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Fusarium head blight (FHB) of wheat, mainly caused by Fusarium graminearum

Schwabe, is an emerging threat to wheat production in Korea under a changing

climate. The disease occurrence and accumulation of associated

trichothecene mycotoxins in wheat kernels strongly coincide with warm and

wet environments during flowering. Recently, the International Panel for

Climate Change released the 6th Coupled Model Intercomparison Project

(CMIP6) climate change scenarios with shared socioeconomic pathways

(SSPs). In this study, we adopted GIBSIM, an existing mechanistic model

developed in Brazil to estimate the risk infection index of wheat FHB, to

simulate the potential FHB epidemics in Korea using the SSP245 and SSP585

scenarios of CMIP6. The GIBSIM model simulates FHB infection risk from

airborne inoculum density and infection frequency using temperature,

precipitation, and relative humidity during the flowering period. First, wheat

heading dates, during which GIBSIM runs, were predicted over suitable areas of

winter wheat cultivation using a crop development rate model for wheat

phenology and downscaled SSP scenarios. Second, an integrated model

combining all results of wheat suitability, heading dates, and FHB infection

risks from the SSP scenarios showed a gradual increase in FHB epidemics

towards 2100, with different temporal and spatial patterns of varying

magnitudes depending on the scenarios. These results indicate that proactive

management strategies need to be seriously considered in the near future to

minimize the potential impacts of the FHB epidemic under climate change in

Korea. Therefore, available wheat cultivars with early or late heading dates were

used in the model simulations as a realistic adaptation measure. As a result,
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wheat cultivars with early heading dates showed significant decreases in FHB

epidemics in future periods, emphasizing the importance of effective

adaptation measures against the projected increase in FHB epidemics in

Korea under climate change.
KEYWORDS

wheat, fusarium head blight, shared socioeconomic pathway, CMIP6, climate
change, adaptation measure
1 Introduction

Fusarium head blight (FHB), also known as wheat scab, is

mainly caused by Fusarium graminearum Schwabe and is a

deadly fungal disease affecting staple crops, such as wheat,

barley, and rice, in many countries (Bai and Shaner, 2004;

Kim Y et al., 2018). Under favorable conditions for disease

occurrence, FHB deteriorates crop quality and reduces yield,

resulting in the economic loss (Parry et al., 1995). Grains

infected with FHB can also be contaminated with various

mycotoxins produced by the fungal pathogen, posing a health

risk to humans and animals (Salgado et al., 2014). Therefore,

FHB outbreaks can cause serious socioeconomic disruption.

Previous studies report that FHB caused economic losses

worth approximately $2.7 billion in the United States over the

20 years since the early 1990s (McMullen et al., 2012). Further,

wheat- and barley-growing regions of South America reported a

similar trend of increased FHB epidemic frequency and resultant

losses in the 1990s (Del Ponte et al., 2009; Moschini et al., 2013;

Duffeck et al., 2020). Fusarium head blight also poses a threat to

wheat and barley production in many other countries, including

China and Canada (Zhu et al., 2019).

Fusarium head blight is a major wheat disease in Korea (Ryu

and Lee, 1990; Shin et al., 2018). In South Korea, wheat is

cultivated mainly in the southern region; however, it is gradually

expanding to the northern provinces, possibly owing to the

recent warming climate. In 1963, the first major FHB outbreak

devastated the southern region of the country, reducing the

wheat yield by 40–80%. Since then, regular outbreaks have been

reported approximately every ten years (Chung, 1975).

However, owing to abnormal weather patterns and the

expansion of wheat cultivation areas, the frequency of the

disease outbreak has increased in the last two decades (Park

et al., 2012). While severe outbreaks in 2002 resulted in up to

59% of the FHB incidence, the incidence in the southern

provinces varied over the years, ranging from 0.1% to 16%

(Shim and Gang, 2018), indicating that the occurrence of FHB is

indeed affected by the annual variation in weather conditions

during critical crop growth stages, including heading

and flowering.
02
The wheat FHB causes distinct symptoms, such as

premature bleaching of spikelets or blank heads and

accumulation of mycotoxins, such as deoxynivalenol (DON),

nivalenol (NIV), and zearalenone (ZEA), that have adverse

effects on humans and animals. The FHB pathogen infects

wheat anthers through wind dispersal or rain-splash during

the flowering period from mid-April to mid-May. Since FHB

is a monocyclic disease, the quantity of the primary inoculum is

a key factor influencing its incidence. Overwintering pathogens

on the crop residue are the main inoculum sources causing new

infections during the following spring. Airborne ascospores,

produced outside the field, could initiate disease by traveling

long distances (Köhl et al., 2007). The FHB infection is greatly

affected by weather conditions. During the flowering period, if

the environmental conditions are optimal (16 to 30°C along with

> 95% relative humidity for 2–3 days), the disease can spread

rapidly (Parry et al., 1995). Owing to these epidemiological

characteristics, FHB is considered a major plant disease

influenced by abnormal weather events under climate

change conditions.

A climate change impact assessment study of the FHB

epidemic was conducted in Scotland (Skelsey and Newton,

2015). Decreasing risks of FHB epidemics with both limited

and non-limited primary inocula were assessed for the 2040s and

the 2080s. Similarly, Boland et al. (2004) estimated a possible

reduction of FHB epidemics caused by the decreased rates of

disease progression due to a projected decrease in rain and leaf

wetness in Ontario, Canada. However, a contrary projection was

made in Sweden (Roos et al., 2011), showing an increase in

mycotoxin contamination owing to a more humid climate in the

future. Another study in China simulated the projected increases

of FHB epidemics in wheat by inputting the estimated anthesis

dates and climate change scenario data into an FHB forecasting

model (Zhang et al., 2014). Moschini et al. (2013) also showed an

increase in the number of years with moderate or severe FHB

incidence under the future climate change scenario in Argentina.

These contrasting assessment studies indicate that climate

change has complex impacts on FHB depending on the region

and thus demand sophisticated impact assessments in future

studies (Juroszek and von Tiedemann, 2013).
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To conduct a climate change impact assessment on FHB, an

ecophysiological model that considers environmental conditions

affecting FHB infection and transmission can be used. Several

models simulating the epidemics of FHB have been developed

for Argentina (Moschini and Fortugno, 1996), Belgium

(Detrixhe et al., 2003), Canada (Hooker et al., 2002), Italy

(Rossi et al., 2003), the United States (De Wolf et al., 2003;

Shah et al., 2013), and China (Xiao et al., 2020). Moschini and

Fortugno (1996) developed empirical equations to predict FHB

incidence in Argentina using accumulated degree-days and two-

day window values of precipitation and relative humidity

variables. Detrixhe et al. (2003) developed an ecophysiological

model of FHB for winter wheat in Belgium, which predicts FHB

infection based on the interpolation of weather radar data and

uses the estimation of leaf wetness duration instead of relative

humidity. In Canada, three equations using rainfall and

temperature data as input variables for 4–7 days before

heading were developed to predict the production of DON in

mature wheat grains (Hooker et al., 2002). Rossi et al. (2003)

developed a dynamic simulation model for FHB infection in

wheat in Italy. This model calculates two daily indices, the

infection risk of FHB and the mycotoxin content of kernels,

based on a systems analysis that includes factors such as

sporulation, spore dispersal, and infection of the host tissue

(Leffelaar and Ferrari, 1989). In the United States, logistic

regression models were developed using weather variables for

seven days prior and ten days post anthesis (De Wolf et al.,

2003). Other logistic regression models using weather variables

before and after anthesis have also been developed in the US

(Shah et al., 2013). Xiao et al. (2020) used a dynamic remote

sensing technique to predict FHB infections in China.

