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Cotton disease identification
method based on pruning

Dongqin Zhu1, Quan Feng1*, Jianhua Zhang2,3

and Wanxia Yang1

1School of Mechanical and Electrical Engineering, Gansu Agricultural University, Lanzhou, China,
2Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing, China,
3National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
Deep convolutional neural networks (DCNN) have shown promising

performance in plant disease recognition. However, these networks cannot

be deployed on resource-limited smart devices due to their vast parameters

and computations. To address the issue of deployability when developing

cotton disease identification applications for mobile/smart devices, we

compress the disease recognition models employing the pruning algorithm.

The algorithm uses the g coefficient in the Batch Normalization layer to prune

the channels to realize the compression of DCNN. To further improve the

accuracy of the model, we suggest two strategies in combination with transfer

learning: compression after transfer learning or transfer learning after

compression. In our experiments, the source dataset is famous PlantVillage

while the target dataset is the cotton disease image set which contains images

collected from the Internet and taken from the fields. We select VGG16,

ResNet164 and DenseNet40 as compressed models for comparison. The

experimental results show that transfer learning after compression overall

surpass its counterpart. When compression rate is set to 80% the accuracies

of compressed version of VGG16, ResNet164 and DenseNet40 are 90.77%,

96.31% and 97.23%, respectively, and the parameters are only 0.30M, 0.43M

and 0.26M, respectively. Among the compressed models, DenseNet40 has the

highest accuracy and the smallest parameters. The best model (DenseNet40-

80%-T) is pruned 75.70% of the parameters and cut off 65.52% of the

computations, with the model size being only 2.2 MB. Compared with the

version of compression after transfer learning, the accuracy of the model is

improved by 0.74%. We further develop a cotton disease recognition APP on

the Android platform based on the model and on the test phone, the average

time to identify a single image is just 87ms.

KEYWORDS

convolutional neural network, pruning, cotton diseases, transfer learning,
compact model
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Introduction

Plant protection, especially crop protection against plant

diseases, plays a critical role in meeting the growing demand for

crop quality and quantity. In the 21st century, the issue of

protecting crops from yield losses due to disease remains

challenging. Worldwide, it is estimated that 20-40% of crop

yield is lost due to pests and diseases (Savary et al., 2019). The

loss of staple cereals (rice, wheat, corn) and vegetable crops

(potatoes and sweet potatoes) directly affects food security and

nutrition, while the loss of core commodity crops such as cotton

has a significant impact on household livelihoods and the

national economy. Plant diseases are an essential factor in the

severe decline in the quality and quantity of agricultural

products. Therefore, early detection and diagnosis of the

diseases are key to reducing losses. At present, many

developing countries identify diseases through visual

observation (Chen et al., 2020), which requires disease

detection experts with a lot of practical knowledge in the field.

However, 80% of the world’s food is produced by individual

farmers (Lu et al., 2021), and it is difficult for most farmers to

correctly identify the category of crop diseases.

Cotton is a significant cash crop (Khan et al., 2020) and a

vital raw material for the textile industry, which plays a critical

part in the world. The vast distribution of cotton areas in China

and the great differences in natural conditions have resulted in a

wide range of cotton diseases. There are more than 80 kinds of

cotton diseases recorded, of which about 20 are the most

common. Cotton diseases annually cause significant losses in

the yield and quality, especially fusarium wilt and verticillium

wilt. If we can observe these diseases in time and give specific

treatment measures, these diseases will be controlled. Improving

disease control methods is one of the initiatives implemented to

solve these issues. Disease identification methods should be

cheap and easy to use for farmers. With the development of

communication networks, smart phones have become very

popular in rural areas, so disease identification based on smart

phones is very promising. It is worth mentioning that disease

identification methods of plant pathogens, including molecular

biotechnologies such as DNA, RNA and protein are fast and

accurate (Sapre et al., 2021). However, the preparation of

diagnostic kits and their application require more expensive

instruments and professional technical support. Hence, it is

difficult to be applied in the field outside the laboratory in the

short term.

In the past few years, image classification in computer vision

has been greatly developed, especially the emergence of deep

convolutional neural networks (DCNN), which have greatly

improved the accuracy of object recognition. Currently, many

convolutional neural networks with superior performance have

been proposed, including AlexNet (Krizhevsky et al., 2017),

VGG (Simonyan and Zisserman, 2014), GoogLeNet (Szegedy

et al., 2015), ResNet (He et al., 2016) and DenseNet (Huang
Frontiers in Plant Science 02
et al., 2017). These networks have been successfully applied in

the agricultural field, such as plant disease identification

(Bharathi, 2020), plant species identification (Ghazi et al.,

2017), weeds classification (Hoang Trong et al., 2020) and

fruit detection (Vasconez et al., 2020). With the help of

DCNN, image-based plant disease identification becomes more

accurate, fast and easy to use (Kamilaris and Prenafeta-Boldú,

2018; Liu and Wang, 2021; Dhaka et al., 2021). Mohanty et al.

(2016) used PlantVillage to train AlexNet and GoogLeNet to

identify diseased and healthy leaves of 14 species of plants. Their

trained model achieved 99.35% accuracy on the testing set and

evaluated the applicability of a DCNN to classification problems.

