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Object detection is a vital research direction in machine vision and deep learning.

The object detection technique based on deep understanding has achieved

tremendous progress in feature extraction, image representation, classification,

and recognition in recent years, due to this rapid growth of deep learning theory

and technology. Scholars have proposed a series of methods for the object

detection algorithm as well as improvements in data processing, network

structure, loss function, and so on. In this paper, we introduce the

characteristics of standard datasets and critical parameters of performance index

evaluation, as well as the network structure and implementation methods of two-

stage, single-stage, and other improved algorithms that are compared and

analyzed. The latest improvement ideas of typical object detection algorithms

based on deep learning are discussed and reached, from data enhancement, a

priori box selection, network model construction, prediction box selection, and

loss calculation. Finally, combined with the existing challenges, the future research

direction of typical object detection algorithms is surveyed.

KEYWORDS

deep learning, object detection, transfer learning, algorithm improvement, data
augmentation, network structure
1 Introduction

Computer vision, also known as machine vision, uses an image sensor that

replaces the human eye to obtain an image of an object, converts the image into a

digital image, and uses computer-simulated human discrimination criteria to

understand and recognize the image, to analyze the image, and draw conclusions.

This technology gradually emerged on the basis of the successful application of remote
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sensing image processing and medical image processing

technology in the 1970s and has been applied in many fields.

At present, the application of computer vision technology in

agriculture is increasing day by day. Object detection is widely

used in different areas of agriculture and getting importance

these days in fruits, diseases, and scene classification (Zhang

et al., 2020; Bhatti et al., 2021).

The primary goal of this work is to find all of the objects of

interest in a specified image with high accuracy and efficiency

and to use the rectangular bounding box to determine the spot

and size of the detected object, which is connected to object

classification, semantic segmentation, and instance. In the

process of object detection, due to the different appearance,

posture, shape, and quantity of various target objects in the

image, as well as the interference of multiple factors such as

illumination and occlusion, the target is distorted, and the

difficulty of object detection (Chen and Wang, 2014; Bhatti

et al., 2019).

Deep learning-based object detection algorithms are

mainly divided into traditional and detection algorithms.

Traditional detection approaches rely on hand-crafted

features and shallow trainable architectures, which are

ineffective when creating complicated object detectors and

scene classifiers that combine many low-level image features

and high-level semantic information. Traditional object

detection algorithms mainly include the deformable parts

model (DPM) (Dollár et al., 2009), selective search (SS)

(Uijlings et al., 2013), Oxford-MKL (Vedaldi et al., 2009),

and NLPR-HOGLBP (Yu et al., 2010), etc. Traditional object

detection algorithm basic structure mainly includes the

following three-part: 1) region selector, first, a sliding

window of different sizes and proportions is set for a given

image, and the entire image is traversed from left to right and

top to bottom to frame a specific part of the image to be

detected as a candidate region; 2) feature extraction, extract

visual features of candidate regions, such as scale-invariant

feature transform (SIFT) (Bingtao et al., 2015), Haar

(Lienhart and Maydt, 2002), histogram of oriented

gradient (HOG) (Shu et al., 2021) commonly used in face

and standard object detection, and other features to extract

features for each region; 3) classifier classification, use the

trained classifier to identify the target category of the feature,

such as the commonly used deformable part model (DPM),

adaboot (Viola and Jones, 2001), support vector machines

(SVM) (Ashritha et al., 2021) and other classifiers. However,

these three parts achieved certain results while exposing

their inherent flaws, such as using a sliding window for

region selection will result in high time complexity and

window redundancy, the uncertainty of illumination

change and the diversity of background will result in poor
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robustness of the guide design feature technique (Cao et al.,

2020a), poor generalization, and complex algorithm stages

will result in slow detection efficiency and low accuracy (Wu

et al., 2021). As a result, classic object detection approaches

have struggled to match people ’s demands for high-

performance detection.

However, there are still some complications in applying

an object detection algorithm based on deep learning, such

as too small detection objects, insufficient detection

accuracy, and insufficient data volume. Many scholars have

improved algorithms and also formed a review by

summarizing these improved methods. Tong et al. (2020)

analyzed and outlined the improved techniques from the

aspects of multi-scale features, data enhancement and

context informat ion but ignored the performance

improvement of the feature extraction network for small

object detection; moreover, the data enhancement part only

considers improving the small object detection performance

by increasing the number and type of small targets in the

data set, which lacks diversity. Xu et al. (2021) and Degang

et al. (2021) respectively introduced and analyzed the typical

algorithms of object detection for the detection framework

based on regression and candidate window. However,

because the optimization scheme of the algorithm is not

well classified in the text, they cannot clearly understand

when and how to apply the improvement idea to the

detection algorithm. The mainstream deep learning object

detection algorithms are mainly separated into two-stage

detection algorithms and single-stage detection algorithms,

as shown in Figure 1.

In Figure 1, the two-stage detection algorithm is based on

candidate regions represented by the R-CNN series; the

single-stage detection algorithm is a regression analysis-

based object detection algorithm defined by YOLO and

SSD. This review is based on different object detection

techniques approaches, and the main contribution of this

paper is as follows:
• Firstly, this review organized the standard data sets and

evaluation indicators. The list of datasets and their

evaluation methods are in-depth and highlighted from

different literature from recent years.

• Secondly, this review paper focused on deep learning

approaches for object detection, including two-stage and

single-stage object detection algorithms and generative

adversarial networks.

• The third part of this paper surveyed the deep learning-

based object detection algorithm applications in

multimedia, remote sensing, and agriculture. Finally

draws a conclusion and some future works.
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2 Common data sets and evaluation
indicators

This section highlights the datasets used for objects in

remote sensing, agriculture, and multimedia applications.
2.1 Common datasets

In the task of object detection, a dataset with strong

applicability can effectively test and assess the performance of

the algorithm and promote the development of research in

related fields. The most widely used datasets for deep learning-

based object detection tasks are PASCAL VOC2007 (Ito et al.,

2007), PASCAL VOC2012 (Marris et al., 2012), Microsoft

COCO (Lin et al., 2014), ImageNet (Deng et al., 2009) and

OICOD (Open Image Challenge Object Detection) (Krasin et al.,

2017). Different features and quantities of images in datasets are

listed in Table 1.
2.2 Evaluation indicators

The act of the object detection algorithm is mainly evaluated

by the following parameters: intersection over union (IoU)

(Rahman and Wang, 2016), frame per second (FPS), accuracy

(A), recall (R), precision (P), average precision (AP), and mean

average precision (mAP) (Tong et al., 2020). Where AP consists

of the area enclosed by the P-R curve and the coordinates, and

mAP is the mean of AP (Kang, 2019; Wang, 2021).
Frontiers in Plant Science 03
3 Deep learning approaches for
object detection in multimedia

3.1 Two-stage object detection
algorithm

In two-stage object detection, one branch of object detectors

is based on multi-stage models. Deriving from the work of R-

CNN, one model is used to extract regions of objects, and a

second model is used to classify and further refine the

localization of the object. To obtain test results, the two-stage

object detection approach primarily uses algorithms such as

Selective Search or Edge Boxes (Zitnick and Dollár, 2014) to

choose the candidate region (Region Proposal) (Hu and Zhai,

2019) that may include the object detection for the input image,

and then categorize and position the candidate region. The R-

CNN (Girshick et al., 2014) series, R-FCN (Dai et al., 2016),

Mask R-CNN (He et al., 2017), and other algorithms

are examples.