Among existing FHB models, we used the GIBSIM to simulate

the potential epidemics of FHB in wheat in Korea, as it better

reflects the environmental conditions affecting the development of

FHB during the flowering period (Del Ponte et al., 2005). The

GIBSIM model was first developed in Brazil and used as a web-

based FHB forecasting system (Fernandes et al., 2007) and a climate

variability impact assessment of FHB in southern Brazil (Del Ponte

et al., 2009). The GIBSIM model calculates FHB infection risk by

combining the effects of multiple epidemiological factors, such as

the host, inoculum, and environment. It simulates the accumulated

infection index (GIB%) by obtaining the proportional value of each

epidemiological factor and then multiplying them. The proportion

of host factors is the proportion of susceptible tissue obtained by

calculating the anthers extruded in the head emerging at the

heading date. The proportion of the inoculum factor reflects the

inoculum pressure with daily relative humidity and is a dummy

variable for consecutive rainy days. Daily precipitation and relative

humidity were used to determine the conducive conditions for FHB

infection and the proportion of possible infection events.

The GIBSIM model requires information on the wheat

heading date as a key input to simulate FHB infection risk.

Since the heading date could change due to the increasing
Frontiers in Plant Science 03
temperature under climate change, the potential FHB

epidemic can be predicted realistically by integrating the

simulation of wheat heading dates into the modeling process

with the GIBSIM in this study. Many phenological models,

including empirical models based on the accumulation of

thermal time and mechanistic models simulating the emission

of leaves and spike primordia at the shoot apex, have been used

to predict wheat phenology (Bogard et al., 2014). We adopted

the development rate (DVR) model introduced by Maruyama

et al. (2010) to estimate the wheat heading date for each

simulation site and period.

Wheat is not the main staple crop in Korea, and most of the

wheat consumed in Korea is imported from the United States,

Canada, and Australia (Statistics Korea, 2022). Therefore, the

self-sufficiency rate of wheat production in South Korea is at a

meager 0.5%. However, owing to food security issues due to the

recent COVID-19 pandemic and international conflicts limiting

the trade of food and natural resources, the importance of wheat

production in Korea is increasing. In addition, considering the

recurring food crisis due to rapid global and climate change and

the modest self-sufficiency rate (20.2% as of 2020) of grain crops

in South Korea, the government has been trying to increase

domestic wheat production by implementing the “wheat

industry development basic plan” policy aimed at achieving a

10% wheat self-sufficiency rate by 2030. Wheat is currently

cultivated only in the southern region of South Korea. Wheat

cultivation areas, benefiting from government support and the

warming winter temperatures, are likely to expand northward.

Therefore, assessing the projected impacts of climate change on

the FHB epidemic in Korea is necessary. In this study, we

determined the areas suitable for wheat cultivation at present

and in the future based on the guidelines of the Rural

Development Administration (RDA) of South Korea, predicted

wheat heading dates for each area using the DVR model, and

then simulated the future FHB epidemics using the GIBSIM over

the suitable areas and during the predicted heading periods from

the respective models. Finally, we examined the projected FHB

epidemics in alternative wheat cultivars with early or late

heading dates as an adaptation strategy to climate change.
2 Materials and methods

2.1 Study area and climate data

The target area of this study was the entire Korean Peninsula

(latitude 37°31’ N, longitude 127°01’ E), including both South

and North Korea (Figure 1). The spatial variability in climate

over the peninsula is influenced by topography, consisting of

mountains (57.4%) and plains (35.1%). In addition, the climate

differs dramatically from north to south, spanning

approximately 11 degrees of latitude (approximately 1100 km

distance). South Korea experiences a relatively warm and wet
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climate affected by the warm East Korea Warm Current, whereas

North Korea experiences a colder and, to some extent, an inland

climate similar to that of the continent. A recent climate change

assessment report published by the Korea Meteorological

Administration (KMA) showed that the historical records of

air temperature over the Korean Peninsula show a faster rise

than the global mean trend. Further, the seasonal precipitation

variability considerably increased over the past few years (Korea

Meteorological Administration, 2020).

Daily weather data, such as maximum and minimum air

temperature (°C), precipitation (mm), relative humidity (%),

and solar radiation (W m-2), from 1981 to 2021, were obtained

from 87 Automatic Synoptic Observation System (ASOS)

stations. These stations are evenly distributed over the Korean

Peninsula (Figure 1), representing most of the local climate of

the peninsula. The ASOS data are quality-controlled by the

KMA and can be downloaded from the Open Meteorological

Data Portal (https://data.kma.go.kr). In this study, the ASOS
Frontiers in Plant Science 04
weather data for 1981–2010 were used as the observation

weather data (hereafter, the observation data) for bias-

correction of or comparison with climate change scenario data

(hereafter, the scenario data) from global climate models

(GCM). Owing to considerable missing solar radiation data in

the ASOS data, we used daily climatological averages of solar

radiation from 1993 to 2021, obtained from the National

Aeronautics and Space Administration–Prediction Of

Worldwide Energy Resources (NASA–POWER), for each

ASOS station (Sayago et al., 2020).

The Shared Socioeconomic Pathways (SSP) scenario data from

the sixth phase of the Coupled Model Intercomparison Project

(CMIP6) by the Intergovernmental Panel on Climate Change

(IPCC) were used in this study. The SSP scenarios include new

social and economic factors along with the Representative

Concentration Pathway (RCP), thus allowing the projection of

future changes in energy and land use based on adaptation and

mitigation scenarios (O’Neill et al., 2017; Wang et al., 2018). The
FIGURE 1

The Korean Peninsula with the location information of the 87 Automatic Synoptic Observation System (ASOS) stations used in the study.
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SSP scenarios are divided into five main groups (SSP119, SSP126,

SSP245, SSP370, and SSP585) based on future mitigation and

adaptation efforts considering future socioeconomic changes and

various radiative forcings in the Fifth Assessment Report (AR5).

