of the tapped

area is poor. In future research, further research will be conducted

on the segmentation of the tapped area and the localization of the

new tapping line for natural rubber trees, and the method of

locating the new tapping line by detecting the key points on the

edge of the tapped area will be explored.
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