3.1.1 OverFeat algorithm
The OverFeat algorithm was proposed by the author in

Sermanet et al. (2013), who improved AlexNet. The approach

combines AlexNet with multi-scale sliding windows (Naqvi

et al., 2020) to achieve feature extraction, shares feature

extraction layers and is applied to tasks including image

classification, localization, and object identification. On the

ILSVRC 2013 (Lin et al., 2018) dataset, the mAP is 24.3%, and

the detection effect is much better than traditional approaches.

The algorithm has heuristic relevance for deep learning’s object
B

A

FIGURE 1

Object detection method based on deep learning (A) Single stage method (B) Two stage method.
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detection algorithm; however, it is ineffective at detecting small

objects and has a high mistake rate.

3.1.2 R-CNN algorithm
The convolutional neural network (CNN) to the job of

object detection introduced the R-CNN Krizhevsky et al.

(2012), a standard two-stage object detection approach. Three

modules of deep feature extraction and classification and

regression based on CNN:
Fron
1. Use a selective algorithm to extract about 2000 regional

candidate frames that may contain target objects from

the individual image;

2. Normalize the applicant areas scale to a static

magnitude for feature mining;

3. Use AlexNet to input the candidate region features into

SVM one by one for classification, using Bounding Box

Regression and Non-Maximum Suppression (NMS).
The Hinge loss with the L2 regularization term (Moore and

DeNero, 2011) is the loss function of the SVM classification

algorithm. The following is the definition of the function form:

Lcls = co
i
max 0,  1 − p*i   :   pi 

� �
+
1
2
w2 (1)
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where the proper category of the item is represented by p*i , the

possibility of the projected object class is represented by pi, and

the index of the mini-batch is denoted by i. To improve the

prediction’s resilience, the main premise is to penalize the

distance variation among the predicted bounding-box and the

ground truth. The following is the definition of the function:

t*x = (x* − x)=w, t*y = (y* − y)=h

t*w = logðw*=wÞ, t*h = (h*=h)  (2)

Lloc =o
i

ti* − wT
*f(t

i)
� �2

(3)

where, the true coordinate is t* = (x*,y*,w*,h*) the predicted

coordinate is t = (x,y,w,h), where (x, y) signifies the coordinate of

the box center, (w, h) denotes the width and height of the box.

wT
* is the learned limit, and f(ti) is the feature vector. The

regional scores are adjusted and filtered for location regression

in a fully connected network (Girshick et al., 2014).

On the ILSVRC2013 dataset, the R-CNN algorithm

improves the mAP to 31.4% and 58.5% on the VOC2007

dataset. The performance is better than the typical object

detection algorithm. However, the following issues persist:
TABLE 1 Comparison of related data sets.

Dataset
Name

Quantity Type Year Features

CIFAR-10
(Krizhevsky
and Hinton,
2009)

60000 10 2009 Color pictures of everyday things in daily life; take up little storage space; objects detection in images is large; this dataset
is often used to measure the classification ability of the model

PASCAL
VOC 2007
(Everingham
et al., 2010)
PASCAL
VOC 2012
(Everingham
et al., 2015)

9963
11530

20
20

2010
2015

Standardized datasets that can be used for image classification, object detection, and image segmentation; the standardized
process makes most of the self-made datasets use this format; most of them are real-world data, which is difficult to
detect; it has better image quality and complete Labels are mostly used to evaluate model performance; every image
resembles to its annotation file one-to-one, which is easy to manage;

ImageNet
(Russakovsky
et al., 2015)

14.19
Million

21841 2015 Because this dataset has extremely rich variety information and can contain the underlying features of most detected
objects, it is often used as a dataset for pre-training models, which also makes the model extremely challenging in both
object detection and object classification.

Microsoft
COCO (Lin
et al., 2014)

328000 91 2014 The image environment is complex and diverse, which increases the difficulty of detection; in addition to the category and
location information of the image, it also contains the scene description of the image; the number of categories is far from
the ImageNet, Open Image, and SUN datasets, but this also makes each category more difficult to detect. The larger the
number of images contained, the better the detection ability of the model during training.

Open Image
(Kuznetsova
et al., 2020)

1.9 Million 600 2020 The largest dataset with target location annotations currently available; the annotation information is manually reviewed
to ensure accuracy and consistency; The majority of the photographs are complex settings with several objects

Places (Zhou
et al., 2017)

2.5 Million 205 2017 The Places dataset is a scene-centric database, and the scene categories in the images represent the scene information of
each image

SUN (Xiao
et al., 2016)

130519 899 2016 Compared with the Places dataset, it has more scene category information, but the average category of the SUN dataset in
each scene is about 80 times different from the Places dataset, resulting in a weaker scene classification ability learned by
the model using the SUN dataset; In addition to scene recognition, object recognition under the scene can be performed.
frontiersin.org
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Fron
1. Because every stage must be qualified separately,

training involves a multi-stage pipeline that is slow

and difficult to optimize.

2. Because CNN features should be derived from each

object proposal for each image, training of the SVM

classifier and bounding box regressor is time and disk

intensive. This is critical for large-scale detection.

3. The test speed is slow, because the CNN structures need

to be mined in each test image object proposal, and

there is no shared computation.
3.1.3 SPP-Net algorithm
He et al. (2015) presented the Spatial Pyramid Pooling

Network (SPP-Net) in 2015 as a solution to the problem that

R-CNN pulls features from all candidate regions separately,

which takes a lot of time. Between the last convolutional layer

and the fully connected layer, SPP-Net adds a spatial pyramid

structure, segments the image using numerous standard scales

fine-tuners, and fuses the quantized local features to form a mid-

level representation. To avoid repetitive feature extraction and

break the shackles of fixed-size input, a fixed-length feature

vector is built on the feature map, and features are extracted all at

once. On the PASCAL 2007 dataset, the SPP-Net algorithm is

24102 times faster than the R-CNN algorithm in detection, and

the mAP is increased to 59.2%. However, the following issues

want to be addressed:
1. A huge sum of features must be kept, which consumes a

lot of space;

2. the SVM classifier is still utilized, which requires a lot of

training steps and takes a long time.
3.1.4 Fast R-CNN algorithm
Girshick (2015) introduced the Fast R-CNN technique

grounded on bounding box and multi-task loss classification

to solve the difficulties of SPP-Net. The algorithm streamlines

the SPP layer and creates a single-scale ROI Pooling layer

assembly, in which the applicant region of the entire image is

tested into a static size, a feature map is created for SVD

decomposition, and the Softmax classification score and

BoundingBox are obtained via the ROI Pooling layer. As follow;