Among them, two scenarios, SSP245 and SSP585, were used as

future climate change scenarios in this study. As the current

emissions are comparable to the RCP8.5 pathway (Schwalm et al.,

2020), these two scenarios are thought to be the most relevant for

policymakers to develop policy interventions for climate change in

Korea (Lee et al., 2022b). For example, SSP245 assumes a scenario

in which a range of technologies and strategies for reducing

greenhouse gas emissions are employed in Korea, resulting in

stabilized anthropogenic radiative forcing at 4.5 W m-2 in 2100. If

the “net-zero” emissions or carbon neutrality policy are realized, as

pledged by the South Korean government in 2020 (Ministry of

Environment, http://eng.me.go.kr), the SSP245 scenario is highly

likely to occur in the future. On the contrary, SSP585 corresponds to

a nominal anthropogenic forcing of 8.5 Wm-2 by 2100, assuming a

continuously increasing trend of greenhouse gas emissions owing to

limited global/national policy intervention in the future (Olivier

et al., 2017).
Frontiers in Plant Science 05
CMIP6 scenario data are available from the Earth System

Grid Federation (Williams et al., 2016). In this study, daily

weather variables of maximum and minimum air temperatures,

relative humidity, precipitation, and solar radiation from 1981 to

2100 were collected from 18 GCMs for two scenarios: SSP245

and SSP585 (Table 1). For the subsequent model simulation, the

scenario data from 18 GCMs were divided into three

periods:1981–2010, 2041–2070, and 2071–2100. Scenario data

from 1981 to 2010 were used to represent the historical period,

whereas scenario data for 2041–2070 were used for the near

future period and 2071–2100 for the distant future period.

The scenario data obtained from the GCMs deviated

significantly from the observation data obtained from the

ASOS stations. Therefore, using them directly as inputs in

impact modeling is challenging. In particular, agricultural

impact models, such as crop growth, phenology, and pest and

disease models, are highly sensitive to systemic bias in scenario

data from GCMs (Ines and Hansen, 2006; Laux et al., 2021). The

simple quantile mapping (SQM) method was used for bias

correction in this study. SQM is a non-parametric bias

correction method that uses empirical quantile mapping to
TABLE 1 18 GCMs for the CMIP6 climate change scenarios.

Model Origin Country Resolution Reference

GFDL-ESM4 Geophysical Fluid Dynamics Laboratory USA 360 * 180 (John et al., 2018)

MRI-ESM2-0 Meteorological Research Institute Japan 320 * 160 (Yukimoto et al., 2019)

CNRM-CM6-1 Centre National de Recherches Meteorologiques France 24572 grids over 128 latitude
circles

(Voldoire, 2019)

CNRM-EMS2-1 (Seferian, 2019)

IPSL-CM6A-LR Institute Pierre-Simon Laplace France 144 * 143 (Boucher et al., 2019)

MPI-ESM1-2-HR Max Planck Institute for Meteorology Germany 384 * 192 (Schupfner et al., 2019)

MPI-ESM1-2-LR 192 * 96 (Wieners et al., 2019)

UKESM1-0-LL Met Office Hadley Centre UK 192 * 144 (Good et al., 2019)

ACCESS-CM2 Commonwealth Scientific and Industrial Research Organisation,
Australian Research Council Centre of Excellence for Climate
System Science

Australia 192 * 144 (Dix et al., 2019)

ACCESS-ESM1-5 Commonwealth Scientific and Industrial Research Organisation Australia 192 * 145 (Ziehn et al., 2019)

CanESM5 Canadian Centre for Climate Modelling and Analysis Canada 128 * 64 (Swart et al., 2019)

INM-CM4-8 Institute for Numerical Mathematics Russia 180 * 120 (Volodin et al., 2019a)

INM-CM5-0 180 * 120 (Volodin et al., 2019b)

EC-Earth3 EC-Earth-Consortium 512 * 256 EC-Earth Consortium (EC-Earth)
(2019)

MIROC6 Japan Agency for Marine-Earth Science and Technology,
Atmosphere and Ocean Research Institute,
National Institute for Environmental Studies,
RIKEN Center for Computational Science

Japan 256 * 128 (Shiogama et al., 2019)

MIROC-ES2L 128 * 64 (Tachiiri et al., 2019)

NorESM2-LM NorESM Climate modeling Consortium consisting of CICERO Norway 144 * 96 (Seland et al., 2019)

KACE-1-0-G National Institute of Meteorological Sciences,
Korea Meteorological Administration

Korea 192 * 144 (Byun et al., 2019)
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estimate the bias between the observation data for each quantile

and the scenario data from GCMs. It is capable of minimizing

the overestimation that may be caused by the theoretical

cumulative distribution function (CDF) equation. To conduct

bias correction, we used 30 years of observation data for 1981–

2010 obtained from the ASOS stations as a reference for the

SQM. The scenario data from 18 GCMs were bias-corrected and

spatially downscaled to 87 weather station points for three

simulation periods (historical, near future, and distant future)

using the rSQM package of the R programming language (R

version 4.2.1) (Cho et al., 2018). More details on the SQM

implementation for the bias correction of GCM data are

available in previous studies by Cho et al. (2020) and Lee

et al., (2022b).

The reproducibility of the bias-corrected and downscaled

CMIP6 scenarios from 18 GCMs was evaluated based on spatial

comparisons between the observation and scenario weather data

for the historical period (1981–2010). The reproducibility test

was conducted for three weather variables (average air

temperature, total precipitation, and average relative humidity)

in April and May because the flowering of wheat—

corresponding to the simulation period of the FHB epidemic—

took place during these months of the historical period (1981–

2010). Solar radiation was omitted because the NASA–POWER

averages were used in the ASOS data. The monthly average

values of the corresponding weather variables were compared,

and the percentage differences between the scenario and

observat ion data were v i sua l i zed to examine the

reproducibility of the scenario data from the GCMs.

Reasonably good agreement for the percent difference maps of

all three weather variables is shown in Supplementary Figure S1.

The reproducibility tests indicate that the bias-corrected and

downscaled CMIP6 scenarios are comparable to the observation

data, allowing their use for the subsequent analyses of impact

assessment and adaptation studies using the DVR model for

simulating wheat heading date and GIBSIM for simulating the

FHB epidemic.
2.2 Models

2.2.1 The DVR model to predict the heading
date of wheat

The developmental rate (DVR) model, introduced by

Maruyama et al. (2010), was used to predict the heading date

of the Geumgang cultivar for winter wheat. The Geumgang

cultivar is cultivated in over 70% of wheat areas in South Korea.

