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Bioorganic fertilizer promotes
pakchoi growth and shapes the
soil microbial structure
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Zhonghua Cai1, Zongkang Wang2*† and Jin Zhou1*†

1Institute of Ocean Engineering, Shenzhen International Graduate School, Tsinghua University,
Shenzhen, China, 2Ecological Fertilizer Research Institute, Shenzhen Batian Ecological Engineering
Co., Ltd., Shenzhen, China
As a functional probiotic, Bacillus subtilis can promote crop growth and

improve nutrient utilization by various mechanisms, so it has been made into

bioorganic fertilizer as a replacement for chemical fertilizer. However, the

effects of B. subtilis bioorganic fertilizer application on the yield and quality of

commercial crops of Brassica chinensis L., the soil physicochemical properties

and the microflora have not been clarified. In this study, pot experiments were

conducted using Brassica chinensis L. plants with four fertilization treatments:

control without fertilization (CK), chemical fertilizer (CF), organic fertilizer (OF),

and bioorganic fertilizer containing B. subtilis (BF). After 30 days of pot

experiment, the results showed that BF efficiently improved plant height and

biomass (1.20- and 1.93-fold, respectively); as well as significantly increasing

soil available potassium and pH value. Using high-throughput sequencing, we

examined the bacterial and fungal communities in the soil, and found that their

diversity was remarkablely reduced in the BF treatment compared to CK group.

A principal coordinate analysis also showed a clear separation of bacterial and

fungal communities in the BF and CK groups. After application of B. subtilis

bioorganic fertilizer, some beneficial bacteria (such as Bacillus and

Ammoniphilus) and fungi (Trichoderma and Mortierella) were enriched. A

network analysis indicated that bacteria were the dominant soil microbes and

the presence of B. subtilis stimulated the colonization of beneficial microbial

communities. In addition, predictive functional profiling demonstrated that the

application of bioorganic fertilizer enhanced the function of mineral element

metabolism and absorption and increased the relative abundance of

saprotrophs. Overall, the application of bioorganic fertilizer effectively

changed the soil microflora, improved the soil available potassium and pH

value, and boosted the yield of Brassica chinensis L. This work has valuable

implications for promoting the safe planting of facility vegetables and the

sustainable development of green agriculture.

KEYWORDS

bioorganic fertilizer, soil microbial profiles, Brassica chinensis L., promote plant
growth, green agriculture
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1 Introduction

Brassica chinensis L. (pakchoi) is an annual vegetable in the

Cruciferous family (Yang et al., 2010). Due to its short growth

cycle, high multiple cropping index and high planting efficiency,

Brassica chinensis L. is widely cultivated (Ferreira and Ranal,

1999; Ferreira et al., 2002). However, driven by economic

benefits, a high input of chemical fertilizers is employed for its

cultivation. Overuse of these synthetic inputs causes adverse

effects on the soil ecology and food safety, resulting in a decline

of soil quality, nutrient loss and the consequences of an excessive

nitrite concentration in crops (Ma et al., 2014; Cai et al., 2016).

Therefore, organic, especially the bioorganic fertilizers have

recently received much attention as a promising alternative

strategy (Yuan et al., 2013; Ling et al., 2014).

Microorganisms, one of the most important and active parts

of the soil ecosystem, play a dominant role in promoting soil

nutrient cycling and maintaining system stability, and are

important for the cont inuous funct ioning of soi l

microecological status (Emery et al., 2019; Nazaries et al.,

2021). Additionally, the soil microbial community can provide

essential nutrients for crop growth and stimulate crop

development by various mechanisms (Yang et al., 2019b).

Bioorganic fertilizer is a collection of organic fertilizers and

probiotic microorganisms that can activate various

microorganisms in the soil. And it is increasingly important in

promoting crop production, restoring soil fertility, and

inhibiting soil diseases (Huang et al., 2014; Schoebitz et al.,

2014; Liu et al., 2016).

Among many bioorganic microbial fertilizers, Bacillus

subtilis, which is widely distributed in soil and decaying

organic matter, is a representative type. It has been shown in

previous studies that B. subtilis has good regulatory effects for

promoting crop growth, improving soil quality and the crop

microenvironment, controlling soil-borne diseases and

remediating farmland pollution (Zhao et al., 2013; Wu et al.,

2016). Meanwhile, due to its excellent stress tolerance, short

culture period and convenient application, B. subtilis has

increasingly become dominant component in bioorganic

fertilizer (Sun et al., 2020). Zhao et al. (2019) reported that the

application of bioorganic fertilizer including Bacillus could

reshape the soil microbial community and promote pepper

growth. It was shown that the application of Bacillus

bioorganic fertilizer could be a sustainable pathway to improve

soil nutrient utilization as well as increase the yield and quality of

lettuce (Jin et al., 2022). In addition, Bacillus bioorganic fertilizer

has recently been applied in the cultivation of economic crops,

and the results show that it could stimulate microbial activity,

inhibit banana Fusarium wilt disease and enhance the stress

resistance of sorghum (Wu et al., 2019; Wang et al., 2022).