Extending the work of Johannes et al. (2017); Picon et al. (2018)

adopted an adaptive algorithm of deep residual networks to

detect multiple plant diseases collected in natural environments,

achieving a balanced accuracy of 0.87. Aiming at the problem of

multiple parameters and single feature scale in AlexNet, Zhang

et al. (2019) proposed a global pooling dilated convolutional

neural network, which combined the advantages of global

pooling and dilated convolution, and can effectively identify

cucumber diseases. Chen et al. (2020) used VGG with Inception

module trained on ImageNet dataset as a pre-training model and

performed transfer learning on the public datasets and the self-

built datasets, respectively. Experimental results showed that the

proposed method achieves substantial improvement over other

state-of-the-art methods. Kundu et al. (2020) experimented with

eight different deep learning models on the public dataset of the

bell pepper. Their experimental results showed that the

DenseNet model outperforms several other models in

identifying sweet pepper diseases. Mi et al. (2020) proposed a

new convolutional neural network C-DenseNet which

embedded Convolutional Block Attention Module into the

DenseNet network to grade wheat stripe rust, which achieved

a testing accuracy of 97.99%, higher than the original DenseNet

(92.53%) and ResNet (73.43%). Jiang et al. (2021) used VGG16

to identify the diseases in rice and wheat leaves with an overall

accuracy of 97.22% and 98.75%, respectively. Collecting large

datasets to train these networks is still a daunting task, but many

studies have demonstrated the feasibility of deep learning in

disease areas, especially deep transfer learning (Sladojevic et al.,

2016; Ghazi et al., 2017; Hassan et al., 2021). Although CNN and

its variants have shown superior performance in the field of

disease identification, these models have a large number of

parameters and computations, which are difficult to deploy on

some type of target hardware such as mobile or edge devices. In

addition, in numerous disease identification studies, they are

rarely involved in cotton diseases.

The application of deep learning technology in disease

identification is inseparable from the development of

convolutional neural networks. From AlexNet with only 8

layers in the beginning, to VGG19 with 19 layers later, to

ResNet breaking through 100 layers for the first time, its

development is attributed to various factors, including the
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introduction of a powerful computing system and Graphics

Processing Unit (GPU), increased memory and hard disk

capacity (Hou et al., 2018). Deep learning is impractical on

low-memory and low-energy devices due to the size of networks.

The success of many large networks almost depends on GPU.

However, with the proliferation of smartphones, mobile phone-

based apps will make it easier for farmers to identify diseases.

Furthermore, plant protection robots moving in the field also

need to be able to identify diseases in real time on edge devices.

In order to tackle the computational limitations and hardware

constraints, many methods for compressing models have been

proposed, such as knowledge distillation (Hinton et al., 2015),

network pruning (He et al., 2018), weight quantization

(Courbariaux et al., 2015), and design of lightweight networks

(Howard et al., 2017). Li et al. (2016) pruned the characteristic

graph with a small L1 norm of the filter by calculating the L1

norm of the filter. Ayinde and Zurada (2018) proposed an

efficient technique to prune redundant features along with

their connecting feature maps according to their differentiation

and based on their relative cosine distances in the feature space.

Lin et al. (2019) proposed a filter pruning scheme termed

structured sparsity regularization (SSR). The scheme

incorporates two different regularizers of structured sparsity

into the original objective function of filter pruning, which

fully coordinates the global output and local pruning

operations to prune filters adaptively. These compression

methods can solve the overparameterization of large neural

networks and reduce the computational cost.

Using smart devices to identify crop diseases in the field is a

promising approach (Li et al., 2020). Nalepa et al. (2020) tackle

the problem of large memory requirements of DCNN in HSI

classification and segmentation of hyperspectral images and

presented quantizing spectral models for the tasks. Currently,

most compact models for disease recognition are directly trained

via lightweight networks. Tahir et al. (2021) presented disease

recognition from the apple leaves based on InceptionV3 and

achieved an accuracy of 97% on PlantVillage. Chen et al. (2021)

used MobileNet-V2 as the backbone model and combined

transfer learning to create a disease identification network for

rice identification, with an accuracy rate of 98.48%, which can be

deployed on mobile devices. Li et al. (2020) proposed a

solanaceae disease recognition model based on SE-Inception,

deployed on android phone. The accuracy of the model on the

self-built dataset and the PlantVillge reached 98.29% and

99.27%, respectively, and the model sizes were 14.68 MB and

14.8 MB, respectively. Noon et al. (2021) used eight versions of

EfficientNet and two versions of MobileNet to train the

lightweight models for cotton disease identification, where the

EfficientNet-B0 model had the best generalization ability and

fastest inference ability. Liu and Wang (2020) used the

MobileNetV2-YOLOV3 model to identify tomato diseases and

achieved low memory, low latency, high recognition accuracy

and high recognition speed. However, according to the
Frontiers in Plant Science 03
information given in the work of Huang (Huang et al., 2017),

the deeper the network is, the more effective the training is, and

better results can be obtained. Therefore, we can expect that the

compressed model will work better than the aforementioned

lightweight networks on limited-resource devices.

Currently, more research focuses on improving the accuracy of

deep learning models, and less attention is paid to the efficiency of

model inference. In this study, when studying disease identification

of cotton, we take into account the accuracy, speed of the model,

and especially the deployability of the model on edge/mobile

devices. We employ a simple but efficient approach of model

pruning to compress the high-parameters networks. The g
coefficient in the BN layer is used as the scaling factor for

network slimming and the importance of the channel is judged

according to g. In fact, the redundant channels with a small g value
in the disease identification network will be pruned. The well-

known networks such as VGG16, ResNet164 and DenseNet40 are

selected to train and compress. In order to improve the accuracy of

models over our cotton disease dataset, we introduce transfer

learning. Combining transfer learning and model compression: 1)