Lðp, u, tu, vÞ = Lcls(p, u) + l½u ≥ 1�Lloc(tu, v) (4)

where, Lcls(p,u) = -log pu computes the log loss for ground truth

class u, and pu is determined from the separate chance dispersal

p = (p0,· ·,pc) over the C+1 outputs from the last FC layer. Lloc(t
u,

v) is well-clear over the forecast offsets tu  =  (tux  , t
u
y  , t

u
w, t

u
h  ) and

ground-truth bounding-box regression objects v = (vx,vy,vw,vh),

where x, y, w, and h mean the two synchronizes of the box center,

width, and height, respectively. To stipulate an object proposal
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with a log-space height/width change and scale-invariant

conversion, each tu uses the parameter settings (Zitnick and

Dollár, 2014). To omit all backdrop RoIs, the Iverson bracket

indicator function [u ≥ 1] is used. A smooth L1 loss is used to fit

bounding-box regressors in order to give additional robustness

against outliers and remove sensitivity in exploding gradients:

Lloc(t
u, v) =oi∈x,y,w,hsmoth   L1 tui − við Þ (5)

And

smoothL1(x) =
0:5x2                   if xj j < 1

xj j − 0:5         otherwise
  

(
(6)
3.1.5 Faster R-CNN algorithm
The employment of candidate region generating methods

such as bounding boxes, selective search, and others stymies

accuracy progress. Ren et al. (2015) presented Faster R-CNN in

2017 as a solution to this problem and introduced a Region

Proposal Network (RPN) to replace the selective search

algorithm. Comparing suggestions to reference boxes,

regressions toward actual BBs can be accomplished (anchors).

Anchors of three scales and three feature ratios are used in the

Faster R-CNN. The loss function resembles that of (4);

L(pi, ti) =
1

Ncls
oiLcls(pi, p

*
i ) + l

1
Nreg

oip
*
i Lreg(ti, t

*
i ) (7)

where, pi denotes the likelihood that the ith anchor will be an

object. If the anchor is positive, the ground truth label p*i is 1,

otherwise, it is 0. t*i is related to the ground-truth box overlying

with a positive anchor, while ti contains four parameterized

coordinates of the predicted bounding box. Lcls is a binary log

loss, while Lreg is a smoothed L1 loss, both of which are similar to

(5). On the PASCAL VOC 2007 dataset, faster R-CNN achieves

73.2% mAP using the VGG-16 backbone network. However,

there are still issues:
• The scale chosen by the selection box on the feature map

when the anchor mechanism is employed is not

adequate for all objects, notably for small object

identification;

• Only the last layer of the VGG-16 network is used. The

accumulation layer’s output features are predicted. The

network topographies lose conversion invariance and

accuracy after the RoI Pooling layer;
3.1.6 R-FCN algorithm
The idea and performance of the R-CNN series of

algorithms determine the milestones of object detection. This

series of structures is essentially composed of two subnets (Faster

R-CNN adds PRN, which is composed of three subnets), the
frontiersin.org
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former subnet is the spine network for feature withdrawal, and

the latter subnet is used to complete the classification and

localization of object detection. Between the two subnetworks,

the RoI pooling layer turns the multi-scale feature map into a

static-size feature map, but this step breaks the network’s

translation invariance and is not favorable to object

classification. Using the ResNet -101 He et al. (2016) backbone

network, Dai et al. (2016) developed a position-sensitive score

map (Position-Sensitive Score Maps) containing object location

info in the R-FCN (Region based Fully Convolutional

Networks) algorithm.

3.1.7 Mask R-CNN algorithm
MaskR-CNN, proposed by He et al. (2017) is a Faster R-

CNN extension that uses the ResNet-101-FPN backbone

network. Multi-task loss is combined with segmentation

branch loss, arrangement, and bounding box regression loss in

Mask R-CNN. A Mask network branch for RoI calculation and

division is added to the object classification and bounding box

regression to enable real-time object identification and instance

segmentation. Lin et al. (2017a) projected the RoIAlign layer to

replace the RoI pooling layer and used bilinear difference to plug

the pixels of non-integer situations to tackle the problem of

rounding the feature map scale in the downsampling and RoI

pooling layers. The COCO dataset’s mAP has been increased to

39.8% with a detection speed of 5 frames per second. However,

meeting real-time criteria for detection speed is still problematic,

and the cost of instance segmentation and labeling is too high.

3.1.8 Comparison and analysis
On the COCO dataset, the two-stage object detection uses a

cascade structure and has been successful in instance
Frontiers in Plant Science 06
segmentation. Although detection accuracy has improved

over time, detection speed has remained poor. On the

VOC2007 test set, VOC 2012 test set, and COCO test set,

Figure 2 reviews the spine network of the two-stage object

detection method, as well as the detection accuracy (mAP) and

detection speed. “—” signifies no relevant data. Performance

comparison of two-stage object detection algorithms as shown

in Figure 2.

The two-stage object detector, as shown in Figure 2, presents

profound pillar networks such as ResNet (Allen-Zhu and Li,

2019) and ResNeXt (Hitawala, 2018), and the detection

precision can reach 83.6%, but the expansion of the algorithm

model causes an increase in the amount of calculation, and the

detection speed is only 11% frame/s, which cannot meet the real-

time requirements. Table 2 outlines the benefits, drawbacks, and

contexts in which certain object detection techniques can

be used.

It can be realized from Table 2, that the two-stage object

detection algorithm has been making up for the faults of the

preceding algorithm, but the problems such as large model scale

and slow detection speed have not been solved. In this regard,

some researchers put forward the idea of transforming Object

detection into regression problems, simplifying the algorithm

model, and improving the detection accuracy while improving

the detection speed.
3.2 Single-stage object detection
algorithm

The single-stage object detection technique, also known as

the object detection algorithm based on regression analysis, is
FIGURE 2

Performance comparison of two-stage object detection algorithms.
frontiersin.org
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based on the principle of regression analysis. The single-stage

object detector, which is generally represented by the YOLO and

SSD series, skips the applicant area generation stage and obtains

object classification and position information directly.
3.2.1 YOLO object detection algorithm
Redmon et al. (2016) proposed the YOLO (You Only Look

Once) target detector in 2016. The YOLO architecture comprises

of 24 convolutional layers and 2 FC layers, with the topmost

feature map predicting bounding boxes and the P-Relu

activation function explicitly evaluating the likelihood of each

class. The following loss function is optimized during training:

lcoordo
S2

i=0
o
B

j=0
〛

obj
ij ½(xi − x̂ i)

2 + (yi − ŷ i)
2�

+ lcoordo
S2

i=0
o
B

j=0
〛

obj
ij

ffiffiffiffiffi
wi

p
−

ffiffiffiffiffi
x̂ i

p� �2
+

ffiffiffiffi
hi

p
−

ffiffiffiffiffi
ĥ i

q� �2� �

+o
S2

i=0
o
B

j=0
〛

obj
ij (Ci − Ĉ i)

2 + lnoobjo
S2

i=0
o
B

j=0
〛

noobj
ij (Ci − Ĉ i)

2

+o
S2

i=0
〛

noobj
ij o

c∈classes

(pi(c) − p̂ i(c))
2

(8)

where, n is a certain cell of i,(xi,yi) and denotes the center of the

box relative to the grid cell limits, (wi,hi) are the standardized

width and height relative to the image size. The confidence

scores are represented by Ci, the existence of objects is indicated

by 〛
obj
i , and the prediction is made by the jth bounding box

predictor is indicated by 〛
obj
ij .

The technique eliminates the stage of generating candidate

regions and combines feature extraction, regression, and

classification into a single volume. The YOLO detection speed
Frontiers in Plant Science 07
in real-time is 45 frames per second, and the average detection

accuracy mAP is 63.4%. YOLO’s detection effect on small-scale

objects, on the other hand, is poor, and it’s simple to miss

detection in environments where objects overlap and occlude.