However, previous studies only investigated the effects of

bioorganic fertilizers on soil physicochemical properties, crop
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growth and the microbial community composition, without

further exploring microbial network relationships and

microfloral functions. Moreover, the effects of Bacillus

bioorganic fertilizer on the Brassica chinensis L. have not been

well characterized.

Base on this, we hypothesized that B. subtilis bioorganic

fertilizer could promote the growth of Brassica chinensis L. and

improve soil microbial profiles (biodiversity, function and

network interactons). Therefore, a novel bioorganic fertilizer

was developed by fermenting mature compost with B. subtilis

produced by the Shenzhen Batian Ecological Technique Co.,

Ltd; and pots experiments were performed to investigate the

effects of bioorganic fertilizer on plants and soil microbial

features. The specific objectives of this study were to (1)

evaluate the direct effect of B. subtilis bioorganic fertilizer on

Brassica chinensis L. cultivation; (2) explore the potential

impact of this fertilizer on the soil characteristics; and (3)

determine the alterations of soil microbial community, co-

occurrence relationship and functions caused by this type of

fertilizer. By revealing the mode of action of bioorganic

fertilizers, this study sought to provide the necessary

understanding required for the more efficient and informed

development of soil microbiome manipulation strategies

involving biologically enhanced organic fertilizers.
2 Materials and methods

2.1 Experimental design

Greenhouse experiments were carried out in the Shenzhen

Batian Ecological Fertilizer Research Center (22° 46′ 6.13′′ N,
113° 48′ 32.70′′ E) in Shenzhen City, Guangdong Province,

China from 10 December 2021 to 09 January 2022. The soil was

lateritic soil with a pH of 6.30. Soil organic matter (OM), total

nitrogen (TN), total soil phosphorus (TP) and potassium (TK)

were 34.22, 1.83, 1.97 and 17.80 g/kg soil, respectively. Alkaline

hydrolysis nitrogen (AHN), available phosphorus (AP) and

available potassium (AK) were 112.22, 164.12 and 200.19 mg/

kg soil, respectively. Organic fertilizer and the newly developed

bioorganic fertilizer were produced by the Shenzhen Batian

Ecological Technique Co., Ltd. (China). The organic fertilizer

composted with chicken manure and rice husks with a 1:1

weight ratio. On the 14th day, the composting was completed

and granulated to make organic fertilizer containing 42.44% of

OM, 1.30% of N, 0.40% of P2O5 and 4.14% of K2O. The

bioorganic fertilizer was a secondary fermentation based on

organic fertilizer. Bacillus subtilis AMMS-012 was added to the

decomposed organic material at a rate of 5×1010 spores per g for

further fermentation. On the 5th day, granulation was carried out

and air-dried at low temperature to make bioorganic fertilizer,

and the number of colonies was detected as 7.5×108 spores g-1.
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Commer ica l chemica l f e r t i l i ze r s , inc lud ing urea ,

monoammonium phosphate and potassium chloride

purchased from Yunnan Yuntianhua Co., Ltd., China.

The soil was exposed to the sunlight for 3 days before the

experiment and large particles were removed with a 2 mm sieve.

The Brassica chinensis L. seeds were placed in the vermiculite

matrix to sow and raise seedlings. After 18 days, the seedlings

with consistent growth and good health were selected for

transplanting. Four fertilization treatments were applied as

follows: (1) BF, bioorganic fertilizer; (2) OF, organic fertilizer;

(3) CF, chemical fertilizer; and (4) CK, control without

fertilization. The nutrient (N, P, and K) supply among the

experimental fertilization treatments was equalized by the

chemical fertilizers. BF was set as the nutrient standard by

applying 12,000 kg·ha-1 of bioorganic fertilizer to the field

(Kang et al., 2022). Specifically, BF was applied with 5.0 g

bioorganic fertilizer per kilogram of soil in the pots, and the

nutrient supply of the other treatments was made equal to it.

Bioorganic and organic fertilizers were applied as the base

fertilizer once; and for the chemical fertilizer, one-third of the

total amount of chemical fertilizer was applied as a basal

fertilizer. The remainder of the chemical fertilizer was applied

10 or 20 days after the seedlings were planted. Six pots

(replicates) were set up for each treatment, and each pot

contained 4 kg soil and three Brassica chinensis L. seedlings.

The pots were randomly arranged in the greenhouse with the

temperature maintained at 25 ± 1°C under natural light.

Conventional operations such as watering, scarifying and

disinsection were applied equally when needed. Plants were

grown for 30 days and the growth parameters (morphological

characteristics) were measured every 5 days, and plant and soil

samples were collected on the 30th day for quality and diversity

index determination.
2.2 Soil physicochemical analysis

The soil pH value was determined with a glass electrode

using a soil-to-water ratio of 1:2.5 (w/v). OM was determined by

a K2Cr2O7 oxidation-reduction titration method and the

Kjeldahl method was used for TN estimation (Guimaraes

et al., 2013). TP and TK were digested by HF-HClO4 and

determined by molybdenum-blue colorimetry and flame

photometry, respectively (Shen et al., 2008). AHN in soil was

determined based on the transformation of hydrolyzed nitrogen

into ammonia nitrogen with sodium hydroxide (Li et al., 2013).

