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Introduction: The purpose of this paper is to effectively and accurately identify

weed species in crop fields in complex environments. There are many kinds of

weeds in the detection area, which are densely distributed.

Methods: The paper proposes the use of local variance pre-processing method

for background segmentation and data enhancement, which effectively removes

the complex background and redundant information from the data, and prevents

the experiment from overfitting, which can improve the accuracy rate

significantly. Then, based on the optimization improvement of DenseNet

network, Efficient Channel Attention (ECA) mechanism is introduced after the

convolutional layer to increase the weight of important features, strengthen the

weed features and suppress the background features.

Results: Using the processed images to train the model, the accuracy rate

reaches 97.98%, which is a great improvement, and the comprehensive

performance is higher than that of DenseNet, VGGNet-16, VGGNet-19,

ResNet-50, DANet, DNANet, and U-Net models.

Discussion: The experimental data show that the model and method we

designed are well suited to solve the problem of accurate identification of

crop and weed species in complex environments, laying a solid technical

foundation for the development of intelligent weeding robots.

KEYWORDS

weed recognition, DenseNet, attention mechanism, image preprocessing,
local variance
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1 Introduction
With the development of modern agricultural technology,

China’s grain production has been increasing year by year, but

there are still some problems that cannot be ignored. Among

them, weeds are one of the main hazards that affect crop yield

and quality (Li B. et al., 2013; Li T. et al., 2013). Weeds not only

compete with crop seedlings for fertilizer, light, water, and

growing space, causing crop failure, but also contribute to the

occurrence and spread of pests and diseases that threaten crop

survival (Nardecchia et al., 2021). At present, the main weeding

method is manual operation, and farmers often use large-area

random spraying of herbicides in the weeding process, which

can cause great environmental pollution and chemical residues

and also produce great harm to people’s health. Moreover, large-

scale weeding operations are not targeted, weeding efficiency is

often not high, and repeated weeding is required (Patches et al.,

2017; Li, 2018; Duan et al., 2019). With the introduction of smart

agriculture, the implementation of precision spraying can

effectively control the growth of weeds in the field and

maximize the utilization of pesticides and reduce drug

residues. The accurate identification of weeds can lay the

theoretical foundation and provide technical support for the

implementation of precision spraying. In recent years, how to

solve the problem of improving the efficiency of field operation

and solving the shortage of agricultural labor and enhancing the

accuracy of automatic weeding has become the main research

content at present (Li, 2018; Duan et al., 2019), in which the

automatic weed identification technology based on machine

vision and image processing is the research hotspot (Yan,

2018; Yuan et al., 2020).

Traditional image processing methods usually use wavelet

analysis, Bayesian discriminant models, and support vector

machines (SVMs) to achieve crop and weed recognition based

on features such as weed color, shape, texture, and spatial

distribution and combinations of these features (Wang and Li,

2016; Zheng et al., 2017; Elstone et al., 2020; Hou et al., 2020).

Although these methods are less difficult to detect, the

environment of the general crop growing area is complex, and

the robustness of the methods using weed-specific features for

identification is poor and the accuracy of identification is not

high (Jordan and Mitchell, 2015; Chen and Wang, 2017; Rojas

et al., 2017; Bakhshipour et al., 2017).

With the development of computer technology, fast and

accurate machine vision recognition technology is more and

more widely used in weed recognition. Many scholars have

carried out relevant research. In terms of weed identification,

Dos et al. (2017) compared AlexNet with SVM and random

forest model and concluded that AlexNet architecture can

better identify soybean, soil, and broad-leaved weeds than

other models. Potena et al. (2016) proposed a multistep

vision system based on RGB+NIR (near infrared) images,
Frontiers in Plant Science 02
using two different convolutional neural network (CNN)

architectures to classify crops and weeds; Jiang et al. (2020)

used the graph convolution neural network to identify three

types of crops and weeds on the AlexNet, VGG-16, and

ResNet-101 network models, and the average recognition

accuracy of ResNet-101 reached 96.51%. Peng et al. (2020)

took weeds in a rice field as the research object. During the

training of the deep convolution neural network, the optimizer

under a random gradient was used to optimize the parameters.

Among them, the VGG-16-SGD model had the highest

accuracy, and its average F (F-measure) value was 0.977.

Deng et al. (2021) used the pretrained CNN model combined

with the migration learning method to identify the weeds in the

field of rice seedlings. Among them, the correct recognition

rate of the VGG-16 model reached 97.8%. Zhang Xinming and

others proposed a recognition method for corn and weeds

based on the improved probabilistic neural network (PNN)

and used the suboptimal search method to select the most

effective features to construct the feature vector, which

improved the recognition performance and speed. It can be

seen from the above literature that the weed recognition

method based on deep learning can well solve the problem of

extracting specific features in traditional image processing, and

the accuracy is also improved to a certain extent. However,

there are still problems such as the following: 1) In the crop

field under a complex environment, when the environment

around weeds changes, the existing deep learning model has

the problem of weak generalization ability for weed

recognition. 2) In the process of feature extraction, the

convolutional neural network extracts a large amount of

invalid background information because of the diversity of

background and the large proportion of image pixels, which

affects the recognition results and cannot maintain a high

recognition accuracy.