Zhou et al. (2022) proposed YOLOv5 with total of four

network models: YOLOv5s, YOLOv5m, YOLOv5l, and

YOLOv5x. The detection speed of YOLOv5 is very fast, and

the inference time of each picture reaches 0.007 s, which is 140

frame/s. The generalization process of the YOLO series is not

good in dealing with uncommon scale objects, and multiple

down sampling is required to obtain standard features.

Moreover, due to the influence of space limitation in bounding

box prediction, the detection effect of small object detection is

not good.

3.2.2 SSD object detection algorithm
Liu et al. (2016) introduced the SSD (Single Shot multi-box

Detector) algorithm to balance detection accuracy and detection

speed by combining the advantages of Faster RCNN and YOLO.

For feature extraction, SSD uses the VGG-16 backbone network.

Convolutional layers take the place of FC6 and FC7 and add four

different levels. SSD also employs a target prediction method to

distinguish between target types and positions based on

candidate frames collected by the anchor at various scales. The

following are some of the benefits of this mechanism: (1) The

convolutional layer predicts the target location and category,

reducing the amount of computation; (2) the object detection

process has no spatial limitations, allowing it to detect clusters of

small target items effectively. The running speed of SSD on

Nvidia Titan X is increased to 59 frame/s, which is significantly

better than YOLO; the mAP on the VOC2007 dataset reaches

79.8%, which is 3 times that of Faster R-CNN.
TABLE 2 Advantages, disadvantages, and applicable scenarios of two-stage Object detection algorithms.

Model Advantage Disadvantage Applicable References of
Applications in

Agriculture, Multimedia
and Remote Sensing

OverFeat Feature extraction using CNN Using a sliding window, the time and
space overhead is large

Object Detection (Diwan et al., 2022; Li K. et al.,
2020)

R-CNN Combining CNN with the candidate box method Feature extraction is complex, time-
consuming, fixed image input size

Object Detection (Yan et al., 2019; Jiao et al.,
2020)

SPP-Net Perform convolution operation on the entire image to
realize multi-scale convolution calculation

High space cost Object Detection (Karim et al., 2020; Kumar and
Kumar, 2022)

Fast R-
CNN

Extract features with ROI Pooling layer, saving time and
feature loading space

The selection of candidate regions is
computationally complex

Object Detection (Li M. et al., 2020; Yi et al.,
2021)

Faster
R-CNN

Replacing region proposals with RPN to speed up training
and accuracy

The model is complex and the spatial
quantification is rough

Object Detection (Cynthia et al., 2019; Zhang
et al., 2022)

R-FCN Improved positioning accuracy The model process is multifaceted and
the amount of calculation is large

Object Detection (Gera et al., 2022; Nguyen,
2022; Cai and Zhang, 2022)

Mask R-
CNN

Solve the misalignment between the feature map and the
original image, combining detection and segmentation

Instance segmentation is expensive Object detection,
instance
segmentation

(Jian et al., 2022; Storey et al.,
2022)
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3.2.3 RetinaNet algorithm
Lin et al. (2017b) borrowed the ideas of Faster R-CNN and

multi-scale Object detection Erhan et al. (2014) to design and

train a RetinaNet Object detector. The chief idea of this module

is to explain the previous detection model by reshaping the Focal

Loss Function. The problem of class imbalance of positive and

negative samples in training samples during training. The

ResNet backbone network and two task-specific FCN

subnetworks make up the RetinaNet network, which is a single

network. Convolutional features are computed over the entire

image by the backbone network. On the output of the backbone

network, the regression subnetworks conduct image

classification tasks. Convolutional bounding box regression is

handled by the network.

In one-stage detectors, the class imbalance of foreground

and background is the main reason for the convergence of

network training. During the training phase, Focal Loss

avoids many simple negative examples and focuses on hard

training samples. By training unbalanced positive and

negative instances, the speed of single-stage detectors is

inherited. The experimental results show that on the MS

COCO test set, the AP of RetinaNet using the ResNet-101-

FPN backbone network is increased by 6% compared with the

DSSD513; using the ResNeXt-101-FPN, the AP of RetinaNet

is increased by 9%.

3.2.4 Tiny RetinaNet algorithm
Cheng M. et al. (2020) planned Tiny RetinaNet, which

customs MobileNetV2-FPN as the backbone network for

feature extraction, primarily composed of Stem block

backbone network and SEnet, as well as two task-specific

subnets, to improve accuracy and reduce information. The

mAPs for the PASCAL VOC2007 and PASCAL VOC2012

datasets are respectively 71.4% and 73.8%.

3.2.5 M2Det algorithm
Zhao et al. (2019) proposed M2Det based on Multi-Level

Feature Pyramid Network (ML-FPN), which solved the

problem of scale variation between target instances. The

model achieves the final incremental feature pyramid

through three steps: (1) extract multi-layer features from a

huge number of layers in the backbone network and fuse them

into basic features; (2) send the base layer features into TUM

(Thinned U-shape Modules) In a block formed by connecting

the module and the FFM (Feature Fusion Modules) module,

the TUM decoding layer is obtained as the input of the next

step; (3) The decoding layer of equivalent scale is integrated to

construct a feature pyramid of multi-layer features. M2Det

adopts the VGG backbone network and obtains 41.0% AP at a

speed of 1.8 frame/s using the single-scale inference strategy on

the MS COCO test dataset, and 44.2% AP using the multi-scale

inference strategy.
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3.2.6 Comparison of single-stage object
detection algorithms

The single-stage object detection algorithm was developed

later than the two-stage object detection algorithm, but it has

piqued the interest of many academics due to its simplified

structure and efficient calculation, as well as its rapid

development. Single-stage object detection algorithms are

frequently rapid, but their detection precision is much

substandard to that of two-stage detection methods. With the

rapid advancement of computer vision, the present single-stage

object detection framework’s speed and accuracy have

substantially increased. Figure 3, reviews the backbone

network of the single-stage detection algorithm and the

detection accuracy (mAP) and detection speed on the

PASCAL VOC2007 test set, PASCAL VOC2012 test set and

COCO test set, as well as Table 3 recaps the advantages,

disadvantages and applicable situations of the single-stage

object detection algorithm. The Performance assessment of

single-stage Object detection algorithms as shown in Figure 3.

Table 3 shows how the single-stage object detection

algorithm improves object detection performance by

employing pyramids to pact with pose changes and small

object detection problems, novel training tactics, data

augmentation, a mixture of changed backbone networks,

multiple detection frameworks, and other techniques. The

YOLO series is not practical for small-scale and dense object

detection, and the SSD series has improved this to achieve high-

precision, multi-scale detection.
3.3 Object detection algorithm based on
Generative Adversarial Networks

Goodfellow et al. (2014) proposed Generative Adversarial

Networks (GANs), which are unsupervised generative models

that work based on the maximum likelihood principle and use

adversarial training. The objective behind adversarial learning is

to train the detection network by using an adversarial network to

generate occlusion and deformed image samples, and it is one of

the most used generative model methods for generating data

distribution. GAN is more than just an image generator; it also

uses training data to perform object detection, segmentation,

and classification tasks across various domains.
3.3.1 A-Fast-RCNN algorithm
Wang et al. (2017) introduced the idea of adversarial

networks and proposed the A-Fast-RCNN algorithm that

uses adversarial networks to generate complex positive

samples. Different from the traditional method of directly

generating sample images, this method adopts some

transformations on the feature map: (1) In the Adversarial

Spatial Dropout Network (ASDN) dealing with occlusion, a
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Mask layer is added to realize the part of the feature

Occlusion, select Mask according to loss; (2) In the

Adversarial Spatial Transformer Network (ASTN) that

deals with deformation, partial deformation of features is

achieved by manipulating the corresponding features.