AP in soil was extracted with sodium bicarbonate and

determined using the molybdenum blue method (Hedley et al.,

1982). AK in soil was extracted with ammonium acetate and

determined with inductively coupled plasma spectrophotometry

(ICP-9000, Shimadzu, Japan) (Fukuda et al., 2017).
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2.3 Plant trait analysis

Thirty-six Brassica chinensis L. plants were randomly

selected from each treatment plot, and the height, crown

width and leaf width of the plants were measured with a tape

measure (Liu et al., 2014; Amoah et al., 2017). A handheld, non-

destructive SPAD chlorophyll meter (SPAD-502, Konica

Minolta, Japan) was used to measure the chlorophyll

concentration in the plant leaves (Li et al., 2022c). The leaves

of each plant were numbered from the bottom to the top of the

stem (Alemayehu et al., 2020). Plant samples (shoot and root)

were washed and laid on paper towels to dry, and the fresh

weight was recorded. Plant samples were subsequently dried at

70°C for 120 hours before the dry weight was recorded (Cai

et al., 2015).

The soluble sugar concentration was measured by anthrone

colorimetry (Ibrahim et al., 2013). The soluble protein

concentration was determined spectrophotometrically by

measuring the absorbance at 595 nm with bovine serum

albumin as the standard (Bradford, 1976). The nitrate

determination used the salicylic acid colorimetric method

(Cataldo et al., 1975).
2.4 Soil DNA extraction, PCR
amplification and high-throughput
gene sequencing analysis

DNA from all samples was extracted and purified (the details

are described in the Additional file). Two specific primers were used

to amplify the bacterial 16S rRNA gene and the fungal ITS1 region

(Schoch et al., 2012; Mori et al., 2014). Sequencing was performed

on an Illumina Miseq platform (Majorbio Bio-Pharm Technology

Co., Ltd., Shanghai, China). Sequences were comparedagainst the

Silva (SSU123) 16S rRNA Database and the fungal (ITS) Unite

Database to obtain the species annotation information (Li et al.,

2022c). Sequence data associated with this project have been

deposited in the NCBI Short Read Archive database (Accession

Numbers: PRJNA862974 and PRJNA863750).
2.5 Network analysis

Network analysis was performed based on OTUs to explore

the relationships between the soil microbial taxa as described in

Additional file. Data set was calculated by Spearman correlation

matrix and adjusted for Benjamini-Hochberg’s false discovery

rate, and thenetwork visualization as well as topological

parameters were analyzed using Gephi 0.9.5 (https://gephi.org/)

(Benjamini and Hochberg, 1995; Li et al., 2019).
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2.6 Statistical analysis

Statistical analysis of the soil physicochemical properties and

plant agronomic traits was carried out by applying a one-way

analysis of variance (ANOVA) and the new multiple range

method. All experimental parameters were measured at least

in triplicate, and the results were expressed as the mean ±

standard deviation. Difference analyses were conducted with

the SPSS statistical software package, version 22.0 (IBM, New

York, USA), with a P value ≤ 0.05 as the standard.

To compare the relative levels of OTU diversity across all

samples, a rarefaction curve was formed using the Mothur software

(Schloss et al., 2009). Alpha diversity, including the Chao 1 and

Shannon indexes, were calculated using QIIME (version 1.9.1)

(Zhang et al., 2022). The relative abundance of microbial phylum

and genus were defined as the number of reads of that phylum and

genus as a percentage of the number of all reads in a sample (Yao

et al., 2019). To compare bacterial and fungal community structures

among all soil samples, a principal coordinate analysis (PCoA) was

set up based on the Bray–Curtis distance metric (Yang et al., 2022).

Theigraph and psych packages in R (version 4.2.0) were used to

visualize the results (Kang et al., 2022). An ANOVA was used to

determine the statistical significance of the differences between

species and treatment groups, and the FDR (False Discovery

Rate) multiple test was used for correction. A linear discriminant

analysis (LDA) effect size (LEfSe) method was performed to find

biomarkers (LDA score ≥ 3.5) (Li et al., 2022c).

The function of bacterial communities was predicted using

the PICRUSt software program according to the Kyoto

Encyclopedia of Gene and Genomes (KEGG) catalog (Langille

et al., 2013), and the function of fungal communities was

predicted using the FUNGuild software (Nguyen et al., 2016).

The results were graphed primarily using Origin 2022

(OriginLab, USA) and Adobe Illustrator CC2018 (Adobe

Systems Inc., USA) (Li et al., 2022c). In addition, a structural

equation models (SEMs) analysis was conducted by SPSSAU

using an online tool (https://spssau.com) (Li et al., 2022a).
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3 Results

3.1 Agronomic traits of Brassica
chinensis L.

3.1.1 Plant biomass and growth factors
The overall trend for plant biomass was that fertilizer

treatments were significantly higher than CK, especially BF

(Table S1, Figure S1). During the experimental period, the

shoot fresh weight, root fresh weight, total fresh weight, and

total dry weight were 83.03 ± 10.89, 2.27 ± 0.29, 85.29 ± 11.07,

and 4.26 ± 0.43 (g/plant), respectively; which is 1.81–1.93-fold

higher than CK (P ≤ 0.05). It was noteworthy that no significant

difference was evident between CF and OF, but both were

remarkablely lower than the BF group.