To address the above problems, this paper proposes a weed

recognition model based on an improved dense convolutional

network (DenseNet) (Huang et al., 2017) to improve the

recognition accuracy and the generalization ability of the

network by introducing an efficient channel attention (ECA)

mechanism (Wang et al., 2020) and a local variance algorithm

(Zhao et al., 2019) to suppress the extraction of invalid

background features while enhancing weed feature extraction,

thus improving the recognition accuracy and the generalization

ability of the network to ensure efficient and accurate weed

recognition in complex environments.

In this paper, weed identification in the field is performed

by improving DenseNet. The steps are shown in Figure 1. First,

we collected crop and weed images. The weed dataset is built by

amplifying the data to ensure diversity of the data. Secondly,

the training set is input to the weed recognition model, and

then the trained weights were loaded into the model to get the

prediction model. Finally, we input the test set to get the

prediction results.
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2 Data processing

2.1 Dataset

Due to the complex ground conditions in the field, we used

the segmentation model from a published paper (Mu, 2022) to

segment the captured field data into a single image of only one

plant, and to show that our model can distinguish crops from

weeds, we chose corn seedlings because they are more similar to

weeds. Because we do not have enough data, we choose the

public dataset to train the model. This dataset (Giselsson et al.,

2017) mainly uses images of crops and weed seedlings provided

by the Computer Vision and Signal Processing Group of the

Department of Engineering, Aarhus University, Denmark. The

dataset is divided into 12 categories with 5,539 images, mainly

black-grass, charlock, cleavers, common chickweed, common

wheat, fat hen, loose silky-bent, maize, scentless mayweed,

shepherd purse, small-flowered cranesbill, and sugar beet. The

selection of the dataset was convenient to demonstrate that our

experiment can effectively distinguish between maize seedlings

and weeds. In the actual training of the model, we chose to treat

the original dataset as follows (considering the size and number

of datasets):

1) In order to prevent overfitting due to the limited number

of images, this paper uses data augmentation techniques in deep

learning to geometrically transform the existing dataset, increase

the diversity of data by expanding the number of corn and weed

images, avoid the appearance of the network learning irrelevant

features, and then learn more features related to the data to

improve the recognition ability of the model. In this paper, the

collected weed and corn images are expanded to twice the

original dataset by using two data augmentation methods:

adding noise and random directional flipping, resulting in a

total of 11,078 images. Among them, 8,862 images are in the

training set and 2,216 images in the test set.
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2) To meet the input requirements of the network for image

pixels, the image pixels are first adjusted to 256 × 256 during

training and then cropped from the center to obtain a 224 × 224

pixel image, and the cropped part of the weed dataset image is

shown in Figure 2.
2.2 Data processing

The main objects targeted in this paper are weed images with

complex backgrounds taken in a natural lighting environment,

where the light intensity and background of the images are

different. Background segmentation of the original dataset is

performed to improve the accuracy of the weed recognition

model in complex natural backgrounds, to extract the weed parts

of interest in the images, and to remove the background parts

that are not useful for image recognition. Through the analysis of

the dataset, it was found that the color characteristics of both

weeds and seedling corn were green, which differed significantly

from the color of the background such as soil. Therefore, in this

paper, we choose the super green algorithm (2G-R-B) (Wang

and Yang, 2018) by normalization, which can increase the

weight of the green channel in the RGB image and thus

suppress the non-green background part of the image. Using

this feature can quickly and effectively separate the weedy

regions in the natural background, and the specific procedure

of the super green algorithm is as follows (Formulae 1, 2):

r = R
R+G+B

g = G
R+G+B

b = B
R+G+B

  1ð Þ

8>><
>>:

ExG =
2g − r − b, 2g ≥ r + b

0, 2g < r + b
  2ð Þ

(

FIGURE 1

The weed identification process.
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In the formula, R, G, and B are the pixel channel values in the

RGB color space, and ExG is the super green image.

After obtaining the grayscale image by the above method,

this paper chooses to perform a secondary processing of the

resulting grayscale image by local variance preprocessing. The

local variance can be used to measure the sharpness of grayscale

variation in the volume region. For a pixel (x, y), f(x, y) is its gray

value. Centered on this point, select 3 × 3 as the calculation

neighborhood of local variance, and the local variance v(x, y) of

this point is expressed as (Formula 3):

v x, yð Þ = o
1
i=−1o1

j=−1 f x − i, y − jð Þ − f x, yð Þ
h i2

9
  3ð Þ

where f(x, y) is the grayscale value of pixel point (x, y), which

is the mean value of the grayscale value of the 9 pixel points in

the window, and its expression is shown in Formula 4.

f x, yð Þ = o
1
i=−1o1

j=−1f x − i, y − ið Þ
9

  4ð Þ

Since both maize seedlings and weeds are green, selecting the g

component for further image processing can try to maintain the

information integrity of the image. In order to facilitate the function

processing of image data, the image data are unified into double

type, and the gray range of the image is [0,1]. Therefore, the

variation range of F(x, y) is [0,1]. Substituting it into Formula (3),

the difference between F(x, y) is compressed after square operation,

resulting in the difference of variance data not obvious enough.