ASDN and ASTN provide two different variants, and by

combining these two variants (ASDN output as ASTN

input), the detector can be trained more robustly. In
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comparison with the OHEM (Online Hard Example

Mining) method, on the VOC 2007 dataset, the method is

slightly better (71.4% vs. 69.9%), while on the VOC 2012

dataset, OHEM is better (69.0% vs. 69.8%). The introduction

of adversarial network into object detection is indeed a

precedent. In terms of improvement effect, it is not as

good as OHEM, and some occlusion samples may lead to

misclassification. Table 4 shown the data Augmentation-
TABLE 3 Advantages, disadvantages, and applicable situations of single-stage Object detection algorithms.

Model Advantage Disadvantage Applicable

YOLO Divide the image into grid cells for fast detection Not good for dense and small object detection Object Detection

YOLOv2 Use clustering to make anchor boxes to improve classification
precision

Using pre-training, difficult to transfer Object Detection

YOLOv3 Using the residual learning idea to realize multi-scale detection The model is complex, and the detection effect of medium and
large-scale objects is poor

Multi-scale object
detection

YOLOv4 Excellent trade-off of detection accuracy and detection speed Detection precision needs to be better High-precision real-
time object detection

YOLOv5 Small model size, lower deployment costs, high flexibility, and
high detection speed

Performance needs to be improved Object Detection

SSD Multi-scale anchor box discretization of boundary space The accuracy rate is low, the model is difficult to converge, and
the detection effect of small targets is not improved.

Multi-scale object
detection

DSSD Use ResNet-101 as the backbone network to improve the
detection consequence of small objects

Slow detection speed compared to SSD Object Detection

R-SSD Improved feature fusion method to improve detection accuracy The model calculation is complex, and the detection speed is
average

Object Detection

F-SSD Reconstruct the pyramid feature map to fuse features of different
scales, which is beneficial to small object detection

Slow detection speed compared to SSD Multi-scale object
detection

DSOD No pretraining required Normal detection speed Object Detection

RetinaNet Optimize the ratio of positive and negative samples through
Focal Loss

When training with dense samples, it will cause sample
imbalance

Lightweight, multi-
scale object detection
FIGURE 3

Performance assessment of single-stage Object detection algorithms in different datasets.
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based object detection in Multimedia, Agriculture and

Remote sensing.

3.3.2 SOD-MTGAN algorithm
Bai et al. (2018) developed an end-to-end multi-task

generative adversarial network (Small Item Detection via

Multi-Task Generative Adversarial Network, SOD-MTGAN)

technique in 2018 to increase small object detection accuracy.

It uses a super-resolution network to up trial small muddled

photos to fine images and recover comprehensive information

for more accurate detection. Furthermore, during the training

phase, the discriminator’s classification and regression losses are

back-propagated into the generator to provide more specific

information for detection. Extensive trials on the COCO dataset

demonstration that the method is operative in recovering clear

super-resolved images from blurred small images, and that it

outperforms the state-of-the-art in terms of detecting

performance (particularly for small items).

3.3.3 SAGAN algorithm
Traditional Convolutional Generative Adversarial Networks

(CGANs) only generate functions of spatially local points on

low-resolution feature maps, thereby generating high-resolution

details. The Self-Attention Generative Adversarial Network (SA-

GAN) proposed by Zhang et al. (2019) allows attention-driven

and long-term dependency modeling for image generation tasks.

It can generate details from cues at all feature locations, and also

applies spectral normalization to improve the dynamics of

training with remarkable results.

3.3.4 Your local GAN algorithm
Daras et al. (2020) proposed a two-dimensional local

attention mechanism for generative models (2DLAMGM), and

introduced a new local sparse attention layer that preserves 2D

geometry and locality. It replaces the dense attention layer of

SAGAN (Self-Attention Generative Adversarial Networks), and

on ImageNet, the FID score is optimized from 18.65 to 15.94.
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The sparse attention pattern of the new layers proposed in this

method is designed using the new information-theoretic

criterion of the information flow graph, and a new method for

reversing the attention of adversarial generative networks is

also proposed.

3.3.5 MSG-GAN stabilized image synthesis
algorithm

GANs although partially successful in image synthesis tasks,

were unable to adapt to different datasets, in part due to

unpredictabi l i ty during training and sensit ivity to

hyperparameters. One cause for this instability is that when

the supports of the real and virtual distributions do not overlap

enough, the gradients passed from the discriminator to the

generator will become underinformed. In response to the

above problems, Karnewar and Wang (2019) planned a Multi-

Scale Gradient Generative Adversarial Network (MSG-GAN),

which consents gradients to flow from the discriminator to the

generator at multiple scales for high resolution Rate image

synthesis provides a stable method. MSG-GAN converges

stably on datasets of different sizes, resolutions, and domains,

as well as on different loss functions and architectures.
4 Deep learning-based object
detection algorithm improvement

The rapid development of deep learning has increased the

feasibility of improving various classical object detection

algorithms in many ways. This section summarizes the main

popular improvement methods from the aspects of data

processing, model construction, prediction object and loss

calculation, and discusses their characteristics, so that different

algorithms can express different problems for different problems.

The improved scheme corresponding to the algorithm detection

process is shown in Figure 4.
TABLE 4 Data Augmentation-based object detection in Multimedia, Agriculture and Remote sensing.

Reference (Multimedia,
Agriculture and Remote
sensing)

Method description

(Haruna et al., 2022) To improve the accuracy of deep learning models for identifying rice leaf disease, we built a GAN-based data augmentation
pipeline with the state-of-the-art StyleGAN2-ADA and the variance of Laplace filter to generate high-quality synthetic rice leaf
disease images.

(Bhakta et al., 2022) Using state-of-the-art Generative Adversarial Network (GAN) technology, we can simulate thermal images of a rice plant with
bacterial leaf blight.

(Liu W et al., 2021) A multiscale attention module that boosts the Cycle-Consistent Adversarial Network (CycleGAN) in both spatial and channel
dimensions to boost the quality of synthetic images.

(Yan et al., 2019) The dataset trained a faster region-based convolutional neural network (Faster R-CNN) built on Res101netwok, which was then
used to classify both synthetic and real images.

(Bosquet et al., 2022) Synthetic data of superior quality achieved by combining a GAN with image inpainting and mixing.
DS-GAN can create believable miniature things.
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4.1 Data processing

4.1.1 Data augmentation
In the object detection algorithm based on deep learning,

data augmentation techniques are divided into two types:

supervised and unsupervised. Supervised data augmentation

methods can be separated into three classes: geometric

changes, color transformations, and hybrid transformations;

unsupervised data augmentation methods can be divided into

two sorts : generat ing new data and learning new

augmentation strategies.