compression after transfer learning, and 2) reverse the order. We

carry out the experiments to evaluate our methods, and the results

indicate that the compressed model can significantly reduce

parameters and save time while maintaining the accuracy. Our

methods realize the goal of creating a fast and efficient model for the

identification of cotton diseases deployed on edge/mobile devices

and meet the needs of intelligent agriculture.
Materials and methods

Image collection and augmentation

The datasets used in this study include the open plant disease

dataset PlantVillage and our self-built cotton disease dataset

(SCDD). The images in PlantVillage are taken indoors, with

standard photography and simple backgrounds. PlantVillage

contains 14 kinds of plants (Apple, blueberry, cherry, corn,

grape, orange, peach, bell pepper, potato, raspberry, soybean,

pumpkin, strawberry) with 54,306 images of plant disease leaves

in total, which falls into 14 kinds of healthy leaves and 24 kinds

of disease leaves. The more details of PlantVillage please refer to

the work of Hughes (Hughes and Salathé, 2015). Here we only

introduce image collection and image preprocessing of SCDD.

The cotton disease image set contains images collected from

the Internet and taken from the fields. All images are resized to

32×32. A total of 8 types of image samples of cotton were

collected, including 7 kinds of the diseases (areolate mildew,

bacterial blight, curl virus, fusarium wilt, target spot, verticillium

wilt and brown spot) and the healthy leaves. Some of the samples

are shown in Figure 1.

Figure 2 gives the image distribution in the cotton disease

image set. It can be seen that the sample distribution of the
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image set is imbalanced. In detail, the image set contains 34

areolate mildew, 499 bacterial blight, 264 brown spot, 418 curl

virus, 419 fusarium wilt, 58 target spot, 34 verticillium wilt, and

425 healthy leaves.

The imbalance of quantity among different classes means

that training of model becomes much trickier as typical accuracy

is no longer a reliable metric for measuring the performance of

the model. Even if the overall accuracy of the obtained

classification model meets the requirements, the accuracy may

not be high or even be unpredictable for minority classes. To

handle the problem of imbalance classes, we take image

augmentation to expand the minority classes including

areolate mildew, target spot and verticillium wilt. The

approaches contain rotation, random color, and horizontal

flip. The examples of the augmented image are shown in

Figure 3. After the augmentation, the final dataset is called

SCDD which consists of 170 areolate mildew, 499 bacterial

blight, 264 brown spot, 418 curl virus, 419 fusarium wilt, 357

target spot, 170 verticillium wilt, and 425 healthy leaves.

SCDD is divided into training set and testing set according

to the ratio of 80% and 20% (Mohanty et al., 2016), with 2,181

samples in the training set and 542 samples in the testing set.

Similarly, PlantVillage is also divided into training set and

testing set according to the ratio of 80% and 20%, with 43445

samples in the training set and 10861 samples in the testing set.
Frontiers in Plant Science 04
DCNN architectures

In this study, VGG16, ResNet164 and DenseNet40 are

selected as the original networks for disease recognition. They

have been intensively studied and observed to have good

performance for plant disease classification (Bhatt et al., 2017;

Ferentinos, 2018; Too et al., 2018; Kundu et al., 2020; Mi

et al., 2020).

In 2014, VGG Lab proposed the VGGmodel (Simonyan and

Zisserman, 2014), the schematic architecture of which is shown

in Figure 4. The classical VGG16 consists of 13 convolutional

layers and 3 fully connected layers, using the ReLU function as

the activation function with a simple structure. The network

uniformly uses 3×3 convolution kernels and 2×2 max-pooling

size. Compared with AlexNet, VGG reduces the number of

parameters, saves training time, increases the discriminative

power of the function, and makes the network more robust by

using 3×3 convolutional kernels instead of large-scale

convolutional kernels. The VGG16 has 138 million

parameters, and the model size is over 500 MB. The VGG16

model used in this study is a variation of the original VGG,

which is taken from https://github.com/szagoruyko/cifar.torch .

It is smaller than the classical VGG16 model, and the final

classification layer of the model is modified to meet the

requirement of 8-classified disease images of SCDD.
A B D

E F G H

C

FIGURE 1

8 Disease images of cotton set: (A) Areolate mildew, (B) Bacterial blight, (C) Brown spot, (D) Curl virus, (E) Fusarium wilt, (F) Healthy, (G) Target
spot, (H) Verticillium wilt.
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The ResNet network was proposed by He et al. (He et al.,

2016). Figure 5 give its schematic architecture. The most

significant feature of ResNet is the introduction of residual

module, which solves the problems of difficult training and

slow convergence caused by the deepening of the number of

layers. The ResNet network discards the Dropout mechanism

and uses Batch Normalization instead to speed up training. The

classical ResNet-152 has 60 million parameters and requires

230MB of storage space. This study uses a framework of 164-

layer pre-activated pre-ResNet (He et al., 2016) with a bottleneck

structure and modifies the network structure of the model

classification layer to apply to the classification of eight crop

disease images.

The DenseNet network was proposed by Huang et al.

(Huang et al., 2017). Figure 6 shows its schematic architecture.

Compared with ResNet, it has fewer parameters, strengthens

feature reuse, aggregates different levels of features using

concatenate, and has a regularization effect. The DenseNet is

mainly composed of alternate connections between Dense Block

and Transition layers. In the core structure Dense Block, the

input of the current layer is the union of the output feature maps
Frontiers in Plant Science 05
of all previous layers, and the output feature maps of the current

layer are passed to all subsequent layers. The utilization rate of

feature maps of each layer is improved, and the problem of

gradient disappearance or explosion is effectively solved.