Therefore, the calculated variance needs to be normalized. When

lawn grass is sparse, the background gray value of lawn grass can be

suppressed to a certain extent after linear normalized local variance

operation. However, in some areas with dense turfgrass, the gray

difference between turfgrass and weeds is still not significant after

linear normalized local variance calculation, which cannot
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effectively distinguish the lawn background and weed prospect.

So, we use non-linear normalization. In the places with sparse and

dense grass leaves, the local variance can have a good inhibitory

effect on the lawn background and retain the preliminary

enhancement effect on weeds. The non-linear normalization

formula adopted is shown in Formula 5, and its comparison

output with linear normalization is shown in Figure 3.

V(x, y) =
a · v x, yð Þ

b · v x, yð Þ + a − bð Þ   5ð Þ

Where V(x, y) is the normalized variance and a, b are the

non-linear normalization coefficients. In this study, a = 6 and b =

5 (Figure 3).

g x, yð Þ = f x, yð Þ
exp kV2 x, yð Þ½ � −m

 ð6Þ

Bring the normalized local variance into Formula 6 to obtain

the preprocessed image g(x, y).

Where k and m are the optimization coefficients, and V2(x,

y) is the square of normalized local variance V(x, y) at pixel point

(x, y). If k > 0 is satisfied, the greater the k is, the more obvious

the gray suppression effect is at the place with small local

variance in the preprocessed image. M satisfies 0 < m < 1 to

adjust the gain effect at small variance. In this study, k = 50 and

m = 0.99 are selected, and the output results of the preprocessing

function are shown in Figure 4.

As can be seen from Figure 4, when the normalized local

variance is less than 0.12, the gray value of the corresponding

part is enhanced. When the normalized local variance is greater

than 0.12, the output value decreases rapidly below 1.0, and the

corresponding gray value is suppressed. The preprocessed image

is shown in Figure 4. The average gray value of the visible

background is greatly reduced, and the gray value of the
FIGURE 3

Comparison of two normalization functions.
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foreground is more prominent. However, there are still a

considerable number of strip or point areas in the background

area, and the gray value is similar to the foreground, which has a

certain impact on image segmentation. Therefore, it is necessary

to introduce an enhancement algorithm to expand the gray

difference between the foreground and the background and

suppress the residual noise in the background area.

Finally, through the open and close operations of image

morphology, the noise filtering and hole filling are realized. The

image mask RGB original image and the processed binary image

are used for the “and” operation, and the segmented image is

shown in Figure 5.

Since the difference between the weed background in Figure 6

and the weed itself is large, it does not well reflect the superiority of

our designed image preprocessing method, so we demonstrate the

superiority of our designed method by shooting part of the weed

image. The weed background in the captured weed image is highly

similar to the color of the weed itself, and the segmentation

process is more complicated. However, we still choose the dataset

of Giselsson et al. (2017) due to the small amount of data.
3 Model building

3.1 Attention mechanism

In the corn field under a complex environment, weeds and

corn grow together, and the background is diverse. By adding

attention mechanism, the weed features in the image are

extracted. This paper adopts a lightweight attention module

ECA net to improve the performance of the deep convolution

neural network. By using an efficient attention module to

combine the depth of the feature map with spatial
Frontiers in Plant Science 06
information, focus on the extraction of important features, and

inhibit the extraction of non-important features, we can

effectively improve the recognition accuracy of field weeds in a

complex environment. Figure 7 shows the structure diagram of

the ECA net. Firstly, the input characteristic map is globally

averaged and pooled and a single value is used to represent the

characteristic layer of each channel. Secondly, the one-

dimensional convolution with the size of K is used to generate

weights for each channel to obtain the interdependence between

each channel. Sigmoid activation function is added for

normalization. Finally, the weights of the generated channels

are weighted to the input feature map by multiplication to

strengthen the extraction of important features.

ECA uses one-dimensional convolution cross-channel

interaction with size to replace the full connection layer, which

can effectively reduce the amount of calculation and complexity

of the full connection layer and then generate weights for each

channel (Formula 7):

w = dðCIDk yð ÞÞ 7ð Þ
Where w is the channel weight, d is the sigmoid activation

function, and CID is the one-dimensional convolution. The

more channels of the input characteristic graph, the greater

the value of the local interaction, so the value of K is directly

proportional to the number of channels C. In this paper, the K

value is adaptively determined by the function related to the

channel dimension (Formula 8):

C = 2ðg ·k−bÞ   8ð Þ
To sum up, it can be concluded that (Formula 9):

k =
log2ðCÞ

g
+
b
g

����
����
odd

  9ð Þ
FIGURE 4

Preprocessing function output. Note:— y = 1
exp½kV2 (x,y)�−m ;− − y = 1.
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3.2 Model improvement

In the deep learning model in recent years, the CNN has

always been absolutely dominant. ResNet, GoogLeNet, VGG,

and other excellent networks are built based on the CNN.

However, deep CNN has always had a problem: data are likely

to gradually disappear after multilayer propagation. ResNet
Frontiers in Plant Science 07
promotes the flow of data between layers to a certain extent

through the “skip connection” structure. However, the network

layer close to the output still does not fully obtain the

characteristic diagram in front of the network.