Currently, the research on supervised data augmentation

strategies has tended to be perfect, and it has become the main

requirement to combine multiple data augmentation

techniques to improve model performance. The main reasons

are as follows:
Fron
1. The widespread use of supervised data enhancement

methods makes unsupervised data enhancement

methods less valued to a certain extent;

2. The Object detection algorithm is gradually

developing towards an end-to-end network,

integrating data enhancement methods. It has

become a requirement in the algorithm, but the

unsupervised data enhancement method has certain

difficulties in integration due to its complexity and

large amount of calculation, and its application scope

is limited;

3. The generative adversarial network or reinforcement

learning-related technologies required for unsupervised

data augmentation methods are complex and diverse,

which hinders researchers’ exploration.
tiers in Plant Science 11
4.2 Model construction

4.2.1 Improve the network structure
In 2015, the ResNet network first proposed the residual

block (Residual block), which made the convolutional network

deeper and less prone to degradation. As an improvement of the

ResNet network, the DenseNet network Huang G. et al. (2017)

achieves feature reuse by establishing dense connections among

all former layers and the current layer, which can achieve well

performance than the ResNet network with fewer parameters

and less computational cost. The core part of the GoogLeNet

network is the Inception module, which extracts the feature

information of the image through different convolution kernels,

and uses a 1×1 convolution kernel for dimensionality reduction,

which significantly reduces the amount of computation. Feature

Pyramid Networks Lin et al. (2017) (Feature Pyramid Networks,

FPN) have made outstanding contributions to identifying small

objects. As an improvement of the FPN network, the PANet

network Liu et al. (2018) adds a bottom-up information transfer

path based on the FPN to make up for the insufficient utilization

of the underlying features. The structure is shown in Figure 5.

The existence of the fully connected layer leads to the fact that

the size of the input image must be uniform, and the proposal of

SPP-Net He et al. (2015) solves this problem, so that the size of the

input image is not limited. Efficient-Net Tan and Le (2019) does

not pursue an increase in one dimension (depth, width, image

resolution) to improve the overall precision of the model but

instead explores the best combination of these three dimensions.

Based on EfficientNet, Tan et al. (2020) suggested a set of Object

detection frameworks, EfficientDet, which can achieve good

performance for different levels of resource constraints. The

comparison of the above networks is shown in Table 5.
B CA

FIGURE 4

The corresponding improvement scheme of algorithm detection flow (A) Augmentation (B) Deep Learning (C) Results.
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Some scholars have introduced the above optimization

scheme in the improvement of the network structure of

related models to make the detection results more ideal. The

related literature of the GoogLeNet network is a typical

optimization method of the Inception module (Shi et al., 2017)

and the optimization process is shown in Figure 6.

In order to better improve the model detection accuracy,

today’s network structure is gradually increasing the depth

(residual module), width (Inception module) and context

feature extraction capabilities of the network model (Li et al.,

2016; Ghiasi et al., 2019; Cao et al., 2020b), etc. However, the

resulting model is complicated and redundant, making the

improved algorithm more difficult to apply in real life scenarios.
4.3 Other improved algorithms

At present, researchers have done a lot of study on the two-

stage object detection algorithm and the single-stage object

detection algorithm, so that they have a certain theoretical

basis. The two-stage object detection algorithm has an

advantage in detection accuracy, and needs to be continuously

improved to enhance the detection speed; the single-stage object

detection algorithm has an advantage in detection speed, and the

model needs to be continuously improved to increase the

detection accuracy, so some researchers put the two types of

algorithm models such as detection accuracy and detection

speed, as shown in Figure 7.

In 2017, the RON (Reverse connection with Objectness prior

Networks) Kong et al. (2017) algorithm is an efficient and

efficient algorithm based on the two-stage detection framework

represented by Faster R-CNN and the single-stage detection

framework signified by YOLO and SSD. Under the fully

convolutional network, similar to SSD, RON uses VGG-16 as

the backbone network, the difference is that RON changes the
Frontiers in Plant Science 12
14th and 15th fully connected layers of the VGG-16 network

into a kernel size of 2 × 2. In tests, RON achieves state-of-the-art

object detection performance, with input 384×384 size images,

the mAP reaches 81.3% on the PASCAL VOC2007 dataset, and

the mAP improves to 80.7% on the PASCAL VOC 2012 dataset.

Zhang et al. (2018) designed the RefineDet algorithm, which

inherited the advantages of single-stage detectors and two-stage

detectors. RefineDet uses VGG-16 or ResNet-101 as the

backbone network for feature extraction, and integrates the

neck structure (feature pyramid and feature fusion) into the

head structure.
5 Object detection and recognition
applications in agriculture using AI

The use of computer vision technology to inspect

agricultural products has the advantages of real-time, objective,

and no damage, so it is favored by people. Saldaña et al. (2013)

discussed the method of applying computer vision technology to

detect mango weight and fruit surface damage, analyzed the

algorithm to determine the required image area, and established

the correlation between mango weight and its projected image.

Experiments show that the accuracy rate of fruit surface damage

classification is 76% and 80%, respectively. Slaughter and Harrell

(1989) and others first studied using the chromaticity and

brightness information of images taken under natural light

conditions to guide the citrus harvesting manipulator, and

established a classification model for identifying citrus from

trees using color information in color images. The classifier was

75 percent accurate in identifying oranges from the orchard’s

natural environment.

Huang X. et al. (2017) realized the detection and

localization of apples through pattern recognition, mainly

using an algorithm to realize the identification of apples,
B C
D

E

A

FIGURE 5

PANet model steps (A) FPN Backbone Network (B) Bottom Up Path Enhancement (C) Adaptive feature pooling (D) Fully Connected fusion.
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filtering and boundary extraction of the original image of the

apple tree, and calculating Determines the outline of the apple

relative to the shape of the image. Wang and Cheng (2004)

studied the identification method of apple fruit stem and fruit

body and the search method of fruit surface defect. According

to the characteristics of apple fruit stalk, it is proposed to use

block scanning to judge whether the fruit stalk exists; the
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different reflection characteristics of the damaged surface and

the non-damaged surface of the apple, as well as the statistical

characteristics of the pixel points of different gray values, are

analyzed to find out the damaged surface. The damaged area

was separated from the fruit pedicel and the fruit calyx. The

judging accuracy rate of 15 images without fruit stems was

100%, and the accuracy rate of 90 pictures with intact fruit
TABLE 5 Comparison of advantages and disadvantages of related networks.

Network
name

Advantage Disadvantage References
of applica-
tions in

Multimedia,
Agriculture
and Remote
Sensing

SPP-Net Facilitate multi-scale training Requires huge storage space for feature
extraction and SVM classification tasks

(Ding et al.,
2018; Gao et al.,
2019; Hespeler
et al., 2021)

GoogLeNet Use a 1×1 convolution kernel to reduce the amount of computation; increase the width
of the single-layer convolution to improve the network’s ability to extract features

There is still 5×5 convolution kernels to
increase the network operation; including
more complex hyperparameters, each
transformation needs to specify the size and
number of convolution kernels

(Ding et al.,
2019; Eser, 2021;
Diwan et al.,
2022)

ResNet The residual module adopts skip connection, which alleviates the problem of gradient
disappearance and degradation caused by the network being too deep.