The DVR model estimates phenological development based on

the numerical relationship between DVR and daily weather data

and has been widely used for several crops (Sameshima, 2000;

Maruyama et al., 2010; Zhang and Tao, 2013). The DVR model

can predict major growth stages relatively accurately and with
Frontiers in Plant Science 06
lesser effort, according to the weather information of the crop

growth period. The phenological stage of wheat is represented by

the developmental index (DVI). Starting from the sowing date

(DVI = 0), the point at which the accumulated DVR value

reached 1 was considered the heading date (DVI = 1) (Eq. 1).

DVIn =o
n

i=1
DVRi (1)

where DVIn is the developmental index on day n, and DVRi

is the developmental rate on day i.

The DVR values were calculated using Eq. (2), which

requires two weather variables, the daily mean air temperature

(T) and daily photoperiod (L), and five parameters, including the

minimum number of days from emergence to heading (Gv),

temperature when the DVR value becomes half of the maximum

rate (Thv), critical photoperiod (Lc), temperature parameter (Av),

and photoperiod parameter (B). Further information on the

definition and response of the model parameters is described in

detail by Maruyama et al. (2010). Kim et al. (2022) determined

five parameters using the observed heading dates of the

Geumgang cultivar collected from eight distinct agroclimatic

sites in Korea from 2011 to 2021.

DVR = 1
Gv

� 1−exp −B L−Lcð Þf g
1+exp −Av T−Thvð Þf g ,   for  B L − Lcð Þ ≥ 0

  =   0, for  B L − Lcð Þ ≥ 0
(2)

The air temperature variable (T) was obtained either from

the ASOS data or from the CMIP6 scenario data of the 18 GCMs

used in the study, and the photoperiod variable (L) was

estimated using Eq. (3) (Allen et al., 1998)

L =
24
p

cos−1 −tan f tandð Þ� �
(3)

where f is the latitude, and d is the declination of the sun.

The average prediction errors for the estimated heading date using the

DVR model were as follows: ME = 0.9, RMSE = 5.1 (day), and the

coefficient of determination (R2)= 0.56. In the study,with theDVRmodel,

heading dates of the Geumgang cultivar were estimated for all 87 ASOS

stations using either the observation data from the ASOS stations or

scenario data from the 18 GCMs.

Suitable areas for winter wheat were determined based on

official guidelines published by the RDA in Korea (Rural

Development Administration, 2020). The RDA guideline

instructs that winter wheat can grow where the daily

minimum temperature in January ranges from −9 °C to 10 °

C. Therefore, the suitable areas were determined as follows: the

ASOS observation data and the GCM scenario data were divided

into decadal (10-year) periods, and decadal averages of daily

minimum temperature in January were calculated and used for

the determination of suitable areas in every decadal interval. The

sowing date was predicted only for the selected suitable areas by

using the quadratic equations in Eq. (4) and Eq. (5), based on the
frontiersin.org
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relationship between the average minimum temperature in

January and the optimal sowing date for each area under

distinct elevations, either below or above 100 m from the sea

surface.

Below   100m½ �   y = −0:1017x2 + 2:2899x + 305:98 (4)

More   than   100m½ �   y =     −0:081x2 + 2:2603x + 299:35 (5)

where x is the daily minimum temperature in January

averaged over 10 years, and y is the estimated sowing date of

winter wheat.

As a result, the sowing dates of the Geumgang cultivar for

the 87 ASOS stations were calculated for the historical (1981–

2010) and two future periods (2041–2070 and 2071–2100) using

the ASOS observation data and the scenario data of two SSP245

and SSP585 scenarios from 18 GCMs. Using the same weather

input data and DVR model (Eq. 1, 2, and 3), heading dates were

predicted from the estimated sowing dates.

2.2.2 The GIBSIM model used to predict the
FHB epidemics

The GIBSIM, an FHB infection risk model (Del Ponte et al.,

2005), was used to simulate the FHB epidemics at the 87 ASOS

stations. Daily weather variables, average air temperature, total

precipitation, and average relative humidity were used as input

data for the model simulation.

The GIBSIM was first developed and successfully used for

FHB early warning and climate variability studies in Brazil (Del

Ponte et al., 2005; Fernandes et al., 2007; Del Ponte et al., 2009).

The model considers three epidemiological factors related to

FHB infection: host, inoculum, and environmental factors. The

final output of the model is the accumulated infection index

(GIB%; hereafter, FHB risk index) as a function of the

proportion of susceptible tissue (ST), infection frequency

(INF), and FHB spore cloud density (GZ). Individual

equations to determine the level of contributions from each

epidemiological factor are available in detail in the study by Del

Ponte et al. (2005). In addition, Supplementary Figure S2 also

provides the diagram for the modeling structure of the GIBSIM,

adopted from Figure 1 in Del Ponte et al. (2005), and the details

of simulation mechanisms and equations used in the study.

Del Ponte et al. (2005) estimated disease incidence values

using linear regression adjusted to the observed FHB incidence

data collected in the experimental fields in Brazil. Similarly, to

estimate FHB incidence from the FHB risk index of GIBSIM in

Korea, we fitted a linear regression model between the FHB risk

index and the actual FHB incidence in Korea. For this, the

observed FHB incidence data (N=52) collected from major

wheat and barley fields in Korea for 2015–2021 were used, and

the GIBSIM was run to generate the corresponding FHB risk

index using the observed data from the nearest ASOS stations for

individual FHB survey data. The linear regression analysis using

the observed FHB incidence data and the simulated FHB risk
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index resulted in a regression equation of y = 4.06 x + 1.19 (y:

FHB incidence; x: FHB risk index) and an R2 of 0.55

(Supplementary Figure S3). This equation was used to estimate

the ballpark figure of disease incidences from the FHB risk

indices of GIBSIM throughout the study. This is because the risk

index is a theoretical value for FHB infection risk, which hinders

the readers from intuitively understanding the magnitudes of

climate change impact and adaptation assessment results in

the study.
2.3 Climate change impact and
adaptation assessments

We used the GIBSIM to simulate FHB epidemics in the

Korean Peninsula using in situ observations (the observation

data) from 87 ASOS stations and climate change scenarios (the

scenario data) from 18 GCMs of the CMIP6. Daily weather

variables, such as maximum air temperature, minimum air

temperature, total precipitation, average relative humidity, and

average solar radiation, were used as input data for the model

simulation. The predicted heading dates from the DVR model

were used to initiate the GIBSIM simulations for each individual

season. All GIBSIM simulations were run from the initial

heading date (five days before the predicted heading date) to

the date when susceptible tissues no longer existed, indicating

that the simulation duration for each year was automatically

determined in the model. The average duration of the model

simulation was very similar for all periods: for example, 38.7,

38.3, and 39.4 days for the historical, near future, and distant

future periods, respectively, in the SSP585 scenario.