Transition layers are placed behind the Dense Block to reduce

the number of channels in the feature map and simplify the

calculation. This paper constructs a DenseNet40 network with

only 40 layers and modifies the output of the network

classification layer to 8 classifications.
Pruning algorithm

The model training is the process of learning the data

distribution. The update of parameters causes the input data

of each layer to change constantly, so the network needs to

change constantly to adapt to this new data distribution, which

leads to slow convergence. To solve this problem, Ioffe and

Szegedy (2015) proposed the concept of the Batch

Normalization (BN) layer, which is also a network layer like

the convolutional layer. The BN layer normalizes the input data,

and the processed output value is shown in formula (1):

x
⌢
i =

xi − mB
ffiffiffiffiffiffiffiffiffiffiffiffi

d 2 + ϵ
p (1)

mB =
1
mo

m
i=1xi (2)

d 2
B =

1
mo

m
i=1(xi − mB)

2 (3)

Wherexi is the input sample value,x
⌢
iis the normalized

sample value,mB anddB are the mean and variance, ϵ is a very

small value, which is set to prevent the denominator from being

zero and can be taken as10−8 , m is the number of samples in a

single batch.

In order to prevent the generalization performance of the

network from being weakened after batch normalization, two

learnable parameters g and b are introduced:

yi = gix
⌢
i + bi (4)
FIGURE 3

Data augmentation operation.
FIGURE 2

Samples distribution.
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Where yi is the output of BN layer, gi and bi are the scaling
factor and offset function corresponding to the activation

channel respectively.

We adopt a simple but efficient method that utilized the g
coefficient as the scaling factor of network slimming (Liu et al.,

2017). The importance of the channel is judged according to the

size of g to prune redundant parameters in the disease

identification network. Generally, the model structure adopts

the convolution layer + BN layer so that each channel will

correspond to one g value. The value of g represents the

importance of the channel. The larger the g value, the greater

the contribution of the corresponding channel to the network.

Conversely, the smaller the contribution. Therefore, the channel

with small g value can be pruned to simplify the network scale. In

normal training, the weight of the BN layer of the model is

generally larger than zero. If the convolution channel

corresponding to the weight of the BN layer is directly pruned,

it will have a significant impact on the model. Therefore, we need

to perform sparse training which is to add the regularization loss

of the BN parameter to the original loss function to make the BN

parameter tend to zero. Formula (5) is the objective function

with the BN regularization loss function.

L =ol(f (x,W), y) + log(g ) (5)
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Wherex is the training input, y is the training target,W is the

trainable weight, the first sum term is the original loss function

of the convolutional neural network, and g(.) is the sparse

induced penalty function on the scaling factor. In this study,

we chose the L1 norm,g(s)=|s| , which is widely used to achieve

parameter sparsity (Liu et al., 2017). l is the balance factor of

these two sum terms, and L is the loss function during

sparse training.

The channels are pruned according to the importance

evaluation factor g. Its essence is to prune all the input-output

relations connected to it. As shown in Figure 7, the channel

corresponding to the smaller value of the scaling factor (purple)

is pruned, that is, all branches connected to it are pruned (left),

and the channel corresponding to the bigger value of the scaling

factor is kept (blue). After pruning, a small and efficient network

is obtained (right).

The pruning steps are shown in Figure 8. First, an original

network with a complex structure and many parameters are

trained normally to obtain the baseline model. The original

network is then trained with sparse regularization so that most

of the scaling factors g of the network are close to zero to obtain

the sparse model. Then the g values of the obtained BN layers are

sorted, and the channels are pruned according to a global

threshold across all layers. The global threshold is defined as
FIGURE 5

The schematic architecture of ResNet.
FIGURE 4

The schematic architecture of VGG.
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some percentile of all scaling factor values. If the pruning rate is

set to 80%, the channels of 80% with small g values will be

pruned. Finally, the pruned compact network is fine-tuned so

that the remaining weights are used for training a compact

model with comparable performance to the baseline model.

Fine-tuning is to retrain the pruned model over SCDD.
Frontiers in Plant Science 07
Transfer learning and compression

Transfer learning is the improvement of learning a new task

through the transfer of knowledge from a related task that has

already been learned (Weiss et al., 2016; Zhuang et al., 2020). In

transfer learning, a base network is first trained on the source
FIGURE 6

The schematic architecture of DenseNet.
FIGURE 7

Principle of pruning.
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domain, and then the learned features are transferred to a second

target network to be trained on target domain. This process will

tend to work if the features are general, meaning suitable to both

base and target tasks, instead of specific to the base task. In

general, the source domain contains plenty of trainable samples,

while the target domain does not. It is a popular approach in

deep learning where pre-trained models are used as the starting

point on computer vision tasks. Our goal is to train a lightweight

network and classify cotton diseases. However, SCDD is too

small, if training the network directly on it may lead to the

problems such as low recognition accuracy or overfitting.

Transfer learning can solve these problems very well (Ghazi

et al., 2017; Chen et al., 2020; Wenchao and Zhi, 2022). The key

to transfer learning is to find out the similarities between the

source domain and the target domain (Gao and Mosalam, 2018).