In the CVPR2017 best paper densely connected

revolutionary networks, the author proposes a new DenseNet

network (Figure 8). The starting point is to solve the
A

B

C

FIGURE 5

Image preprocessing. (A) Original image (B) Super green method (C) Image after preprocessing.
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redundancy problem of ResNet. Fewer parameters are used,

which also alleviates the problem of gradient disappearance,

and the network is easier to train. The difference between

DenseNet and ResNet in mathematical expression is that the

skip layer addition in ResNet is changed into concatenate

connection operation. However, the color and appearance of

weeds and maize seedlings are similar, so it is necessary to

extract plant feature points more intensively. U-Net

(Ronneberger et al., 2015) is a network structure with

comple te symmetry of convo lu t iona l cod ing and

convolutional decoding. It can capture different levels of

features and integrate them through feature superposition.

Different levels of features, or receptive fields of different sizes,

have different sensitivities to target objects of different sizes.

Therefore, we choose to combine U-Net and DenseNet to form

a new network structure.
Frontiers in Plant Science 08
Figures 9, 10 show the overall structure of the model. The

input is R, G, and B three-channel images. First, the image passes

through a 7 × 7 convolution layer. A large convolution kernel

adjusts the number of channels and extracts effective

information, followed by a dropout regularization layer to

simulate noise, prevent overfitting, and improve the

generalization ability of the model. The size of dropout is 0.5.

Secondly, the ECA DenseBlock is the core part of the model. As

shown in the figure, the ECA attention mechanism is added after

each dense connection to increase the weight of weed features

and extract more important information. The network consists

of four ECA DenseBlock blocks and one DenseBlock layer. The

number of improved dense connections in the ECA DenseBlock

layer is 6, 12, 24, and 16, respectively, and a transition layer is

connected behind each ECA DenseBlock. Among them, 3 × 3

convolution and average pooling are used to adjust the number
A B C

FIGURE 6

Segmentation of the complex background image. (A) Original image (B) Super green method (C) Image after pre-processing.
FIGURE 7

The ECA module structure diagram. Note: C is the number of channels, H is the height of the input data, W is the width of the input data, and K
is the convolution local interaction size. The global average pooling of gap, s, activates the function for sigmoid.
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of channels to avoid the rapid growth of feature dimensions.

Combined with the symmetrical structure of U-Net encoding

decoding, two 3 × 3 deconvolutions are added to further refine

the target feature points in the image. After extracting features

from the dense connection structure with the attention

mechanism, dropout regularization is added to prevent the

problem of overfitting. Finally, the class output is obtained by

using global average pooling and linear classifier.
4 Experimental results and analysis

4.1 Experimental environment

The training and testing of the weed recognition network

model are completed based on Keras, a deep learning

framework. The hardware environment adopts the IntelXeon

E5-2680 V4 CPU, and the GPU adopts the NVIDIA Ti-TAN XP
Frontiers in Plant Science 09
graphics card and 64-GB video memory. The operating system

adopts Windows 10, and Python 3.0 is used in the integrated

development tool Jupiter 8.0.
4.2 Experimental results

In order to train the best recognition model, a series of

experiments are carried out on the dataset to determine the

setting of super parameters. Firstly, the number of training

samples in each batch and the learning rate of the model are

determined; then, the other parameters in turn are adjusted.

Each test runs for 40 rounds, and one epoch represents a

complete training of the model using all the data of the

training set. In the experiment, the batch size is usually set to

6, which is conducive to parallel calculation and processing. The

number of samples in this test is set to 16, 32, 64, and 128,

respectively. After comparison, it is found that if the number of
FIGURE 8

The DenseNet model diagram.
FIGURE 9

Model structure diagram.
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samples is set too small, the convergence of the model will be

slow and too large will lead to insufficient memory and weak

generalization ability of the model. Finally, the number of

samples is determined as 64. The learning rate controls the

update speed of network weight. Setting a reasonable learning

rate can make the objective function converge to the local

minimum quickly. The test selected 0.1, 0.01, 0.001, and
Frontiers in Plant Science 10
0.0001. The effect of model training is the best at

0.0001 (Table 1).

In this experiment, the Adam optimization algorithm with

defaultparameter setting isused inmodel training.Thealgorithm is

computationally efficient and requires lessmemory. It is suitable for

solving the problems of large-scale data and parameter

optimization. The experimental results are shown in Figure 11.
FIGURE 10

The ECA DenseBlock structure diagram.
A B

FIGURE 11

Function diagram of experimental accuracy and experimental loss rate. (A) Image model accuracy (B) Model loss rate image.
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4.3 Analysis of experimental results

4.3.1 Comparison of the different models
In order to verify the validity of the model, we selected

different identification models for the comparison tests under

the same experimental conditions. Since VGG-16 (Simonyan

and Zisserman, 2014), VGG-19 (Simonyan and Zisserman,

2014), ResNet-50 (He et al., 2016), DenseNet, DANet (Fu et al.,

2020), DNANet (Ren et al., 2021), and U-Net, which are

standard deep convolutional divine meridian models

commonly used for image recognition in different domains,
Frontiers in Plant Science 11
all have good recognition results, they are therefore chosen as

the comparison models for this experiment. Figure 12 shows

the confusion matrix of our model. Table 2 shows the

experimental comparison results of each model. In order to

more intuitively reflect the accuracy rate of our model

compared with other models, the accuracy rate function

diagram and loss rate function diagram of each model are

shown in Figure 13.