To assess the climate change impact on FHB epidemics in

Korea, GIBSIM was simulated for 87 ASOS stations based on two

emission scenarios (SSP245 and SSP585) of CMIP6. Scenario data

from 18 GCMs of the CMIP6 that were bias-corrected using the

SQM were used as input data for the model simulation. The

resulting simulation results were divided into three periods (1981–

2010 for the historical, 2041–2070 for the near future, and 2071–

2100 for the distant future). To visualize the results on the map, we

created a multi-model ensemble (MME) using 30-year

simulations for each period. Briefly, for a given GCM at each

ASOS station, the average FHB risk indices over the 30-year

GIBSIM simulations were calculated. The resultant one average

value per GCM was then averaged for the 18 GCMs for each

emission scenario (SSP245 or SSP585) to calculate the MME

means. TheMMEs of the FHB risk index were then converted into

FHB incidences using the regression equation between the

simulated FHB risk indices and the actual FHB incidences,

shown in the 2.2.2 section. These were then visualized on the

maps by spatially interpolating the 87 ASOS point values over the

Korean Peninsula using the kriging method (Nelson et al., 1999).

Based on the GIBSIM simulations, we also proposed a possible

adaptation strategy using wheat cultivars with different heading
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dates. The underlying assumption of using alternative cultivars with

different heading dates is that early or late heading dates will avoid

environmental conditions conducive to FHB infection. Changing

planting dates or using cultivars of different maturity to avoid high

disease pressure periods is a popular adaptation strategy to mitigate

the projected impacts of climate change on plant diseases (Nouri

et al., 2017; Kim and Koh, 2019). A series of GIBSIM simulations

were run to determine the effect of the changed (early or late)

heading date on the FHB risk index. Briefly, the heading dates of the

wheat cultivars released in South Korea were collected, and the

relative differences to those of Geumgang, a cultivar used in the

impact assessment, were used to determine the ranges of heading

date adjustment in the GIBSIM simulation. The heading dates of

the additional cultivar were ranged from 10 days earlier (−10) to 10

days later (+10), compared to the one of Geumgang. Simulations

were conducted by adjusting the predicted heading dates from the

DVR model at 5-day intervals (−10, −5, 0, + 5, and +10 days) and

using the scenario data from 18 GCMs for future periods (2041–

2070 and 2071–2100) of the SSP585 scenario. The simulation

results were converted into FHB incidences using the regression

equation in the 2.2.2 section and then summarized as the average

FHB incidences of the entire Korean Peninsula for each

future period.

To investigate whether the differences in the simulated risks

from changing heading dates with different wheat cultivars were

related to projected changes in each weather variable under climate

change, we calculated the mean temperature, total precipitation,

number of rainy days with more than 0.3 mm precipitation, and

mean relative humidity for the simulation duration of the GIBSIM

for each run. The number of rainy days over 0.3 mmwas selected as

it was used to determine the GZ (the daily relative density of an

airborne FHB spore cloud) in the model. We conducted this

analysis using only the SSP585 scenario data for the distant future

period, as it showed the most considerable differences between

different heading dates. The results were plotted using a box plot to

compare the distribution of the projected changes in each weather

variable, representing non-adaptation (using heading dates of the

Geumgang) versus the early (−10 days) and the late (+10 days)

heading dates, representing adaptation using different cultivars. In

addition, a regression analysis with FHB incidences as a dependent

variable and four weather variables as an explanatory variable was

conducted to statistically understand the relative contribution of

individual weather variables to the simulated FHB incidences.
3 Results

3.1 Suitable areas for winter wheat
cultivation with the predicted heading
dates from the DVR model

Prior to the impact assessment of future changes in FHB

epidemics, the reproducibility of the essential weather variables
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(air temperature, precipitation, and relative humidity) from the

CMIP6 scenario data was evaluated for April and May,

corresponding to the duration of the GIBSIM simulations for

the historical period (Supplementary Figure S1). With respect to

average air temperature, the spatial distribution produced using

the observation data showed similar results to the scenario data

from 18 GCMs. The difference (%) between the observation and

scenario data for the air temperature in April ranged from –9.8

to +8.9% (less than 0.63°C in absolute terms) over the Korean

Peninsula. Mountainous areas in North Korea showed relatively

higher differences (%) between the observation and scenario

temperature data in April, with the maximum difference (–9.8%)

in Baekdu-san, the highest mountain in Korea. Other than this

specific case (air temperature in April), the reproducibility tests

of other variables in both April and May resulted in smaller

differences (%). While the air temperature in May ranged from –

0.19 to +5.35%, the precipitation in April and May ranged from

–0.56 to +1.64% and –0.49 to +3.46%, respectively. Further, the

relative humidity in April and May ranged from –1.81 to +0.06%

and –1.03 to +0.05%, respectively. The SQM used for the bias

correction of the CMIP6 scenario tended to overestimate the

precipitation in North Korea while underestimating it in South

Korea. In addition, the SQM tended to underestimate the

relative humidity throughout the Korean Peninsula, as shown

in the difference (%) maps in Supplementary Figure S1.

Consequently, based on these results, the bias-corrected

scenario data from 18 GCMs showed reasonably good

reproducibility to be used as input data for the models to

simulate the wheat heading date and FHB risk index in the study.

Climatic suitability maps for wheat cultivation in the Korean

Peninsula were generated based on the climatic conditions of the

SSP245 and SSP585 scenarios for three periods (1981–2010 for

historical, 2041–2070 for the near future, and 2071–2100 for the

distant future). The projected spatiotemporal changes in the

suitable areas for wheat cultivation (uncolored area indicates

‘Not suitable’ and colored area indicates ‘Suitable’) for each

administrative area are indicated in Figure 2. The simulated

suitable areas for the historic period show a good agreement with

the actual wheat-growing areas in Korea for 2018–2022 (Korean

Statistical Information Service, http://kosis.kr). Despite

numerous factors, such as crop rotation, abiotic and biotic

stresses, and socioeconomic factors, that affect actual areas for

wheat cultivation, these results indicate that the climatic

conditions used in this study can be used as a representative of

the actual wheat cultivation conditions.

With climate change, the geographical areas that can support

wheat cultivation will gradually expand from the present coastal

and southern areas to higher inland and northern areas by 2100.

In the historical period, more than 50% of the Korean Peninsula

appears to be ‘Not suitable’ for wheat cultivation. However, in

the distant future, more than 80% of the areas can be marked as

‘Suitable’ (Figure 2). This result strengthens the rationale for this

study; new environments in the future, either from the
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expansion of suitable areas or owing to climate change, will

introduce new challenges, such as sudden FHB outbreaks, to

wheat growers in Korea. Comparing the two SSP scenarios, the

suitable areas for wheat cultivation in the near future are similar.

In contrast, in the distant future period, wheat cultivation

becomes possible in a larger area in the SSP585 scenario than

in SSP245 due to an increase in minimum temperature

in January.