Thus, we select PlantVillage as the source domain and SCDD as

the target domain due to both being plant diseases recognition

tasks and the former having more disease categories and a lot of

data. We train the networks over the source domain as the pre-

trained models and then fine-tune those models over the target

domain. Model compression and transfer learning play different

roles in our study. The goal of the former is to provide models

with a small size that can be deployed at edge/mobile devices,

while the goal of the latter is to improve accuracy. Considering

both goals, we combine both techniques in our methods. As

shown in Figure 9, two strategies are proposed: (1) compression
Frontiers in Plant Science 08
after transfer learning, and (2) transfer learning after

compression. In the first case: (1) The original models are

trained over PlantVillage as the pre-trained models. (2) The

pre-trained models are fine-tuned over SCDD by the transfer

learning. (3) Finally, the fine-tuned models are pruned to obtain

the compact models. In the second case, the compression of the

original models is first carried out over PlantVillage, and then

the compressed models as the pre-trained models are fine-tuned

over SCDD.
Model evaluation index

Accuracy is an important index for evaluating classification

models, and the larger it is, the better the performance of the

model. Model parameters and floating point of operations

(FLOPs) are two important indicators for deployment on

small equipment. The computation resource of the mobile/

edge devices is very limited. If the model is too complex, the

application will get stuck and the response not be in time. In

order to meet the hardware conditions of the mobile/edge

devices, the classification accuracy of model should be high,

and FLOPs and parameters of model should be small.

The model classification accuracy is the number of correct

model predictions in a batch of data as a percentage of the total

number of data in the batch.
FIGURE 8

Flowchart of pruning.
FIGURE 9

Combination of model pruning and transfer learning.
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Accuracy =
TP + TN

TP + FP + TN + FN
� 100% (6)

Where TP is correctly predicted positive values, FP is

incorrectly predicted positive values, TN is correctly predicted

negative values and FN is incorrectly predicted negative values.

The structure of convolutional neural networks mainly

includes convolution layers, activation layers, pooling layers

and full connection layers, and core layers are convolutional

layers. Convolutional layers are mainly used to extract image

features in neural networks. Pooling layers are used to compress

the feature map. The main pooling methods include average

pooling and max pooling (Boureau et al., 2011), that is, the

average or max value of specific features in a certain region is

kept during the pooling operation. Its goal is to save helpful

information while reducing network parameters. Full

connection layers classify and integrate the highly abstracted

characteristics produced by convolution layers. Pooling layers

have no associated parameters in convolutional neural networks.

The number of parameters for the convolutional layers is

calculated in formula (7):

Params = Co ∗ (KW ∗Kh ∗Ci + 1) (7)

WhereCo is the number of output channels,Kw andKh are the

width and height of the convolution kernel respectively,Ci is the

number of input channels, and +1 is the bias unit.

The number of parameters for the fully connected layer is

calculated in formula (8):

Params = (I + 1) ∗O (8)

Where I is the number of input neurons, and O is the

number of output neurons. FLOPs are used to measure the

complexity of a model, that is, computation. The FLOPs of

convolutional layers are calculated by formula (9):

FLOPs = 2 ∗H ∗W(Ci ∗K
2 + 1) ∗Co (9)

WhereCi is the number of input channels, K is the size of the

convolution kernel, H and W are the height and width of the

output feature map, andCo is the number of output channels.

The FLOPs of full connection layer is calculated by the

formula (10):

FLOPs = (2� I − 1)� O (10)

Where I is the number of input neurons, and O is the

number of output neurons.
Results and discussion

Experimental setup

For each model, we set the batch size of training as 64 and

the batch size of testing as 256, and the training epoch as 100.
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We use stochastic gradient descent (SGD) as the optimization

method. The initial learning rate is 0.001 for VGG16 and 0.1 for

ResNet164 and DenseNet40. The learning rate is multiplied by

0.1 at 50% and 75% epochs. The development environment is as

follows: the operation system is Ubuntu 18.04.6 LTS 64-bit, the

programming language is python 3.6, the deep learning

frameworks are pytorch 1.3, and the IDE is pycharm 2020.3.5.

The hardware environment of the computer for training is

configured as below: 64GB memory, Intel® Xeon(R) Silver

4110 CPU @ 2.10GHz x64 processor, NVIDIA Tesla K40

GPU. In the following sections, we randomly form 5 sets of

train set and test set adhering to rule of Section 2.1 and

depending on the experimental setup, train 5 sets of models of

VGG, ResNet and DenseNet for the best results (accuracy) and

statistical analysis.
Performance test results over
PlantVillage

First, we evaluate the performances of original VGG16,

ResNet164 and DenseNet40 and their compressed versions

over PlantVillage. In the experiments, the pruning rate is set

to 80%, and the best results out of 5 experiments are given in

Table 1. It is shown that the parameters of VGG16, ResNet164

and DenseNet40 are compressed to 0.32M, 0.37M and 0.27M,

respectively, and their FLOPs are compressed to 0.01G, 0.05G

and 0.1G respectively. Meanwhile, the recognition accuracies of

all the models before and after pruning are nearly the same.

DenseNet40-80% even slightly surpasses its original version.

This shows that the presented pruning algorithm can not only

reduce the model’s size greatly, but also keep high accuracy.
Compression after transfer learning

We adopt the original networks trained over PlantVillage as

pre-trained networks, and perform transfer learning over SCDD

to get the baseline models for identifying cotton disease. The

baseline models are then compressed using the presented

pruning algorithm, and the pruned models are retrained again

using fine-tuning to compensate for the accuracy lost during the

pruning phase. In the experiments, the pruning rates are set to

70% and 80%, respectively, and the epoch of all models is set to

100. The experimental results are shown in Table 2.

We first train the original VGG16, ResNet164, and

DenseNet40 from scratch over SCDD to test the performance

of the three networks, which achieve 87.27%, 82.29%, and

89.30% accuracy, respectively. To improve the accuracy of the

models, we then carry out transfer learning over SCDD to obtain

baseline models T-VGG16, T-ResNet164 and T-DenseNet40. By

transfer learning, the accuracies of T-VGG16, T-ResNet164 and

T-DenseNet40 are improved by 5.53%, 13.28%, and 7.19%
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compared with their original versions, respectively. The T-

Densenet40, due to its own structure with the advantage of

feature reuse, coupled with the strategy of transfer learning, has

the best recognition effect among the three baseline models. It

can be seen from Table 2 that the accuracy of the models with

80% pruning rate, in summary, are similar with the models with

70% pruning rate. However, the numbers of parameters of the

latter are roughly half that of the former. After pruning, the

T-VGG16-80% has an accuracy of 89.48% over the testing set.