The number of limits is large, and the
hardware requirements are slightly higher;
when the number of network layers is too
deep, the mitigation effect of problems such
as gradient disappearance will be greatly
reduced

(Zhong et al.,
2018; Pan et al.,
2021; Storey
et al., 2022)

DenseNet Compared with ResNet, the amount of parameters and computation is greatly reduced,
and the accuracy is improved; it effectively solves the problem of overfitting caused by
too few data sets; dense connections are used to strengthen feature propagation

During training, since the splicing operation
will re-open a new memory storage space to
save the spliced feature information, it
consumes a lot of memory.

(Zhu et al., 2019;
Dubey et al.,
2023; Huang X.
et al., 2017)

FPN Multi-scale feature fusion to improve the accuracy of small Object detection Top-down structure, the underlying features
are not fully utilized

(Hu et al., 2022;
Gunturu et al.,
2022;Liu N.
et al., 2021)

PANet Make full use of high-level semantic information and low-level location information In addition to the top-down structure, a
bottom-up structure is also constructed,
which requires a lot of additional
computational overhead

(Cheng G. et al.,
2020;Chen et al.,
2021; Piao et al.,
2021)

ResNeXt The multi-branch network structure is simplified by grouping convolution; the overall
performance is better than ResNet when the parameter quantity remains basically
unchanged; the modular structure is easy to transplant;

Compared with the overall operation,
grouped convolution is less efficient in
hardware execution.

(Lin et al., 2020;
Savarimuthu,
2021; Shi et al.,
2021)

EfficientNet The three dimensions of network depth, width and image resolution are well balanced;
in the case of reducing the amount of parameters, the detection accuracy has been
qualitatively improved

There are too many network layers, and the
intermediate results of all layers need to be
saved during gradient calculation, which
requires high hardware and occupies a large
amount of video memory; when the image
size is too large, the training speed will be
slowed down

(Alhichri et al.,
2021; Nguyen
et al., 2021;
Chatterjee et al.,
2022)

EfficientDet The Bidirectional Feature Pyramid Network (BiFPN) proposed on the basis of PANet
has the characteristics of cross-scale connection and weighted feature fusion, which is
more efficient for feature detection; compound scaling is performed on multiple aspects
at the same time to find the depth, width, and resolution. The best combination results
in more accurate and objective results; it is ahead of common target detection models
in terms of accuracy and computational complexity, such as: Yolo v3, Mask-RCNN, etc.

In view of its characteristics of using neural
network to search for the optimal
architecture, the time and hardware cost
required for training the model will be
extremely high; the target detection
framework has poor modular structure,
which is not conducive to integration

(Wei et al., 2021;
Chatterjee et al.,
2022;
Basavegowda
et al., 2022)
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stems was 88%. Mahanti et al. (2021) used line scanning and

analog cameras to detect apple damage, respectively, and

showed that using digital image processing technology to

detect apple damage can at least reach the accuracy of

manual classification.
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Ying et al. (2000) used computer vision for a new method of

huanghua pear fruit stalk recognition. The computer vision

system was used to capture images of huanghua pear, and

image processing technology was used to complete the

segmentation of the image and the background. The stem
B

C

D

A

FIGURE 6

Inception modules (A) Inception original module (B) Replacing the 5*5 convolution kernel with a 3*3 convolutional kernal (C) Single * n kernel
(D) Inception V4.
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speed is slow, so a fast algorithm is proposed. This method uses

the small diameter of the stem of the pear, selects templates of

different sizes, determines whether there is a stem in the image,

and obtains the coordinates of the intersection of the head of the

stem and the bottom of the pear. The tangent slope information

is used to judge the integrity of the fruit stalk. The test results

show that the algorithm can 100% judge whether the fruit stalk

exists, and the correct rate of judging whether the fruit stalk is

intact is more than 90%. Li et al. (2018) applied computer vision

technology to detect the bruising injury of pears, and proposed

to distinguish multiple bruising injuries by regional marking

technology. In order to improve the measurement accuracy of

the bruising area, a mathematical model for measuring the

bruising area was established according to the shape of the

pear and the characteristics of the bruising. This method can
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accurately detect multiple crush injuries of pears, and the relative

error of most measurements can be controlled within 10%. Patel

et al. (2012) conducted an experimental study on Huanghua

pear’s machine vision technology to detect the external

dimension and performance status. By determining the image

processing window, using the Sobel operator and Hilditch to

refine the edge, and determining the centroid point to find the

representative fruit diameter, the test results show that the

correlation coefficient between the predicted fruit diameter

and the actual size can reach 0.96. For the detection of fruit

surface defects, it is proposed to use the mutation of red (R) and

green (G) color components at the junction of damaged and

non-damaged to obtain suspicious points, and then to obtain the

entire damaged surface through regional growth. Chang (2022)

developed a machine vision system for the quality inspection of
FIGURE 7

The Evolution of mainstream GAN.
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Huanghuali, taking Huanghuali as the research object, and

compared the influence of different intensity light sources and

different backgrounds on the collected images, and developed a

system suitable for Huanghuali and different backgrounds.

Machine vision systems for other fruit quality inspections.

Cubero et al. (2011) developed a machine vision system

suitable for the quality inspection of Huanghuali by studying

the spectroscopic reflection characteristics of Huanghuali. In

order to adapt to the randomness of fruit orientation and the

irregularity of fruit shape in actual production According to the

requirements of the fruit size detection method, the method of

fruit size detection has better adaptability. A method of using the

minimum circumscribed rectangle (MER) method of fruit to

find the maximum transverse diameter is designed, and the

experimental verification is carried out, and the actual maximum

transverse diameter is obtained. The regression equation of the

relationship between the diameter and the predicted transverse

diameter, the relationship between the two The coefficient is

0.996 2. The variation characteristics of the gray levels of R, G,

and B components in the defect area of Huanghuali were

analyzed, and finally the maximum combined set of defect

pixels and all defect areas were found.

Li et al. (2022) put forward a method for identifying germ

and endosperm with saturation S as a characteristic parameter

by analyzing the color characteristics of germ rice and color

images, in order to realize the automatic computer vision of rice

germ retention rate detection. Experiments are carried out with

the established identification indicators and methods, and the

results show that the coincidence rate between the identification

results of the computer vision system and the manual detection

is over 88%.
6 Object detection and recognition
applications in agriculture using AI

The detection and recognition of objects based on remote

sensing images is a current research focus in the field of target

detection. AI brings much improvement in different

applications of computer vision and a lot of latest progress in

all applications improve it methods (Nawaz et al., 2020; Nawaz

et al., 2021). The detection and recognition methods used can

be divided into two types: target detection algorithms based on

traditional methods and target detection algorithms based on

deep learning. Commonly used target detection algorithms

based on traditional methods include HOG feature algorithm

combined with SVM algorithm, Deformable Parts Model

(DPM), etc.; target detection and recognition algorithms

based on deep learning can be roughly summarized into two

categories, namely R-CNN series algorithm based on two stage

method and YOLO series algorithm based on one stage method
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(Han et al., 2022), SSD (Single Shot Multibox Detector) series

algorithm (Arora et al., 2019).