For other plant growth factors, compared with CK, all

treatments showed greatly increased plant height, crown width

and the third leaf width, especially BF (Table S2, Figure S1).

Compared with the other three treatments, BF showed

dramatically increased plant height, by 5.43%–20.00% on the

30th day. For the leaf number, significant differences were seen

among the three test groups and CK in the early stages (i.e., 5 d

and 10 d), but the difference in the three test groups was not

obvious. From 15 d to 30 d, the leaf number in BF group

increased significantly compared with all other groups (CF, OF

and CK) (Table S3). Unlike the leaf number, the leaf SPAD value

was not statistically different among BF and the other groups in

the early stages. A significant difference was observed at 30 d

(Table S3).

3.1.2 Quality characteristics
The soluble sugar concentration of BF and OF was 0.22%

and 0.12%, respectively, which was significantly higher than CK

(Figure 1A). CK showed the lowest soluble protein

concentration, whereas BF was increased by 40.79% and

62.12% compared with CF and OF, respectively (Figure 1B).

Unlike the soluble sugar/protein, the nitrate concentration
A B C

FIGURE 1

Effects of different fertilizer treatments on the Brassica chinensis L. soluble sugar concentration (A), soluble protein concentration (B) and nitrate
concentration (C). CK is the untreated control; CF is chemical fertilizer; OF is organic fertilizer; BF is bioorganic fertilizer; FW is fresh weight.
Means (N = 3) within the same histogram followed by the same letter are not statistically different (P = 0.05) according to Duncan’s new
Multiple-Range test. The different small lettles (a, b, c, and d) indicated the significant difference among the different groups at P<0.05 level.
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showed a different tendency. BF showed the lowest nitrate with a

30.34% and 23.27% decrease compared with CF and CK,

respectively (Figure 1C). These results indicated that

application of organic fertilizer effectively improved the quality

of Brassica chinensis L.
3.2 The relationship between plant
properties and environmental factors

Compared with CK, all treatments except CF showed

significantly increased alkaline hydrolysis nitrogen (AHN),

available potassium (AK) and organic matter (OM). Especially

in, BF group, which effectively increased the AK concentration

by 62.21% (Table S4). Additionally, available phosphorous (AP)

was dramatically increased (8.69%–14.87%) after fertilization,

and the largest increase occurred in BF. At the same time, both

BF and OF also had improved soil acid-base status indicated by a

higher pH value. The pH value of CK was 6.22 ± 0.01, whereas

the value was 6.60 ± 0.08 in BF.

A correlation analysis showed that plant weight, the leaf

SPAD value, and the soluble sugar and protein concentration

were positively correlated with the environmental factors,

whereas the nitrate concentration was negatively correlated

with the environmental factors (Table S5). Plant fresh weight

was positively correlated with AHN, AP, AK and OM (P ≤ 0.05),

and SPAD was positively correlated with AP, AK and pH (P ≤

0.05). The nitrate level was negatively correlated with AK, OM

and pH (P ≤ 0.05). The soluble sugar concentration was

positively correlated with all environmental factors values (P ≤

0.01); and the soluble protein concentration was positively

correlated with AHN, AP and AK concentrations (P ≤ 0.05).
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3.3 Soil microbial diversity

3.3.1 Biodiversity of the soil
microbial community

After optimizing the original sequence based on a 97%

similarity, 37,014 16S rRNA and 58,153 ITS sequences were

retained from all samples; a total of 4,673 bacterial OTUs and

1,549 fungal OTUs were obtained. The Shannon and Chao1

indices respectively represent the diversity and richness of

microbial communities.

Compared with BF, more OTUs were observed in CF and

CK for bacteria and fungi, and CK had the highest value of all

treatments (Table S6). In BF, the Chao1 richness of bacteria

decreased by 3.21% and 7.01% compared with CF and CK.

However, in the fungal biosphere, no significant differences in

the Chao1 index occurred among the four treatments. For the

Shannon index, CK showed the highest value for both bacteria

and fungi. Overall, CK and CF had higher microbial a-diversity
compared with BF and OF.