Compared to its baseline model, it only loses 3.32% accuracy, but

its parameters are reduced from 14.72M to 0.30M, and FLOPs

are reduced from 0.31G to 0.01G. Its actual pruning ratio is the

highest. T-ResNet164-80% has an accuracy of 94.65% over the

testing set and loses 0.92% of the accuracy compared to its

baseline model, which loses less accuracy than T-VGG16-80%.

The actual pruning ratios of T-ResNet164-80% and T-

DenseNet40-80% are not as significant as T-VGG16-80%. T-

DenseNet40-80% has an accuracy of 96.86% which is higher

than its baseline model, increased by 0.37%. Since the original

DenseNet40 has fewer parameters, the pruned T-DenseNet40-

80% has the smallest parameters of 0.26M. Among the three
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compressed models, the T-DenseNet40-80% has the highest

accuracy and the smallest parameters and size, and the T-

VGG16-80% has the smallest FLOPs and the fastest speed.

The findings indicate that the pruned models require

substantially fewer parameters and FLOPs. Therefore, using

the pruning algorithm to compress the cotton disease

identification model achieve our expected result: less model

size and running faster.

In order to further verify the performance of the compact

model, Figure 10 shows the confusion matrices of the three

compact models with 80% pruning rate over the cotton testing

set, respectively. The value at the diagonal shows the number of

samples correctly predicted. The testing set of SCDD has a total

of 542 samples. The confusion matrix indicates the recognition

ability of each compact model over the set. T-VGG16-80% has

the most errors among the three models. The top two diseases

misclassified by it are verticillium wilt (11 out of 34) and target

spot (10 out of 71). Target spot is the most likely to be confused

with other diseases by T-VGG16-80%, the rest of 7 classes all

have been mistakenly identified as it. T-DenseNet40-80% has

minimal errors among the three models. The highest error rate is
TABLE 2 Comparison of parameters of cotton disease identification model before and after compression.

Model Accuracy Parameters/M Parameters Pruned FLOPs/G FLOPs Pruned Size/MB Size Pruned

VGG16 87.27% 14.72 – 0.31 – –

T-VGG16 92.80% 14.72 – 0.31 – 117.8 –

T-VGG16-70% 91.14% 0.86 94.15% 0.03 90.32% 6.9 94.14%

T-VGG16-80% 89.48% 0.30 97.96% 0.01 96.77% 2.4 97.96%

ResNet164 82.29% 1.71 – 0.26 – –

T-ResNet164 95.57% 1.71 – 0.26 – 14.0 –

T-ResNet164-70% 94.28% 0.65 61.98% 0.12 53.84% 5.5 60.71%

T-ResNet164-80% 94.65% 0.43 74.85% 0.08 69.23% 3.7 73.57%

DenseNet40 89.30% 1.07 – 0.29 – 8.7 –

T-DenseNet40 96.49% 1.07 – 0.29 – 8.7 –

T-DenseNet40-70% 96.31% 0.36 66.35% 0.13 55.17% 3.0 65.51%

T-DenseNet40-80% 96.86% 0.26 75.70% 0.10 65.52% 2.2 74.71%
Results over SCDD. T-* denotes transfer learning before compression. *-70% and *-80% represent the fine-tuned models with the pruning rates of 70% and 80%, respectively.
TABLE 1 Comparison before and after compression over PlantVillage.

Model Accuracy Parameters/M Parameters Pruned FLOPs/G FLOPs Pruned Size/MB Size Pruned

VGG16 96.76% 14.74 – 0.31 – 118 –

VGG16-80% 97.46% 0.32 97.83% 0.01 96.77% 2.6 97.8%

ResNet164 99.55% 1.72 – 0.26 – 14.1 –

ResNet164-80% 99.12% 0.37 78.49% 0.05 80.77% 3.3 76.60%

DenseNet40 99.62% 1.08 – 0.29 – 8.8 –

DenseNet40-80% 99.68% 0.27 75.00% 0.1 65.52% 2.3 73.86%
Results on PlantVilage. *-80% represents the pruning rate of 80%. The pruned models in the table are all fine-tuned models.
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still verticillium wilt (4 out of 34), and the second error rate is

areolate mildew (2 out of 34). Compared with T-VGG16-80%,

the errors of verticillium wilt and target spot misclassified by T-

DenseNet40-80% are greatly reduced. This shows that the

network has better discrimination ability. For T-DenseNet40-

80%, verticillium wilt is the most likely to be confused with the

rest. There are 6 samples of 3 categories being misclassified as it.

The performance of T-ResNet164-80% is between T-

DenseNet40-80% and T-VGG16-80%. The misclassified

samples are uniformly distributed in the confusion matrix of

each model, indicating that each of them has no bias over SCDD.
Transfer learning after compression

In this case, the pruned models, VGG16-80%, ResNet164-

80% and DenseNet40-80% over PlantVillage as pre-trained

models and fine-tuned over SCDD to obtain compact models,
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denoted as VGG16-80%-T, ResNet164-80%-T and DenseNet40-

80%-T.