It can be seen from Table 2 that the test accuracy of the

VGG-16 model is 81.78%, which is not suitable for weed

identification. The recognition accuracy of the VGG-19 model
FIGURE 12

The confusion matrix of our model.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1041510
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mu et al. 10.3389/fpls.2022.1041510
is higher than that of the VGG-16 model. This is because VGG-

19 increases the performance of the model on the basis of VGG-

16. The main reason is the three-layer convolution based on

VGG-16. But it also increases the amount of computation and

model memory. Compared with VGG, the ResNet-50 model

based on different sparse structure design reduces a large

number of model parameters and has a significant

improvement in performance, and its test accuracy is over

90%. The U-Net model mainly strengthens the extraction of

feature points because of its coding and decoding structure, so

the accuracy also reaches more than 90%. The test accuracy of

the DenseNet model is 93.43%, which is significantly better than

that of the other models, and it has very little memory (5 MB).

DANet is a dual-attention mechanism, so the extraction effect is

more obvious, and its accuracy is above 90%, while DNANet is a

small target extraction, which can extract the nuances of weeds,

and the accuracy is also above 90%, but the memory of both

models is too large and the number of parameters is more. The

table also lists the detection time of this model and other depth

network models for recognizing a single weed image. Each depth

neural network model tests a single image for 10 times and

finally takes the average test time as the test result. It can be seen
Frontiers in Plant Science 12
from the test results that VGG-19 takes the longest time to detect

a single picture, and the average detection time is 163.5 ms. The

detection time of ResNet-50 and U-Net is 104.5 and 77.3 ms,

respectively, while that of DANet and DNANet is 88 and 85 ms,

respectively. The average time of single image detection of this

model is only 68.4 ms, which is more suitable for the rapid

detection of field weed images.

In this paper, the model combines DenseNet with U-Net for

optimization and improvement, which effectively improves the

accuracy of weed recognition. Weeds need to increase the depth

of the model because they have similar feature points and similar

color to corn seedlings, and need a large number of images for

training the model and also bring a large amount of

computation. DenseNet, through its own dense connections,

reduces the memory of the model as much as possible on the

basis of ensuring that the model can be trained in depth. Because

the appearance similarity between weeds and corn seedlings is

relatively high, we need to extract some subtle features of weeds

and corn seedlings as finely as possible and use these features to

classify corn seedlings and weeds. The U-Net network satisfies

this requirement, and the U-shaped structure is used to encode

and liberate the image, perform fine feature extraction on the

enlarged image, and extract the features that cannot be

recognized by the naked eye, so as to achieve the effect of the

model for weed recognition.
4.3.2 The effect of image preprocessing
on the model

Most of the weeds in the planted land are grassy herbs that

are fine and dense. In contrast, weeds have wider leaves and

sparse foliage. In the image of turfgrass containing weeds, weeds
FIGURE 13

Loss rate and accuracy function images of each model.
TABLE 1 Different learning rates.

Learning rate Accuracy Loss rate

0.1 Overfitting

0.01 85.74% 8.74

0.001 90.03% 0.78

0.0001 97.78% 0.12
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are used as foreground and turfgrass as background, and the

grayscale varies widely among dense turfgrasses, while weeds

have wider leaves and uniform grayscale variation. Therefore,

this paper uses the method of preprocessing the image after local

variance, and this method is consistent with the image obtained

by directly passing the original image through high-pass

filtering, and finally both of them get the high-frequency part

of the image. This part can be enhanced appropriately, making

the image to become clearer. At the same time, in order to

prevent data overfitting, a data enhancement process is needed.

In order to prove the effectiveness of the algorithm, the dataset is

divided into four parts and input into the model we designed,

and the experimental results are shown in Table 3. The

experimental result is the average of the results of

five experiments.

In Table 3, the weed identification network models were

trained on four datasets using different ways of processing the

datasets, and the accuracy of the obtained models was compared,

as can be seen from Table 4: the accuracy of the dataset obtained

by inputting the unprocessed dataset into the model is 61.69%,

while the accuracy of data B and C is significantly higher than

that of A (Table 3), indicating that the performance of the model

has been greatly improved. The accuracy of data D is the best

among these cases, in which the accuracy of the un-data

augmented datasets A and B is significantly different

compared with that of data C and D (Table 3), which

indicates possible model overfitting when the model is trained

on the un-data augmented dataset. It is also shown that the local

variance algorithm splits weeds and corn seedlings clearly, so
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that the deep learning model can better extract finer features of

weeds and corn seedlings, remove factors that may affect the

experimental results, and finally achieve the goal of improving

the accuracy. In order to verify the universality of the method,

which can be used in other models in the future, we input the

dataset into DenseNet, VGGNet-16, VGGNet-19, ResNet-50,

and U-Net for experiments, and the experimental results are

shown in Table 5. It is proved that the method can separate

complex backgrounds and be used to extract target features

centrally and is not only applicable to a single model (Table 5).