For b-diversity, The differences in community composition

of the four treatments were evaluated by using a PCoA based on

a Bray-Curtis distance matrix. Figure 2 shows that application of

organic fertilizer accounts for the differences in the composition

of the soil microbial community. Both bacterial and fungal

cluster into two distinct groups representing samples taken

from four treatments. The Bray–Curtis distances show that BF

was separate from CF and CK along the first component

(PCoA1) both for bacteria and fungi (PERMANOVA, F =

6.6612, P = 0.001, bacteria; F = 5.30167, P = 0.001, fungi). The

contribution rates of PCoA1 and PCoA2 to the differences in

species composition between the treatments were 42.72% and

9.54% (bacteria), and 38.56%, 17.89% (fungi), respectively.
A B

FIGURE 2

Comparison of the bacterial (A) and fungal (B) communities in soils under the different fertilizer treatments based on a principal coordinates
analysis of Bray-Curtis distances. CK is untreated control; CF is chemical fertilizer; OF is organic fertilizer; BF is bioorganic fertilizer.
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3.3.2 Soil microbial community composition
For the bacteria, Proteobacteria, Actinobacteria, Firmicutes,

Chloroflexi and Patescibacteria were the top five abundant phyla

(Figure S2A). At the class level, Bacilli, Gammaproteobacteria,

Actinobacteria, Alphaproteobacteria, Saccharimonadia,

Thermoleophilia and Chloroflexia are the main species

(Figure 3A). For the fungi, Ascomycota, followed by

Olpidiomycota, Basidiomycota, Mortierellomycota and

Chytridiomycota were the abundant phyla (Figure S2B). The

class level was dominated by Sordariomycetes, Eurotiomycetes,

Olpidiomycetes, Mortierellomycetes and Tremellomycetes

(Figure 3B).
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At the genus level, Bacillus was the dominant genus in the

bacterial community, both OF and BF dramatically (P ≤ 0.001)

increased the relative abundance of Bacillus by 129.18% and

278.01% (Figure 4A). Addition of bioorganic fertilizer in BF also

significantly increased the relative abundance of Ammoniphilus and

norank_f_Chitinophagaceae. Among the declining species, BF

significantly decreased (P ≤ 0.01) the relative abundance of

Chujaibacter and Streptomyces by 34.53% and 56.65%, respectively.

Trichoderma was the dominant genus in the fungal

community. All treatments increased the relative abundance of

Trichoderma by 7.13%–31.84% (Figure 4B); while significantly

reduced the relative abundance of Aspergillus. The addition of
A B

FIGURE 3

Bubble chart of bacterial (A) and fungal (B) classes for different fertilizer treatments. CK is untreated control; CF is chemical fertilizer; OF is
organic fertilizer; BF is bioorganic fertilizer. The circular areas represent the average relative abundance (RA) across the six replicate libraries for
soil samples collected from each treatment.
A B

FIGURE 4

Differences in the composition of soil bacteria (A) and fungi (B) at the genus level in response to different fertilizer treatments. CK is untreated control;
CF is chemical fertilizer; OF is organic fertilizer; BF is bioorganic fertilizer. The number of asterisks indicates significant differences between treatments
according to a one-way ANOVA and FDR (False Discovery Rate) adjustment: * 0.01 < P ≤ 0.05; ** 0.001 < P ≤ 0.01; *** P ≤ 0.001.
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bioorganic fertilizer in BF group greatly enriched the relative

abundance of Mortierella, Trichosporon and Neocosmospora,

and decreased the relative abundance of Trechispora.

A LefSe analysis showed that at the bacterial genus level, 6, 2,

2 and 4 biomarkers were found in CK, CF, OF and BF,

respectively (Figure S3A). At the fungal genus level, 8, 4, 2 and

3 biomarkers were found in CK, CF, OF and BF, respectively

(Figure S3B).
3.4 Relationship among microbial
community, environmental factors and
agronomic traits

The correlation analysis at the genus level showed that

bacteria were more closely correlated with the soil parameters

and agronomic traits than the fungi were (Figure 5). In the

bacterial community, Bacillus and Ammoniphilus were positively

correlated with AK, OM, pH, FW, SSC and SPC (P ≤ 0.01);

whereas negatively correlated with NC (P ≤ 0.001) (Figure 5A).

Chujaibacter, Mizugakiibacter and Streptomyces were negatively

correlated with FW and AK (P ≤ 0.01). Paenibacillus,

Streptomyces and Nitrospira were negatively correlated with

SSC (P ≤ 0.01) and Mizugakiibacter, Tumebacillus and

Nitrospira were negatively correlated with OM (P ≤ 0.01).

In the fungal community, Trechispora, Aspergillus and

Latorua were negatively correlated with AK, OM, pH and

SSC; whereas Trichosporon and Saitozyma were positively

correlated with these factors (P ≤ 0.001) (Figure 5B).

Neocosmospora was positively correlated with AK, FW and
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SSC (P ≤ 0.01); and negatively correlated with NC (P ≤ 0.001).

Talaromyces and Chrysosporium were negatively correlated with

AK and OM (P ≤ 0.001).
3.5 Network analysis and predictive
functional profiling of the soil
microbial community

The co-occurrence networks of microbial communities were

constructed for bacteria and fungi to show interactions among

genera based on strong and significant correlations (Spearman’s

correlation coefficient |r| > 0.6, P < 0.05, FDR-BH tests)

(Figure 6). Topological features of the global co-occurrence

networks are listed in Table S7. A network analysis showed

that the co-occurrence network was more complex in BF

compared to the other groups, which consisted of 189 nodes

and 1541 edges. The proportion of positive correlation accounts

for 50.75%–57.82% in the four networks. The addition of organic

amendments (i.e., in OF and BF) increased the network density

and the average degree of the microbial networks. Additionally,

the average path length decreased from 3.093 to 2.936 following

the bioorganic fertilization of the soil.