Figure 11 shows the training process that three compact

models fine-tune the parameters over SCDD. The initial

accuracies of the three models exceed 50%, which shows that

the target domain and source domain have a lot in common.

Furthermore, thanks to small sizes, all the models converge very

fast within 60 epochs.

The best results out of 5 experiments are shown in Table 3.

The sizes of parameters and FLOPs of VGG16-80%-T and

DenseNet40-80%-T are the same as T-VGG16-80% and T-

DenseNet40-80%, respectively. The accuracies of them are

90.77% and 97.23%, which are 1.29% and 0.37% higher than

T-VGG16-80% and T-DenseNet40-80%, respectively. The

parameters and FLOPs of ResNet164-80%-T are 0.36M and

0.05G, respectively, smaller than T-ResNet164-80%. Its accuracy

is 96.31%, with an improvement of 1.66%. The accuracy of

DenseNet40-80%-T is still the highest, showing that
FIGURE 11

Training process of fine-tuning over SCDD in case of transfer learning after compression.
A B C

FIGURE 10

Confusion matrix of the pruned model. (A) T-VGG16-80%, (B) T-ResNet164-80%, (C) T-DenseNet40-80%. Areolate mildew 1, bacterial blight 2,
brown spot 3, curl virus 4, fusarium wilt 5, healthy 6, target spot 7, verticillium wilt 8.
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DenseNet40-80%-T is more suitable for the cotton disease

recognition. Compared with their baseline models, VGG16-

80%-T loses 2.03% accuracy, which is less than T-VGG16-

80%, and ResNet164-80%-T and DenseNet40-80%-T both

improve the accuracy by 0.74%.

Usually, accuracy may not fully evaluate the model,

especially in the case of imbalanced sample distribution.

Table 4 gives the other performance indicators, including

Precision, Recall and F1-score. It can be seen that the

performance of the compressed models remains stable when

we adopt image augmentation.

The above results indicate that compared with compression

after transfer learning, transfer learning after compression has

two advantages: (1) higher accuracy, and (2) faster training

speed. Among the three models, DenseNet40-80%-T is the

best, so we select it as the winner to participate in the follow-

up experiments.
Comparing two strategies using
the t-test

By comparing Table 2 with Table 3, it can be seen that the

accuracies of transfer learning after compression (strategy 2) are

higher than that of compression after transfer learning (strategy

1). Our further statistical analysis supports the claim. Table 5

gives the details of 2 sets of 5 models with respect to 2 strategies.

We perform independent sample t-tests on the accuracies to test

the significance of the differences between them. Levene’s test is

used to examine the homogeneity of variance. When P>0.05, the

variance is homogeneous, and when P ≤ 0.05, the variance is not

homogeneous. The p-value of the t-test is employed to

determine the significance of the mean of the accuracy. The

results of the t-test are shown in Table 6. For the VGG16, the
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variance is homogeneous. The difference between strategy 1 and

strategy 2 is significant (P = 0.039< 0.05). Since the mean of

strategy 1 is 88.67% and that of strategy 2 is 89.74%, strategy 2 is

better than strategy 1. For the ResNet164, the variance is

homogeneous. The difference between strategy 1 and strategy

2 is significant (P =0.0< 0.0001). Since the mean of strategy 1 is

94.44% and that of strategy 2 is 96.11%, strategy 2 is better than

strategy 1. For the DenseNet40, the variance is homogeneous.

The difference between strategy 1 and strategy 2 is significant

(P=0.045<0.05). Since the mean of strategy 1 is 96.62% and that

of strategy 2 is 96.97%, strategy 2 is better than strategy 1. The

above analyses indicate that, for VGG, ResNet and DenseNet,

strategy 2 is a better choice than strategy 1.
Comparison with lightweight networks

It is a very popular method in plant disease recognition that

directly trains a light-weight network as a classifier (Liu and

Wang, 2020; Tahir et al., 2021; Chen et al., 2021). We carry out

comparative experiments over SCDD with some popular light-

weight networks, including MobileNetV2 (Sandler et al., 2018),

MobileNetV3 (Howard et al., 2019), ShuffleNetV2_x_0 (Ma

et al., 2018), EfficientNet-B0 (Tan and Le, 2019) and

EfficientNetV2-S (Tan and Le, 2021). These networks are fine-

tuned using transfer learning. The results are described in

Table 7. It can be seen from the table that DenseNet40-80%-T

has the highest accuracy and the smallest parameters and model

sizes among these models. Our compressed model defeats the

lightweight networks in the comparison. This result shows that,

after proper compression and transfer learning, the large models

usually have better performance than the lightweight networks

and can meet the small size requirements of mobile/edge

applications while retaining high accuracy.
TABLE 4 Performance of compressed models.

Network Accuracy Precision Recall F1-score

Vgg16-80%-T 90.77% 89.56% 89.41% 89.45%

ResNet164-80%-T 96.31% 95.54% 96.15% 95.81%

DenseNet40-80%-T 97.23% 96.64% 97.24% 96.92%
fron
TABLE 3 Results of transfer learning after compression.