4.3.3 Impact of ECA on model performance
To verify the effect of adding the attentional mechanism

ECA, the experiment was also divided into sections with and

without the attentional mechanism ECA. As reflected in Table 6,

the accuracy of the model was significantly improved after the

addition of the attention mechanism ECA, which is due to the

fact that the addition of the ECA attention mechanism in the

feature extraction process can effectively enhance the extraction

of weed features in complex backgrounds and further distinguish

the difference between weeds and maize seedlings. Because the

data are segmented by background, some redundant

information is removed, so although the attention mechanism

ECA is added, it does not concentrate too much on extracting

other information to ensure the model’s accuracy. In addition,

the attention mechanism ECA can prevent the overfitting

phenomenon that the model has good recognition ability in

the training phase and poor recognition ability in the testing

phase, and ensure that the network learns the correct feature
TABLE 3 Results of the four datasets run in our model.

Data number Data processing methods Accuracy

A No processing method 85.96

B Background split 90.35

C Data enhancement 91.44

D Background split and data enhancement 97.78
fr
TABLE 2 Experimental results for each model.

Model type Model size (MB) Training accuracy (%) Testing accuracy (%) Single image recognition time (ms)

VGG-16 800.33 83.45 81.78 153.3

VGG-19 832.45 85.34 87.23 163.1

ResNet-50 95.23 90.33 91.54 104.5

DenseNet 93.43 91.34 90.78 98.8

DANet 611.1 93.30 93.29 85.3

DNANet 169.2 92.32 92.20 88.0

U-Net 90.42 93.23 93.76 77.3

Our model 83.50 99.97 97.78 68.4
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information and improves the accuracy of the dataset

substantially. Therefore, combining the improved model with

the attention mechanism ECA ensures the accuracy of the model

for weed recognition and crop.
5 Conclusion

In order to solve the problems of low accuracy and weak

generalization ability of weed species and crop identification in a

crop field in a complex environment, a weed identification

method based on improved DenseNet was proposed in this

study. On the basis of the DenseNet network, the ECA

mechanism is introduced to strengthen the extraction of

weed features.
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1) The average recognition accuracy of the model proposed

in this paper can reach 97.78%, higher than the DANet,

DNANet, VGGNet-16, VGGNet-19, ResNet-50, U-Net,

and DenseNet models without improvement. Compared

with the improved model, it is improved by 7.2

percentage points, which verifies the effectiveness of

this model in weed identification.

2) The size of the improved DenseNet network model is

83.5 MB, and the time consumption of a single picture is

68.4 ms, which are better than the other networks and

can be easily deployed to intelligent weeding equipment.

3) Data enhancement and background segmentation of the

data using local variance and the super green method

can obtain higher recognition rate, which can remove

complex background, enhance the generalization ability

of the model, and improve the robustness of the model.
The research results of this paper have implications for the

identification of other crops with associated weeds, and by

testing and improving existing algorithms, the generality of the

model for weed identification and crop problems can be

improved. In the future, models can be implanted into mobile

devices for precise detection of farmland, leading to targeted

weed control and improved crop production efficiency.
Data availability statement

The original contributions presented in the study are

included in the article/supplementary material. Further

inquiries can be directed to the corresponding author.
Author contributions

YM was involved in the pre-experimental investigation, the

compilation of the code, the management of the experimental

team, and the writing of the paper. RN was involved in running

the code and in revising and writing the paper. LF was involved

in writing and correcting the paper. TL was involved in the

translation of the thesis. HP was involved in the correction of

the paper after translation. RF was involved in the creation of the

images in the paper. JL participated in writing and correcting the
TABLE 4 Data amplification.

Weed species Raw data Extended data

Black-glass 309 618

Charlock 452 904

Cleavers 335 670

Common chickweed 713 1,426

Common wheat 253 506

Fat hen 538 1,076

Loose silky-bent 762 1,524

Maize 257 514

Scentless mayweed 607 1,214

Shepherd purse 274 548

Small-flowered cranesbill 576 1,152

Sugar beet 463 926
TABLE 5 Results of different data processing runs on each model.

Model type Data processing
available

No data processing

VGG-16 83.45 62.67

VGG-19 85.34 65.22

ResNet-50 90.33 81.43

DenseNet 91.34 85.32

DANet 93.30 87.34

DNANet 92.32 89.24

U-Net 93.23 86.95

Our model 97.78 93.46
TABLE 6 Experimental results of our model with and without ECA.

Type Accuracy
(%)

Length of train-
ing per round (s)

Single image
test duration

(ms)

With
ECA

97.78 132 68.4

Without
ECA

94.34 145 71.2
frontiersin.org

https://doi.org/10.3389/fpls.2022.1041510
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mu et al. 10.3389/fpls.2022.1041510
equations in the paper. YW was involved in the selection of the

dataset in the paper. YB was involved in the pre-research of the

paper. YG participated in the preliminary research and dataset

screening of the paper.TH was involved in organizing the

experimental data. HG was involved in reviewing, organizing,

and summarizing the data related to the thesis. SL was involved

in reviewing, organizing, and summarizing the data related to

the thesis. YS was involved in reviewing, organizing, and

summarizing the data related to the thesis. All authors

contributed to the article and approved the submitted version.
Funding

This research was supported by the National Key Research

and Development Program Subtopics [2018YFF0213606-03

(YM, TH, HG, SL, and YS) http://www.most.gov.cn], Jilin

Province Science and Technology Development Plan Focuses

on Research and Development Projects [20200402006NC (YM.,

SL, TH, and HG) http://kjt.jl.gov.cn], Science and Technology

Support Project for Key Industries in Southern Xinjiang
Frontiers in Plant Science 15
[2018DB001 (HG and SL) http://kjj.xjbt.gov.cn], and Key

Technology R & D Project of Changchun Science and

Technology Bureau of Jilin Province [21ZGN29 (YM, Bao H.