Regarding microbial function, compared with the other

three treatments, microbial activity in sulfur metabolism,

phosphonate and phosphinate metabolism were significantly

higher in BF (P ≤ 0.01), while other metabolic pathways, such

as biofilm formation and plant-pathogen interaction were down-

regulated (Figure S4). Significant differences were also seen in

carbon fixation, mineral absorption and metabolism among the
A B

FIGURE 5

Heatmap analysis of the correlation between the species composition of soil bacteria (A) and fungi (B) at the genus level and environmental
factors and agronomic traits. CK is untreated control; CF is chemical fertilizer; OF is organic fertilizer; BF is bioorganic fertilizer; FW is fresh
weight; SPAD is leaf SPAD value; NC is nitrate concentration; SSC is soluble sugar concentration; SPC is soluble protein concentration; AHN is
alkaline hydrolysis nitrogen; AP is available phosphorus; AK is available potassium; OM is organic matter. The Spearman method was used for
correlation analysis. The legend on the right is the color interval for the different R values. The number of asterisks indicates the degree of
correlation: *0.01 < P ≤ 0.05; **0.001 < P ≤ 0.01; *** P ≤ 0.001.
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four treatments. Seven trophic modes of fungi were identified

among the different fertilization treatments. They were

saprotroph (51.14%–64.45%), pathotroph-saprotroph-

symbiotroph (8.97%–15.35%), pathotroph (5.20%–8.21%),

saprotroph-symbiotroph (4.00%–8.75%), pathotroph-

saprotroph (1.71%–3.29%), symbiotroph (0.02%–0.06%),

pathotroph-symbiotroph (0.02%–0.04%) and unassigned

(10.88%–20.53%), respectively. (Figure S5A). Saprotroph was

the dominant trophic mode and the value for BF was larger than

for the other treatments. In addition, the pathotroph mode of BF

was significantly lower compared with CK. The dominant

groups of functional soil fungi were undefined saprotroph,

endophyte-litter saprotroph-soil saprotroph-undefined

Saprotroph, animal pathogen-dung saprotroph-endophyte-

epiphyte-plant saprotroph-wood saprotroph and wood

saprotroph, and the average abundance of all treatments

accounted for 49.95%, 7.21%, 5.94% and 4.61%, respectively

(Figure S5B). The abundance of unclassified saprotroph in BF

increased by 19.54% compared with CK, and the abundance of

animal pathogen-dung saprotroph-endophyte-epiphyte-plant

saprotroph-wood saprotroph decreased by 35.71%. In
Frontiers in Plant Science 08
addition, BF showed a significantly increased abundance of

wood saprotroph over the other treatments.
3.6 Linkage of microbial and
environmental factors to plant growth

The effects of microbial diversity, microbial function and

environmental factors on plant development were evaluated

using the structural equation model (SEM). The findings

indicated that the plant growth was positively co-associated

with the bacterial diversity and fungal diversity (Figure 7).

Both the environmental factors and microbial diversity

positively correlated with the microbial function; and the

microbial function was promoted plant growth. Moreover, the

environmental factors enhanced bacterial diversity, which

improved the growth of Brassica chinensis L., indirectly. Taken

together, in the analyzed parameters, plant growth was co-

regulated bymicrobial composition, microbial metabolic

potential and environmental factors. Among them, bacterial
A B

DC

FIGURE 6

Network plots of bacterial and fungal communities in CK (A), OF (B), CF (C) and BF (D), CK is untreated control; CF is chemical fertilizer; OF is
organic fertilizer; BF is bioorganic fertilizer. Blue nodes indicate bacteria; gray nodes indicate fungi; red lines between nodes indicate positive
interaction; and green lines indicate negative interaction.
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function, bacterial diversity, and fungal diversity showed most

obvious effects on the growth of Brassica chinensis L. with R2

values ranging from 0.043 to 0.719, and P ≤ 0.05 or 0.01. These

results showing that soil microbial profile was an important

factor affecting crop growth.
4 Discussion

This study showed that soil physicochemical properties

changed significantly after bioorganic fertilizer application.

Specifically, both pH value and AK level were significantly

improved in BF group compared with the control group (Table

S4). Previous studies revealed that increase in soil pH index may be

ascribed to the decomposition of organic matter, and the

application of bioorganic fertilizer introduced a large amount of

organic matter and microorganisms, thus the decomposition of

organic matter can be accelerated by microbes to alleviate soil

acidification (Hu et al., 2018; Yang et al., 2019a). The efficient soil

microorganisms influence the availability of minerals in soil and

play a major role in ion cycling and soil fertility. Abou-el-Seoud

and Abdel-Megeed (2012) used B. subtilis with B. mucilaginosus to

develop efficient microbial consortium, which helps to enhance the

potassium availability in agricultural soils. In addition, many

researchers have reported that a wide range of rhizosphere

microorganisms can act as K solubilizers, including B. circulans,

B. edaphicus and B. amyloliquefaciens (Sheng, 2005; El-Hadad

et al., 2011). They solubilize the insoluble potassium to soluble

forms of potassium mainly by chelation, exchange reactions,

complexolysis, and production of organic acids. In this work, the
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correlation analysis shows that soil AHN, AP, AK, OM and pH

were all characteristic factors affecting Brassica chinensis L. growth.