Initially, the detection of remote sensing images to obtain

information is mainly through manual visual analysis, and the

amount of information obtained in this way completely depends

on the professional ability of technicians. After more than ten

years of development, a new technology has appeared to be

applied to the reading of remote sensing image information. This

new method detects and recognizes targets through statistical

models. For example, Peng et al. (2018) is in order to achieve

higher classification accuracy using the maximum likelihood

method for remote sensing image classification, etc. Kassim et al.

(2021) proposed a multi-degree learning method, which first

combined feature extraction with active learning methods, and

then added a K-means classification algorithm to improve the

performance of the algorithm. Du et al. (2012) proposed the

adaptive binary tree SVM classifier, which has further improved

the classification accuracy of hyperspectral images. Luo et al.

(2016) studied an algorithm called small random forest, the

purpose is to solve the problem of low accuracy and overfitting

of decision trees. In addition, due to the problems of low

detection accuracy and long time consumption, the traditional

target detection method cannot meet the real-time requirements

of the algorithm in practical applications.

In 2006, Geoffrey Hinton and his students published a paper

related to deep learning (Hinton and Salakhutdinov, 2006),

which opened the door to object detection and recognition

using deep learning. In recent years, with the breakthrough of

deep learning theory, the detection accuracy and detection speed

of target detection algorithms have been effectively improved, so

that the feature information in images can be extracted by deep

learning, which gradually replaces the information based on

manual methods and traditional methods. Extraction has

become the main direction of object detection research.

In the 2017 ImageNet competition, trained and learned a

million image datasets through the design of a multi-layer

convolutional neural network structure. The classification

error rate obtained in the final experiment was only 15%, and

the second place in the competition. That’s nearly 11% higher. In

addition, many researchers have used deep learning to detect

and recognize remote sensing image targets, and have achieved

good results and achieved many breakthroughs (Krizhevsky

et al., 2017). Mnih and Hinton (2010) used two datasets of

remote sensing images to conduct research on deep learning

technology. They extracted road features from images for

training and achieved good experimental results. This is the

first time that deep learning is used. applied to remote sensing

technology. Zou et al. (2015) developed a new algorithm for

extracting features in images. The algorithm designed a deep

belief network structure and conducted experiments on feature

extraction, and finally achieved an accuracy of 77%. Ienco et al.
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(2019) used a combination of deep learning and a patch

classification system to detect ground cover, and achieved

good detection results. Wei et al. (2017) developed a more

accurate convolutional neural network for road structure

feature extraction, and this algorithm has a remarkable effect

on road extraction from aerial images. Cheng et al. (2018)

proposed a rotation-invariant CNN (RICNN) model, which

effectively addresses the technical difficulties of object

detection in high-resolution remote sensing images. From the

object detection experiment of remote sensing images using deep

learning, it can be concluded that the extraction of target features

by constructing a deep model structure can effectively improve

the detection effect. (Bhatti et al., 2021) used edge detection for

identification of objects in remote sensing images by using

geometric algebra methods.
7 Challenges for object detection in
agriculture

7.1 Insufficient individual feature layers

Deep CNN plannings generate hierarchy feature maps due

to pooling and subsampling operations, resulting in changed

layers of feature maps with differing 3D resolutions. As is

generally known, the feature maps of the early-layer feature

maps have a higher resolution and signify smaller response

fields. They also lack high-level semantic information, which is

necessary for object detection. The latter-layer feature maps, on

the other hand, contain additional semantic information that is

required for detecting and classifying things like distinct object

placements and illuminations. Higher-level feature maps are

valuable for classifying large objects, but they may not be enough

to recognize small ones.
7.2 Limited context information

Small items usually have low resolutions, which makes it

difficult to distinguish them. Contextual information is crucial in

small item detection because small objects themselves carry

limited information. From a “global” picture level to a “local”

image level, contextual information has been utilized in object

recognition. A global image level takes into account image

statistics from the entire image, whereas a local image level

takes into account contextual information from the objects’

surrounding areas. Contextual characteristics can be divided

into three categories such as local pixel context, semantic

context, and spatial context.
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7.3 Class imbalance

The term “class imbalance” refers to the unequal distribution

of data between classes. There are two different sorts of class

disparities. One issue is a disparity between foreground and

background instances. By densely scanning the entire image,

region proposal networks are utilized in object detection to

create possible regions containing objects. The anchors are

rectangular boxes that have been extensively tiled throughout

the full input image. Anchor scales and ratios are pre-

determined based on the sizes of target items in the training

dataset. When detecting little items, the number of anchors

generated per image is higher than when recognizing large

things. Positive instances are only those anchors that have a

high IoU with the ground truth bounding boxes. Anchors are

considered bad examples since they have little or no overlap with

the ground truth bounding boxes. The sparseness of ground-

truth bounding boxes and IoU matching procedures between

ground-truth and anchors are both drawbacks of the anchor-

based object identification methodology, and the dense sliding

window strategy has a high temporal complexity, making

training time consuming.
7.4 Insufficient positive examples

Most object detection deep neural network models were

proficient with objects of varying sizes. They usually work well

with huge objects but not so well with small ones. A lack of

small-scale anchor boxes produced to match the small objects, as

well as an inadequate number of examples to be properly

matched to the ground truth, could be the cause. The anchors

are feature mappings from certain intermediate layers in a deep

neural network that are projected back to the original image.

Anchors for little objects are difficult to come by. In addition, the

anchors must match the ground truth bounding boxes. The

following is an example of a widely used matching method. A

positive example is one that has a high IoU score in relation to a

ground truth bounding box, such as more than 0.9.

Furthermore, the anchor with the highest IoU score for each

ground truth box is designated as a positive example. As a result,

small objects usually have a limited number of anchors that

match the ground truth bonding boxes.
8 Conclusion

Deep learning-based object detection techniques have become

a trendy research area due to their powerful learning capabilities
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and superiority in handling occlusion, scale variation, and

background exchange. In this paper, we introduce the

development of object detection algorithms based on deep

learning and summarize two types of object detectors such as

single and two-stage. In-depth analysis of the network structure,

advantages, disadvantages, and applicable scenarios of various

algorithms, we compare the analysis of standard data sets and

experimental results of different related algorithms onmainstream

data sets. Finally, this study summarizes some application areas of

object detection to comprehensively understand and analyze its

future development trend.
Future work

Based on the analysis and summary of the above knowledge,

we propose the following directions for future research.
Fron
• Video object detection has problems such as uneven

moving targets, tiny targets, truncation, and occlusion,

and it isn’t easy to achieve high precision and high

efficiency. Therefore, studying multi-faceted data

sources such as motion-based objects and video

sequences will be one of the most promising future

research areas.

• Weakly supervised object detection models aim to detect

many non-annotated corresponding objects using a

small set of fully annotated images. Therefore, using

many annotated and labeled pictures with target objects

and bounding boxes to train the network to achieve high

effectiveness efficiently is an essential issue for future

research.

• Region-specific detectors tend to perform better,

achieving higher detection accuracy on predefined

datasets. Therefore, developing a general object

detector that can detect multi-domain objects without

prior knowledge is a fundamental research direction in

the future.
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• Remote sensing photos are frequently employed in

military and agricultural industries and are detected in

real-time. The rapid development of these fields will be

aided by automatic model detection and integrated

hardware components.
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