P., and Wang X. B.) http://kjj.changchun.gov.cn].
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
Bakhshipour, A., Jafari, A., Nassiri, S. M., and Zare, D. (2017). Weed
segmentation using texture features extracted from wavelet sub-images. Biosyst.
Engineer. 157, 1–12. doi: 10.1016/j.biosystemseng.2017.02.002

Chen, L. X., and Wang, B. (2017). Comparative study of leaf image recognition
algorithm based on shape feature. Comput. Eng. Applications 9, 17–25.

Deng, X. W., Ma, X., Long, Qi, Sun, G. X., and Jin, J. (2021). Recognition of
weeds in rice seedling stage based on convolutional neural network and transfer
learning. J. Agric. Mechanization Res. 43, 167–171. doi: 10.3969/j.issn.1003-
188X.2021.10.030

Dos, A., Ferreira, S., Freitas, D. M., Silva, G., Pistori, H., and Folhes, M. T. (2017).
Weed detection in soybean crops using convnets. Comput. Electron. agricult. 143,
314–324. doi: 10.1016/j.compag.2017.10.027

Duan, X. H., Han, J. G., Ba, J. L., Shi, J., Zhang, Y. Y., Kang, L., et al. (2019). The
current situation and development trend of chemical weeding in corn fields.
Horticult. Seedlings 3, 54–56.

Elstone, L., How, K. Y., Brodie, S., Ghazali, M. Z., and Grieve, B. (2020). High
speed crop and weed identification in lettuce fields for precision weeding. Sensors
20, 455. doi: 10.3390/s20020455

Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., et al. (2020). “Dual attention
network for scene segmentation,” in 2019 IEEE/CVF conference on computer vision
and pattern recognition (CVPR), vol. 32. (IEEE), 2547–2560.

Giselsson, T. M., Jørgensen, R. N., Jensen, P. K., Dyrmann, M., and Midtiby,
H. S. (2017). A public image database for benchmark of plant seedling classification
algorithms. Comput. Vision Pattern Recognition 112-115. doi: 10.48550/
arXiv.1711.05458

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition Vol. 1 (IEEE), 770–778.

Hou, Y., Cao, L. Y., Ding, X. Q., and Li, J. (2020). Research on soybean weed
recognition based on edge detection and BP neural network. Chin. J. Agric.
Machinery Chem. 41, 185–190. doi: 10.13733/j.jcam.issn.2095-5553.2020.07.028

Huang, G., Liu, Z., Laurens, V., andWeinberger, K. Q. (2017). Densely connected
convolutional networks Vol. 1 (IEEE Computer Society), 4700–4708.

Jiang, H., Zhang, C., Qiao, Y., and Zhao, Z. (2020). CNN Feature based graph
convolutional network for weed and crop recognition in smart farming. Comput.
Electron. Agric. 174, 105450. doi: 10.1016/j.compag.2020.105450

Jordan, M. I., and Mitchell, T. M. (2015). Machine learning: Trends,
perspectives, and prospects. Science 349, 255–260. doi: 10.1126/science.aaa8415
Li, X. J. (2018). Main problems and management strategies of weeds in
agricultural fields in China in recent years. Plant Protection. 44, 77–84. doi:
10.16688/j.zwbh.2018322

Li, T., Wen, G.-y., Qian, Z.-g., Tian, Z. H., Shen, G. H., Liang, D., et al. (2013).
The influence on wheat yield loss caused by different kinds of weeds. China Plant
Protection. 33, 28–30.

Li, B. H., Zhang, Y. X., Bian, Q. L., Li, Z. L., and Wang, G. Q. (2013). Critical
period of weed control in no-tillage summer maize fields. Chin. J. Eco-Agricult. 21,
998–1003. doi: 10.3724/SP.J.1011.2013.00998

Mu, Y., Ni, R. W., Li, J., Luo, T. Y., Feng, R. L., Zhang, T., et al. (2022).
Segmentation of remote sensing images based on U-net multi-task learning.
Computers Materials Continua. 73, 3263–3274. doi: 10.32604/cmc.2022.026881

Nardecchia, A., Vitale, R., and Duponchel, L. (2021). Fusing spectral and spatial
information with 2-d stationary wavelet transform (SWT 2-d) for a deeper exploration
of spectroscopic images. Talanta 224, 121835. doi: 10.1016/j.talanta.2020.121835

Patches, K. M., Curran, W. S., and Lingenfelter, D. D. (2017). Effectiveness of
herbicides for control of common pokeweed (Phytolacca Americana) in corn and
soybean. Weed Technol. 31, 193–201. doi: 10.1614/WT-D-16-00043.1

Peng, W., Lan, Y. B., Yue, X. J., Cheng, Z. Y., Wang, L. H., Chen, Z. Z., et al.
(2020). Research on weed recognition in rice field based on deep convolutional
neural network. J. South China Agric. University. 41, 75–81.