For areas suitable for wheat cultivation, the heading dates of

the Geumgang cultivar were predicted using the DVR model.

The day of year (DOY) of the predicted heading dates shown on

the maps indicate that the heading dates occur earlier in the

south and later in the north, primarily because of the

temperature-dependent development rate in phenology

development. The average heading date for the historical

period is 116 DOY, which, in the distant future period (2071–

2100), advances to 108 DOY and 102 DOY in the SSP245 and

SSP585 scenarios, respectively. This result suggests that
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increasing temperatures due to climate change significantly

affect the phenological development of wheat in Korea.
3.2 Predicting climate change impacts on
FHB epidemics using the GIBSIM

On suitable wheat cultivation areas and using the predicted

heading dates (Figure 2), the effects of climate change on the

FHB epidemics were assessed based on the SSP245 and SSP585

scenarios, and the MME (30-year average of the GIBSIM

simulations using 18 GCM scenario data) of the FHB

incidences for individual administrative areas were calculated

and interpolated on the maps (Figure 3). In the historical period

(1981–2010), most areas suitable for wheat showed relatively

mild incidences of FHB epidemics, with an average incidence

rate of 5.1%. This was consistent with the observed FHB

incidence in the field. In fact, the epidemics of FHB in South
B C

D

A

E

FIGURE 2

Areas suitable for wheat cultivation and the day of year (DOY) of the predicted heading dates on the maps of the Korean Peninsula in 1981-2010
(A) for the historical period, 2041–2070 (B) and 2071–2100 (C) under the SSP245 scenario, and 2041–2070 (D) and 2071–2100 (E) under the
SSP585 scenario for the future periods. The colored areas indicate suitable wheat cultivation areas, and the DOY of the heading dates is
expressed in color. The bottom left map (inset) shows the actual wheat cultivation areas (ha) in the provinces of South Korea for 2018–2022,
obtained from the Korean Statistical Information Service (https://kosis.kr).
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Korea have been below an economical threshold level, despite

varying from 0.1% to 16% since 2002 due to the annual variation

in weather conditions in the past years. However, the projected

FHB incidences across the Korean Peninsula tended to be more

severe towards future periods: 5.1%, 7.2%, and 9.2% of the

average FHB incidences for the historical, near future, and

distant future periods, respectively, in the SSP585 scenario.

Notably, in the SSP245 scenario, a few areas in Korea showed

slightly decreased FHB incidences (up to 11.3%) in the distant

future period compared to the ones in the near future (data

not shown).

Comparing South and North Korea, the incidence of FHB is

projected to be relatively higher in North Korea than in South

Korea; the average incidences of FHB in South and North Korea

in the SSP585 scenario are 6.9% and 7.7%, respectively, for the

near future, and 9.0% and 9.5% for the distant future period.

These differences indicate that climate conditions in North

Korea will become more conducive to FHB epidemics due to

climate change. In particular, Hamgyeongbuk-do, the

mountainous province in North Korea, showed the highest

incidence of FHB, up to 21.8% in the distant future period. In

most areas, the FHB incidence was relatively higher in SSP585

than in SSP245. Notably, in the distant future, the incidence of
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FHB will significantly increase in the coastal areas of the

Korean Peninsula.
3.3 Adapting to the projected
FHB epidemics

A possible adaptation strategy to the projected FHB

epidemics was suggested using currently available wheat

cultivars, either with earlier or later heading dates than the

Geumgang cultivar. The underlying assumption is that

advancing or delaying the timing of susceptible stages of wheat

may help avoid environmental conditions conducive to FHB

infection. Indeed, changing heading dates from −10 to +10 days

at 5-day intervals compared to those of the Geumgang cultivar

resulted in significant changes in FHB incidences (Table 2). The

cultivars with an earlier heading date had a lower FHB incidence

than the Geumgang cultivar, whereas the cultivars with a later

heading date had a higher FHB incidence. Wheat cultivars with

10 days earlier heading dates showed a more substantial

reduction in FHB incidences compared to those with 5 days

earlier heading dates, despite limited availability for the cultivars

with 10 days earlier heading dates, as shown in Table 2. Cultivars
A

B

D E

C

FIGURE 3

Projected FHB epidemics over the Korean Peninsula in 1981–2010 (A) for the historical period, 2041–2070 (B) and 2071–2100 (C) under the
SSP245 scenario, and 2041–2070 (D) and 2071–2100 (E) under the SSP585 scenario for the future periods. The impact of climate change on
FHB incidences was assessed for the suitable wheat cultivation areas using the predicted heading dates, as shown in Figure 2.
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with early heading dates showed reductions of 17.3% (5 days

earlier heading date) and 32.1% (10 days earlier heading date) in

the average incidence of FHB in the near future, whereas the

extent of risk reduction was decreased in the distant future. In

contrast, later heading dates resulted in higher incidences of

FHB in the near future: 19.5% with 5 days later heading date and

40.7% with 10 days later heading date. However, no further

increase in FHB incidence was simulated in the near future.

Instead, slightly decreased FHB incidences were recorded in the

near future period. Overall, our adaptation analysis suggested

that the Arijinheuk, Baekgang, Hwanggeumal, Joeun, Jogyeong,

Johan, Jojung, Jonong, Jopum, and Saeol cultivars could be

selected as alternatives for coping with the projected FHB

epidemics in the future by replacing the Geumgang, a major

wheat cultivar, in South Korea.

To understand the key weather variables affecting the

projected changes in FHB incidences with varying heading

dates, we extracted and analyzed the weather data used to

simulate the GIBSIM (Figure 4). Graphical comparisons of the

ranges of four weather variables (average air temperature, total

precipitation, number of rainy days with more than 0.3 mm of

precipitation, and average relative humidity) between the

cultivars with different heading dates (before and after 10

days) indicated that the average air temperature and FHB

incidences had the most similar box plot distribution. Thus,

the temperature was the main factor that changed with a shift in

the heading dates. Although the median values of the other three

variables showed a similar increasing trend (from before to after

10 days) to the ones of FHB incidence, the heights of their box

plots considerably overlapped, making the graphical

interpretation of the FHB incidence and these weather

variables interaction difficult.