Among these parameters, AK has the highest factor loadings and

the biggest contribution for plant growth (Tables S1, S2, 3, Figure

S1). Hency, our results show that bioorganic fertilizer increased the

availability of potassium and provides necessary element for plant

growth. Meanwhile, this study also revealed that the addition of B.

subtilis bioorganic fertilizer significantly reduced the nitrate

concentration in the crop, probably because the soil microbial

amendment reduced the nitrate concentration by increasing the

nitrate reductase activity, thereby improving the safety and quality

of vegetables (Chatterjee et al., 2012; Harindintwali et al., 2021).

Previous studies have confirmed that additional bacterial fertilizers

can reduce nitrate concentration in vegetables, such as lettuce and

tomato (Brunetti et al., 2019; Jiang et al., 2019; Jin et al., 2022). Jin

et al. (2022) pointed out the application of B. subtilis bioorganic

fertilizer enriched organic matter concentration in the plant-body,

which increased the quality of lettuce. Similar results were observed

in the present study, where soluble sugar and protein levels were

increased to varying degrees in the BF group. This may be related

to the effective promotion of nutrient metabolism coordination

and the balance of organic fertilizer, so as to ensure a higher yield

and better quality of crops (Brunetti et al., 2019).

Base on plant growth or quality is closely related to soil

fertility and microecological characteristics (Wu et al., 2021), an

analysis of the soil microbial community of Brassica chinensis L.

was performed. For the biodiversity, it was found that B. subtilis

bioorganic fertilizer could significantly change rhizosphere

microbial diversity. Both the diversity and richness of bacteria

and fungi were significantly lower for BF compared to CK (Table
FIGURE 7

Structural equation modeling (SEM) showing the linkage among environmental factors, species diversity, species function, and plant growth.
Dotted arrows indicate non-significant paths (P > 0.05). Red and blue arrows indicate positive and negative relationships, respectively. The path
widths are scaled proportionally to the path coefficient. *0.01 < P ≤ 0.05, **P < 0.01.
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S6). A possible reason is that the bacterial fertilizer changed the

composition of the soil organic matter and enriched the

relatively dominant species. Previously, Jiang et al. (2019)

pointed out that bioorganic fertilizer is rich in organic

components and exogenous strains that can modify the habitat

of soil microorganisms. Yang et al. (2022) subsequently showed

that the B. subtilis is a typical plant growth-promoting

rhizobacteria (PGPR), which can dominantly colonize the soil,

decreasing the biodiversity of soil species. At the same time,

Wang et al. (2017) pointed out that bioorganic fertilizer is a

source of organic matter which promotes the growth of native

microbes in soil and decrease the biodiversity. The above-

mentioned studies provide evidence for our explanation.

For the microbial communities, the phylum level results

showed that the abundance of Firmicutes was higher and

Acidobacteriota was lower after the bioorganic fertilizer

addition. Previous study reported that Firmicutes are k-strategy

species often found in nutrient-rich habitats and can produce

antibacterial substances against harmful bacteria and promote

host growth (Li et al., 2022c). Unlike the Firmicutes,

Acidobacteriota are an r-strategy species and prefer to inhabit

an oligotrophic environment, so they show a relatively higher

abundance in CK (Liang et al., 2020). In the fungi, compared with

the control, bioorganic fertilizer application increased the

abundance of Basidiomycota and Mortierellomycota, both of

which are key fungal members engaging in nutrient conversion

and material decomposition (Detheridge et al., 2016; Kumar et al.,

2022). In addition, the PCoA analysis revealed that significant

clustering in bacterial and fungal communities in the various

treatment groups, which indicated that the bioorganic fertilizer

greatly affected the microbial community (Wang et al., 2022).

At the genus level, as expected, it was found that Bacillus was

highly enriched in the bioorganic fertilizer treatments. And the

Spearman correlation test showed that the relative abundance of

Bacillus exhibited a strong positive correlation with soil

environmental factors and plant physiological parameters, which

might be related to the facility of Bacillus for humification and the

mineralization of nutrients (such as C and N), the inhibition of

pathogens, and the induction of host resistance (Wu et al., 2019;

Lebedev et al., 2021; Li et al., 2022c). Similar to Bacillus, it was also

observed that norank_f_Chitinophagaceae was remarkably

increased in BF compared with CK. This species degrades chitin

and cellulose by secreting b-glucosidase, and inhibits harmful fungi

and promotes plant growth (Xu et al., 2021). In this study, the

application of bioorganic fertilizer effectively enhanced the yield of

Brassica chinensis L., which may be related to the high relatively

abundance of norank_f_Chitinophagaceae. Furthermore,

Ammoniphilus was significantly enriched in the organic fertilizer

treatments and had a strong positive correlation with crop

physiological indicators and soil nutrient parameters, probably

related to its ability to secrete organic matter hydrolases to

accelerate substance degradation and promote nutrient element

metabolism (Otto et al., 2013).
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In the fungal biosphere, the Trichoderma, Mortierella,

Trichosporon and Saitozyma were greatly increased in BF.