Model Accuracy Parameters/M FLOPs/G Size/MB

VGG16-80%-T 90.77% 0.30 0.01 2.4

ResNet164-80%-T 96.31% 0.36 0.05 3.2

DenseNet40-80%-T 97.23% 0.26 0.1 2.2
Results over SCDD. *-T denotes transfer learning after compression.
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Developing cotton disease recognition
APP based on DenseNet40-80%-T

According to the previous results, we employ DenseNet40-

80%-T to develop a cotton disease recognition APP based on the

Android platform. Our model is deployed locally on the mobile

phone. The development software of the APP is Android Studio

(https://developer.android.google.cn/). The classification model

import process includes: 1) model preparation, 2) model import

and parameter modification, and 3) APP installation. The model

preparation is mainly to get the nb file and the txt label file on the

computer. The model compression is done under the Pytorch

framework. The compressed model is deployed via paddle-lite

under the PaddlePaddle framework (https://www.paddlepaddle.

org.cn/ ). We convert the compressed Pytorch model to the

Paddle model, and then use Paddle-lite to convert the pd file to

the nb file for deployment. The model import and parameter

modification are to open the Project view in Android Studio,

define variables, initialize the interface, configure the

corresponding (build gradle) version of the file, and put the nb

file and txt file under app/src/main/assets. We port the
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installation package to the Android phone by wired means

and clicked to install the APP on the Android phone. The user

interface of the APP is shown in Figure 12. Users can upload a

photo of any size by shooting and local uploading. We deploy

the APP on OPPO A5 mobile phone. The disease recognition

can be carried out in real time, with the average time of a single

image being 87ms.
Conclusion

Early-stage disease identification can reduce crop losses.

DCNN have shown good performance in the automation of

the disease identification task. However, most DCNN have a

large number of parameters and calculations, making them

difficult to deploy on mobile/edge devices. At present, most of

the core modules of the identification tasks in agricultural

applications run on the server side, while mobile/edge devices

only play the role of information collection and display results.

This model is highly dependent on the communication network

and does not work in the region of poor signal coverage. In
TABLE 5 Accuracy of 2 sets of 5 models w.r.t. 2 strategies.

Strategies VGG16 ResNet164 DenseNet40

1 88.93% 94.28% 96.68%

87.45% 94.37% 96.86%

88.75% 94.46% 96.32%

89.48% 94.65% 96.68%

88.75% 94.46% 96.56%

2 89.48% 96.13% 97.05%

90.77% 96.31% 97.23%

89.11% 96.31% 96.53%

89.67% 96.25% 96.98%

89.67% 95.57% 97.05%
TABLE 6 Independent sample t-tests on accuracy w.r.t. 2 strategies.

Levene’s Test forEquality of Vanances t-test for Equality of Means

F Sig. t df Sig(2-tailed) Mean Difference Std. ErrorDifference

VGG16 Equality Vanances
assumed

0.069 0.800 -2.463 8 0.039 -1.06800 0.43359

Equality Vanances
not assumed

-2.463 7.740 0.040 -1.06800 0.43359

ResNet164 Equality Vanances
assumed

1.622 0.239 -10.931 8 0.000 -1.67000 0.15278

Equality Vanances
not assumed

-10.931 5.484 0.000 -1.67000 0.15278

DenseNet40 Equality Vanances
assumed

0.111 0.748 -2.367 8 0.045 -0.34800 0.14705

Equality Vanances
not assumed

-2.367 7.466 0.048 -0.34800 0.14705
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response to the problem of cotton disease identification in the

field, combined with transfer learning, we present a simple but

effective pruning algorithm to compress several DCNN

networks. The method is to judge the importance of the

channel according to g value and prune the channel with a

small g value. The results are promising that the parameters and

FLOPs of the models compressed by the two strategies can be

greatly reduced while maintaining the high accuracy of the big

models. The DenseNet40-80%-T compressed by the strategy of

transfer learning after compression has the smallest size and the

highest accuracy among the compressed models, which can be
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easy to deploy on mobile or edge devices. To further verify the

feasibility and validity of the compression strategy, we conduct

experiments to compare the compressed model with some

famous light-weight models over SCDD. Experimental results

demonstrated the DenseNet40-80%-T, even under complex

background conditions, the average accuracy reaches 97.23%

and both recognition accuracy and model size are superior to

other competitors. Finally, we adopt DenseNet40-80%-T as

recognition model to develop the APP for cotton disease

classification and the result shows that the APP can identify

the cotton disease in real time.
TABLE 7 Performance comparison of light-weight models and our compressed model.

Network Accuracy Parameters/M FLOPs/G Size/MB

MobileNetV2 92.15% 2.23 0.007 18.1

MobileNetV3 81.37% 1.53 0.002 18.5

ShuffleNetV2_x1_0 90.21% 1.26 0.003 10.3

EfficientNet-B0 56.13% 4.56 0.009 32.4

EfficientNetV2-S 90.01% 20.19 0.06 162.4

DenseNet40-80%-T 97.23% 0.26 0.1 2.2
fron
The meaning of bold values has been described in 1257 line. Compared with several lightweight networks, the accuracy and the smallest parameters and model sizes among these models.
FIGURE 12

User interface of our APP.
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(2021). A survey of deep convolutional neural networks applied for prediction of
plant leaf diseases. Sensors. 21, 4749. doi: 10.3390/s21144749

Ferentinos, K. P. (2018). Deep learning models for plant disease detection and
diagnosis. Comput. Electron. Agric. 145, 311–318. doi: 10.1016/j.compag.2018.
01.009

Gao, Y., and Mosalam, K. M. (2018). Deep transfer learning for image-based
structural damage recognition. Comput-Aided. Civ. Inf. Eng. 33, 748–768.
doi: 10.1111/mice.12363

Ghazi, M. M., Yanikoglu, B., and Aptoula, E. (2017). Plant identification using
deep neural networks via optimization of transfer learning parameters.
Neurocomputing 235, 228–235. doi: 10.1016/j.neucom.2017.01.018
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