Therefore, to further understand the relative contribution of

individual weather variables, a regression analysis was conducted

with FHB incidence as a dependent variable and four weather
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variables as an explanatory variable (Supplementary Figure S4). The

linear regression results showed that with 0.83 of the coefficient of

determination (R2), the average air temperature had a relatively

pronounced positive effect (coefficient: +1.28) with a confidence

level of 99%, followed by the average relative humidity with a

positive effect (coefficient: +0.30) with a confidence level of 99%,

and the number of rainy days with a positive effect (coefficients:

+0.22) with a confidence level of 99%. In contrast, total precipitation

showed a very minimal positive effect (coefficient: +0.004) with no

statistical significance in the regression result. These results

indicated that the changes in air temperature, relative humidity,

and rainy days significantly affected the resulting FHB incidences

when the heading date was changed. Overall, our findings suggest

that adopting alternatives or breeding new cultivars with early

heading dates can be an effective adaptation strategy to manage

the FHB epidemics better under climate change conditions in the

Korean Peninsula.
4 Discussion and conclusions

We performed a series of modeling studies on wheat

phenology and FHB epidemics in response to climatic

conditions and successfully evaluated the impacts of climate

change by sequentially integrating the modeling results. The

integrated modeling approach, combining all results of wheat

suitability, heading dates, and FHB incidences, showed gradual

but continuous increases in the FHB incidence towards 2100,

with different temporal and spatial patterns of varying

magnitudes depending on the two SSP scenarios. To counter

the projected increases in FHB incidence in the Korean

Peninsula, a practical adaptation strategy utilizing currently

available wheat cultivars, either with earlier or later heading

dates compared to the Geumgang cultivar used in the study, was

investigated. Replacing the Geumgang cultivar with the ones
TABLE 2 Manipulating the FHB risks for the near future (2041–2070) and the distant future (2071–2100) periods under the SSP585 scenario,
through an adaptive measure of introducing alternative wheat cultivars with early or late heading dates (−10 to +10 days from the heading date of
the Geumgang cultivar).

Heading Date Cultivar Future Period Incidence
(%)

Percent Change
in Incidence (%)

Before
10 days (-10)

Arijinheuk 2041–2071
2071–2100

4.9
6.8

-32.1
-26.1

Before
5 days (-5)

Baekgang, Hwanggeumal, Joeun, Jogyeong, Johan, Jojung, Jonong, Jopum, Saeol 2041–2071
2071–2100

6.0
7.9

-17.3
-14.7

0 Dabun, Geumgang, Jeokjung, Joa, Jungmo2008 2041–2071
2071–2100

7.2
9.2

0
0

After
5 days (+5)

Anbaek, Baekchal, Baekjung, Cheonggye, Dajung, Gobun, Goso, Hanbaek,
Hojung, Jinpum, Milseong, Namhae, Ol, Olgeuru, Seodun, Sinmichal1, Suan,
Sugang, Tapdong, Uju, Uri, Yeonbaek

2041–2071
2071–2100

8.6
10.9

19.5
18.1

After
10 days (+10)

Alchan, Dahong, Eunpa, Geuru, Saegeumgang, Sinmichal, Taejung 2041–2071 10.2 40.7

2071–2100 12.9 39.7
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with an earlier heading date resulted in a substantial reduction in

FHB incidence in future periods.
4.1 Simulation of suitable areas and
heading dates for winter wheat in the
Korean Peninsula

Based on the optimal climatic conditions for wheat cultivation,

we simulated the potential expansion of areas suitable for wheat

cultivation under climate change. This suitability mapping for areas

wherewheatfieldsare likely tobe located in the future is aprerequisite

to making the subsequent FHB risk projections more realistic and

reasonable. Nevertheless, current wheat cultivation areas in the

Korean Peninsula may not be+ the same as the simulated suitable

areas. This is because wheat cultivation in Korea involves many

factors besides climate. Thus, in several instances, wheat is not grown

even if the area is climatically suitable for cultivation. Owing to the

recent COVID-19 pandemic, frequent conflicts between countries,

and theresultant surge in internationalwheatprice, theSouthKorean

government has been trying to increase domestic wheat production

by implementing the “wheat industrydevelopmentbasicplan”policy

aimed at achieving a 10% wheat self-sufficiency rate by 2030. These

ongoing efforts may encourage the expansion of wheat cultivation

areas to the simulated suitable areas in the near future.
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A potential but more realistic FHB risk projection under

climate change was derived by linking the GIBSIM with the DVR

model to realize the actual field interactions of wheat and FHB

during the flowering period of wheat. In this study, the DVR

model was adopted to predict the heading date of the Geumgang

cultivar. The simulations of heading date using the DVR model

resulted in an advancing trend over future periods, reflecting the

temperature rise under climate change. The GCMs of the SSP245

and SSP585 scenarios used in this study predicted that global

mean temperature would rise by 3.02°C and 5.20°C by 2100,

respectively (Sung et al., 2021). Our results showed a reasonable

shift in the wheat heading date affected by this projected

temperature increase. Considering that the existing

ecophysiological models were able to predict the heading date

of wheat with good accuracy with root mean square errors as low

as 4 to 7 days (Asseng et al., 1998; White et al., 2008; Zheng et al.,

2013; Bogard et al., 2014), the performance of the DVR model

(5.1 days of RMSE) used in this study is reasonably good in

predicting the heading date of the Geumgang cultivar (Kim et al.,

2022). Nevertheless, to apply the GIBSIM model to other

cultivars currently grown in Korea, adopting a mechanistic

phenology model, such as the Sirius model (Jamieson et al.,

1998), for the prediction of heading date should be considered.

This is because mechanistic models consider the interactions

between environment and genotype, represented by ‘genetic
FIGURE 4

Comparisons of the adaptation strategy using early (before 10 days) or late (after 10 days) heading dates for the projected FHB incidences and
the corresponding weather conditions of average air temperature, total precipitation, number of rainy days, and average relative humidity during
the duration of GIBSIM simulations. Box plots were made with the results from multiple wheat-suitable areas based on the SSP585 scenario for
the distant future period (2071-2100).
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parameters’ reflecting genetic variation among cultivars (Bogard

et al., 2014).
4.2 Lack of the GIBSIM model calibration
in the context of Korea

The regression equation between the simulated FHB risk

indices of GIBSIM and the actual FHB incidences collected in

the wheat fields of Korea showed that the GIBSIM simulations

explain only 55% of the variation in the observed FHB

incidences. Although similar levels of goodness-of-fit between

the observed and simulated values is often found in many

previous studies with plant disease or growth models (Burleigh

et al., 1972; Hooker et al., 2002; Rossi et al., 2003; Liang et al.,

2016; Jevtić et al., 2017), further effort should be made to

improve the model performance. There are three possible

reasons for the relatively low correlation between the observed

FHB incidences and GIB% from the GIBSIM. First, some of the

parameters and embedded algorithms of the GIBSIM are

empirically developed based on the observations in Brazil (Del

Ponte et al., 2005). This indicates these original parameters and

algorithms may need to be calibrated or modified, respectively,

to reflect the local-specific characteristics of the environment,

pathogen strains, and wheat cultivars in Korea. In fact, this kind

of model localization is required to minimize uncertainty and

generate optimal model performance when adopting an existing

model developed in other countries or regions (Andrade-Piedra

et al., 2005; Kim KH et al., 2018; Rotter et al., 2012). Secondly, the

quality of the observed FHB incidence data was low, as the spatial

resolution of the data was low at the district (si or gun in Korea)