Potena, C., Nardi, D., and Pretto, A. (2016). “Fast and accurate crop and weed
identification with summarized train sets for precision agriculture,” in
International conference on intelligent autonomous systems (Switzerland:
Springer, Cham), 105–121.

Ren, D., Li, J., Han, M., and Shu, M. (2021). “DNANet: Dense nested attention
network for single image dehazing. ICASSP 2021 - 2021,” in IEEE International
conference on acoustics, speech and signal processing (ICASSP) (IEEE), 2035–2039.

Rojas, C. P., Guzman, L., and Toledo, N. V. (2017). Weed recognition by SVM
texture feature classification in outdoor vegetable crops images. Ingenierıá E
Investigación. 37, 68–74. doi: 10.15446/ing.investig.v37n1.54703

Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: Convolutional networks
for biomedical image segmentation,” in International conference on medical image
computing and computer-assisted intervention (Springer, Cham), 234–241.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
Large-scale image recognition. Comput. Sci 1409–1556. doi: 10.48550/
arXiv.1409.1556
frontiersin.org

http://www.most.gov.cn
http://kjt.jl.gov.cn
http://kjj.xjbt.gov.cn
http://kjj.changchun.gov.cn
https://doi.org/10.1016/j.biosystemseng.2017.02.002
https://doi.org/10.3969/j.issn.1003-188X.2021.10.030
https://doi.org/10.3969/j.issn.1003-188X.2021.10.030
https://doi.org/10.1016/j.compag.2017.10.027
https://doi.org/10.3390/s20020455
https://doi.org/10.48550/arXiv.1711.05458
https://doi.org/10.48550/arXiv.1711.05458
https://doi.org/10.13733/j.jcam.issn.2095-5553.2020.07.028
https://doi.org/10.1016/j.compag.2020.105450
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.16688/j.zwbh.2018322
https://doi.org/10.3724/SP.J.1011.2013.00998
https://doi.org/10.32604/cmc.2022.026881
https://doi.org/10.1016/j.talanta.2020.121835
https://doi.org/10.1614/WT-D-16-00043.1
https://doi.org/10.15446/ing.investig.v37n1.54703
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.3389/fpls.2022.1041510
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Mu et al. 10.3389/fpls.2022.1041510
Wang, C., and Li, Z. W. (2016). Using support vector machine model fusion
height and monocular image features to identify weeds. Trans. Chin. Soc. Agric.
Eng. (Transactions CSAE). 32, 165–174.

Wang, Q., Wu, B., Zhu, P., Li, P., and Hu, Q. (2020). “ECA-net: Efficient
channel attention for deep convolutional neural networks. 2020,” in IEEE/CVF
conference on computer vision and pattern recognition (CVPR) (IEEE), 11534–
11542.

Wang, S. F., and Yang, L. X. (2018). Feature dimension reduction and
category identification of weeds in cotton field based on GA-ANN complex
algorithm. J. Henan Agric. Sci. 47 148-154, 160. doi: 10.15933/j.cnki.1004-
3268.2018.02.028
Frontiers in Plant Science 16
Yan, B. Z. (2018). Identification of weeds in maize seedling stage by machine
vision technology. J. Agric. Mechanization Res. 40, 212–216.

Yuan, H. B., Zhao, N. D., and Cheng, M. (2020). Research progress and prospect
of field weed recognition based on image processing. Trans. Chin. Soc. Agric.
Machinery 51, 323–334 doi: 10.13427/j.cnki.njyi.2018.03.043

Zhao, P., Jiang, Y. Z., Zhai, Q., Xiang, B., and Wang, X. C. (2019). Noise
suppression method for EXTREME/Ultra-low frequency channel based on local
variance median filter. Acta Electronica Sinica. 47, 955–961.

Zheng, Y., Zhu, Q., Huang, M., Guo, Y., and Qin, J. (2017). Maize and weed
classification using color indices with support vector data description in outdoor
fields. Comput. Electron. Agricult. 141, 215–222. doi: 10.1016/j.compag.2017.07.028
frontiersin.org

https://doi.org/10.15933/j.cnki.1004-3268.2018.02.028
https://doi.org/10.15933/j.cnki.1004-3268.2018.02.028
https://doi.org/10.13427/j.cnki.njyi.2018.03.043
https://doi.org/10.1016/j.compag.2017.07.028
https://doi.org/10.3389/fpls.2022.1041510
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	DenseNet weed recognition model combining local variance preprocessing and attention mechanism
	1 Introduction
	2 Data processing
	2.1 Dataset
	2.2 Data processing

	3 Model building
	3.1 Attention mechanism
	3.2 Model improvement

	4 Experimental results and analysis
	4.1 Experimental environment
	4.2 Experimental results
	4.3 Analysis of experimental results
	4.3.1 Comparison of the different models
	4.3.2 The effect of image preprocessing on the model
	4.3.3 Impact of ECA on model performance


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