Trichoderma is a typical activity member, which colonizes the

rhizosphere of crops and increases the surface area of the root

system to improve the nutrient absorption capacity of crops (Cai

et al., 2017). Additionally, it has been found that Trichoderma

inhibits the growth of other pathogenic microorganisms by

secreting antibiotics and hydrolases, and releases slow-effect

nutrients in the soil (Zhang et al., 2016). In the present study,

the organic fertilizer treatment groups BF and OF had a high soil

nutrient concentration and excellent crop growth parameters,

which may be related to the significant enrichment of the

abundance of Trichoderma. Similarly, Mortierella was

significantly enriched in the organic fertilizer treatment and

positively correlated with crop fresh weight, probably related to

its ability to improve nutrient availability and protect crops from

pathogens (Ozimek and Hanaka, 2021).

As for Trichosporon and Saitozyma, the relative abundance

of both was increased in the organic/bioorganic fertilizer groups,

and was significantly positively correlated with the soil organic

matter, available potassium, and appropriate pH, which may be

related to their ability to accelerate cellulose degradation

(Stursova et al., 2012; Aliyu et al., 2021). It is also noteworthy

that the abundance of Aspergillus decreased significantly after

the application of bioorganic fertilizers, and the correlation test

results showed that Aspergillus was negatively correlated with

crop quality indicators. This indicates the plants are less likely to

be damaged by toxins after applying bioorganic fertilizers,

because Aspergillus is a common toxin producer fungus often

infecting cash crops such as peanuts and corn (Senghor et al.,

2020). The above-mentioned results imply that the promotion of

beneficial fungi and the inhibition of harmful fungi by organic

fertilizers promote plant growth.

The co-occurence analysis indicated the bacteria nodes

occupy three-quarters of the network, with a higher

proportion of positive than negative correlations, implying

bacterial dominance in the microflora and species niches

dominated by similarity (Zhang et al., 2022). In this study, the

network topological parameters, including number of nodes and

edges, the average degree, the network density and the average

clustering coefficient of BF were much greater than the other

groups, indicating that BF evidenced a higher degree of

cooperation and communication (Li et al., 2022a). In addition,

the high connectivity implies a great network complexity, which

is important for the ecological buffer capability and microbial

homeostasis (Kang et al., 2022). It was observed that the

complexity of the co-occurrence networks of bacteria and

fungi in BF was increased, consistent with previous studies

(Gu et al., 2019; Price et al., 2021). The results of our study

showed that BF showed a shorter average network path length,

suggesting that the application of bioorganic fertilizer improved

the efficiency of the co-occurrence network to quickly respond to

environmental changes (Kang et al., 2021; Zhu et al., 2022).
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For the functional profiles of the microflora, the soil bacterial

and fungal ecological functions of the different treatment groups of

Brassica chinensis L. were predicted by the PICRUSt2 and

FUNGuild methods, respectively. The KEGG results showed that

exposure of B. subtilis bioorganic fertilizer significantly enhanced

the metabolism and absorption pathways of mineral elements and

sulfur/phosphonate/phosphinate metabolism, which was mainly

because the addition of B. subtilis stimulated the proliferation of

other beneficial microorganisms (including bacteria and fungi).

Previous studies also found that the addition of organic fertilizers

significantly improved the material metabolism pathway and

played an important role in nutrient cycling or decomposition,

which was consistent with the predictions of this study (Cai et al.,

2017; Liao et al., 2019; Li et al., 2022b). Su et al. (2022) further

pointed out that organic fertilizer application improved the soil

structure and stimulates beneficial microorganisms, reducing the

relative abundance of pathogenic fungi. However, it should be

noted that the present results are based on prediction tools, and the

actual molecular functions have yet to be confirmed by subsequent

genomics or transcriptomics in the future. At the same time, genetic

engineering and genome editing for improving nutrients provide

efficiency in microbes are needs to be strengthened in the future.
5 Conclusion

The present study revealed that B. subtilis bioorganic fertilizer

can maintain the acid base balance of soil and effectively improve

the plant nutritional quality by regulate the pH value and soluble

matters content (sugar, protein and nitrate). Meanwhile, the soil

microorganisms profiles were improved under the bioorganic

fertilizer. The biofertilizer decreased the a diversity and

increased soil beneficial microorganisms proliferation. Network

analyses revealed closely correlations between bacteria/fungi and

soil environmental parameters and crop agronomic traits.

Functional profiling revealed that the application of biofertilizer

promoted an increase of microbial functional pathways, such as

mineral element metabolism and saprotrophy. The SEM results

further supplied the evidence that crop growth was co-controlled

by the microbial communities and related functions. As a whole,

bioorganic fertilizers can effectively improve soil available

potassium and pH value as well as microbial activities, and

promote B. chinensis L. growth. This study provides a scientific

basis for establishing an environmental friendly fertilization

technology for green agriculture.
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