level. Lastly, the corresponding weather data to run GIBSIM were

obtained from the nearest ASOS weather station; thus, they might

not represent the local weather conditions where the FHB incidence

data were collected. To support the calibration study of GIBSIM in a

future study, the corresponding metadata, such as coordinates and

data collection dates, should be collected and used with the FHB

incidence data (Donatelli et al., 2017). Location-specific, long-term,

FHB occurrence data should be systematically collected, with the

corresponding metadata, to enable further statistical modeling (Lee

et al., 2022a) or process-based model calibration and validation

(Kim KH et al., 2018). High-resolution grid products, such as the 1-

km interpolated weather observation data from the KMA (https://

data.kma.go.kr), need to be evaluated for the accuracy of the

weather variables needed for the GIBSIM simulation. Although

weather conditions largely determine the occurrence of FHB,

agronomic factors also significantly influence FHB. Potential

factors to be considered in future modeling efforts with GIBSIM

include fungicide treatment, crop rotation system (with rice), weed

management, and host plant resistance in Korea (Schaafsma and

Hooker, 2007; Landschoot et al., 2011).
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4.3 Adaptation strategies to the
projected impacts of FHB in the
Korean Peninsula

Impact assessments of FHB epidemics in the future indicate

that the incidence of FHB in the Korean Peninsula is projected to

increase in the future, and the projected incidence of FHB is slightly

higher in North Korea than that in South Korea. Graphical

comparisons for four essential weather variables between North

and South Korea showed that air temperature and relative humidity

were higher (favorable to FHB epidemics) in North Korea

(Supplementary Figure S5). Wheat-suitable areas have expanded

northward, covering much of the North Korean area in the distant

future, indicating that more wheat cultivation may be possible in

North Korea. Because of the economic sanctions and border

closures due to COVID-19 over the last few years, North Korea is

aggressively promoting wheat cultivation to fight for food security

these days (news articles not shown). Considering the inevitable

vulnerability of wheat cultivation due to the rapid expansion of

wheat cultivation and the projected increase of FHB epidemics from

this study, proactive, adaptive measures, supported by international

humanitarian efforts supplying diverse wheat cultivars and essential

agricultural inputs, should be prepared prior to actual cultivation of

wheat in North Korea.

A possible adaptation strategy to the projected epidemics of

FHB is suggested in this study, which uses alternative wheat

cultivars with earlier heading dates compared with the Geumgang

cultivar. Changing planting dates or using cultivars with different

maturity to avoid the high disease pressure period is one of themost

popular adaptation strategies to mitigate the projected impacts of

climate change on plant diseases. In the study, wheat cultivars with

10 days earlier heading date showed a larger reduction in FHB

incidences compared to those with 5 days earlier heading dates.

However, cultivars with 10 days earlier heading dates, such as

Arijinheuk (Table 2), have very limited availability on the market.

However, the Baekgang, Hwanggeumal, Joeun, Jogyeong, Johan,

Jojung, Jonong, Jopum, and Saeol cultivars, with 5 days earlier

heading date, can also be an alternative as they reduce the projected

risk for the near future period by 17.3%. Nevertheless, applying this

adaptation strategy is not simple, as there are other factors to

consider selecting alternative cultivars, such as stress tolerance,

length of maturity, socioeconomic factor, and preference in the

market. In addition, the assumption of a phenophase date for a

plant is difficult to apply to annual crops, such as rice and wheat,

which are more significantly affected by human-dependent planting

and cultivation activities. In Korea, wheat is generally grown in crop

rotation with rice, wherein winter wheat is grown after the rice

harvest. Therefore, the possible period of wheat growth should not

interfere with the rice cultivation period. Considering these

potential conflicts, an integrated modeling solution that includes

both wheat and rice growth models should be developed. Overall,
frontiersin.org

https://data.kma.go.kr
https://data.kma.go.kr
https://doi.org/10.3389/fpls.2022.1040752
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jung et al. 10.3389/fpls.2022.1040752
these indicate that reasonable adaptation strategies are difficult to

implement even if they are properly presented.
4.4 Management of uncertainty in the
climate change impact and adaptation
study and the way forward

In addition to the projected FHB epidemics using only climatic

factors, we expect that the epidemics of FHB will be more

complicated in the future because of the complex interaction of

climatic, genetic, and agronomic factors. This indicates that

continuous studies are needed to get a clearer picture of uncertain

climate change and the resulting disease risks in Korea. First,

reducing the uncertainty level by removing or quantifying

uncertain factors and better understanding used-to-be uncertain

factors must be pursued through active research and development.

For example, using 18 GCMs for each SSP scenario compensates for

some systematic uncertainty inherent inGCMs (Mathukumalli et al.,

2016; Ouma et al., 2016). Further, uncertainty in individual

ecophysiological models, which leads to low reliability of the

model, must be addressed. As mentioned previously, the main

sources of model uncertainty include insufficient integration of

non-climatic confounding factors in modeling and poor calibration

and validation due to limited ground-truth data. As more location-

specific ground-truth data are obtained through long-term and

regular surveys, more reliable models can be used for impact

studies. In addition, significant uncertainties account for all factors

influencing plant disease epidemics, some of which cannot be

predicted with the currently available knowledge and techniques.

Various environmental factors not directly considered in the model,

such as elevated CO2 levels, soil nutrients, and other weather

variables, can also influence future ecophysiological interactions

(Velásquez et al., 2018). Therefore, a comprehensive process-based

and integratedmodeling approach that includes the ecophysiological

responses of a plant, its interactions with pathogens, and

environmental factors may be considered for future studies.

In this study, we presented an impact assessment and adaptation

study of wheat FHB epidemics using an integrated modeling

approach with multiple models. To alleviate projected increases in

the FHB epidemic over the next 30 to 60 years, we used an integrated

modeling solution to investigate a scientifically informed, long-term

adaptation strategy replacing the original cultivar with a disease-

resistant cultivar or a cultivar that can avoid high disease pressure by

shortening the duration before the heading date. In addition, the

impact assessment in each administrative district of the Korean

Peninsula also needs to develop localized adaptation strategies for

local government units in the local context. For example, an early

warningsystemusingshort-term(2–3days) tomid-term(7–15days)

weather forecasts and an FHB infection model would be useful for

wheat growers to implement timely preventive controls of FHB. As

this type of integrated modeling platform is developed and

continuously improved with more quality-controlled data and
Frontiers in Plant Science 14
more reliable modeling algorithms, policymakers and agricultural

stakeholderswill be able topreparemore realistic, rational adaptation

strategies to deal with the upcoming climate change threat based on

evidence-based scientific results. Many follow-up studies are needed

in the near future, as indicated by the findings of this study.
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