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Osmotic stress can occur due to some stresses such as salinity and drought,

threatening plant survival. To investigate the mechanism governing the pistachio

response to this stress, the biochemical alterations and protein profile of PEG-

treated plants was monitored. Also, we selected two differentially abundant

proteins to validate via Real-Time PCR. Biochemical results displayed that in

treated plants, proline and phenolic content was elevated, photosynthetic

pigments except carotenoid decreased and MDA concentration were not

altered. Our findings identified a number of proteins using 2DE-MS, involved in

mitigating osmotic stress in pistachio. A total of 180 protein spots were identified,

of which 25 spots were altered in response to osmotic stress. Four spots that had

photosynthetic activities were down-regulated, and the remaining spots were up-

regulated. The biological functional analysis of protein spots exhibited that most of

them are associated with the photosynthesis and metabolism (36%) followed by

stress response (24%). Results of Real-Time PCR indicated that two of the

representative genes illustrated a positive correlation among transcript level and

protein expression and had a similar trend in regulation of gene and protein.

Osmotic stress set changes in the proteins associated with photosynthesis and

stress tolerance, proteins associated with the cell wall, changes in the expression of

proteins involved in DNA and RNA processing occur. Findings of this research will

introduce possible proteins and pathways that contribute to osmotic stress and

can be considered for improving osmotic tolerance in pistachio.
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Introduction

Since plants are sessile, they could not change their location and are continuously

subjected to various stresses that threaten their survival. Osmotic stress, which results from

abiotic stresses such as salinity, drought, and cold, and is one of the most common stresses in

nature, is caused by a decrease in water potential in the environment around the roots (Xiong
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and Zhu, 2002; Zang and Komatsu, 2007; Toorchi et al., 2009), which

limits the plant’s ability to absorb water and restricts water

accessibility (Zang and Komatsu, 2007). Osmotic stress appears in

various morphological, physiological, and biochemical dimensions in

the plant. Tolerance to stress is a complicated phenomenon. To deal

with this stress, plants trigger a variety of response mechanisms that

require three steps of stress recognition, signal transduction, and the

generation of related response components (Zang and Komatsu,

2007; Zhou et al., 2012). These responses enable plants to save

water and reprogram cell metabolism for adaptation to stress

(Ngara et al., 2018).

Plant survival against stress requires the rearrangement of many

molecular processes and reregulation of many genes. Examination of

mRNA expression is not sufficient to predict the events that occur in

the plant during exposure to stress because there is a low correlation

between the abundance of mRNAs and proteins (Wang et al., 2020).

Moreover, proteins play important roles in all cellular processes such

as gene regulation, transcription, translation, cell detoxification,

protection of macromolecules, and osmotic adjustment (Pasaribu

et al., 2021). Hence, studying the expression of proteins provides us

with more information about plant behavior under stress. Numerous

studies show that proteomics is a beneficial tool for analyzing osmotic

stress induced changes. Zang and Komatsu (2007) showed that the

accumulation of 15 proteins under stress was altered in rice, most of

which were involved in lipid accumulation, proteasome regulatory

pathway, and glyoxalase system. Applying osmotic stress, in addition

to altering the expression of 37 proteins, including affeoyl-CoA-O-

methyltransferase and 20S proteasome alpha subunit A, led to

reduced root and hypocotyl lengths in soybean (Toorchi et al.,

2009). It has been reported that some main stress-responsive genes

and proteins involved in ROS scavenging, phytohormone and protein

metabolism, membrane stability, transport and signaling were active

under osmotic stress (Zhang and Shi, 2018; Wang et al., 2020).

Iran, as an origin area of pistachio and its largest producer, is

located in the arid regions, where environmental stresses which cause

osmotic stress, constantly threaten agriculture (Esmaeilpour et al.,

2015). According to the report of the Food and Agriculture

Organization (FAO), countries such as Iran, America, Turkey,

China and Syria respectively have the largest production of

pistachios in the world (FAO, 2020). Pistachio is one of the most

important strategic products of Iran, which has decreased in recent

years due to the increase of osmotic stresses such as salinity stresses

(Rahimi et al., 2021). According to the FAO report, the amount of

production of this valuable product in Iran has decreased from 575

thousand tons in 2016 to 190 thousand tons in 2020 (FAO, 2020).

Iran is the principal exporter of pistachio crop in the world, which

recently its production due to over salinity water and soil has been

reduced. According to this fact, in the present study, our aim is to

identify important pathways related to osmotic stress through

investigating changes of the proteome profiling of pistachio leaves

using 2DE-MS under osmotic stress.
Materials and methods

The seeds of Pistacia vera L. cv. Akbari were obtained from the

Iranian Pistachio Research Institute (IPRI), Rafsanjan, Iran. The seeds
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were soaked in water for 24h and germinated for a week in 9cm petri

dishes with double layers of Whatman filter paper. The germinated

seeds were sown in 5L pots containing perlite and irrigated by

Hoagland solution for 10 weeks in a controlled greenhouse (25°C,

16h light/8h dark photoperiod with 30% relative humidity)

(Esmaeilpour et al., 2015). Then, plants were divided into two

groups, control group and osmotic treatment group, each treatment

with three replicates (three plants per pots and two pots per

replication). Pre-experiments was conducted to select the osmotic

treatment. The osmotic treatment (-1.5 MPa) was applied by adding

polyethylene glycol 6000 (PEG6000) to Hoagland solution as

described by Khoyerdi et al. (Khoyerdi et al., 2016) and maintained

for two weeks. The fully expanded leaves from the tip of each plant

were frozen in liquid nitrogen prior to being stored at -70°C for

physiological measurements and proteomics study.
Biochemical assays

For three biological replicates of each treatment, proline was

quantified following Carillo and Gibon (2011). Determining the

concentration of phenolic compounds was performed according to

Ainsworth and Gillespie (2007). Malondialdehyde (MDA) content

were measured based on the study of Velikova et al. (Velikova et al.,

2000). Photosynthetic pigment’s assay (chlorophyll a, chlorophyll b,

and carotenoids) was carried out according to the method of

Lichtenthaler and Buschmann (2001).
Protein extraction

According to modified Hurkman and Tanaka (1986) method,

after homogenizing 500mg of fresh leaves in liquid nitrogen for three

biological replicates of each treatment, 1 mL of cold extraction buffer

comprising of 20mM Tris−HCl, (pH 7.5), 1mM EGTA, 1mM PMSF,

and 1mM DTT was prepared and added. Then, the sample was

incubated at 4°C for 90 min and centrifuged at 20,000×g for 45 min.

Four volumes of cold acetone containing 0.08% b-mercaptoethanol

and 12% TCA was added to the supernatant as it was incubated at

-10°C for 15h. After that, the sample was centrifuged at 20,000×g for

45min. The pellet was washed by cold acetone including 0.08% b-
mercaptoethanol seven times at -10°C for 4h and then lyophilized.

Finally, the pellet was resolved in lysis buffer comprising of 7M urea,

2M thiourea, 4% CHAPS, 35mM TRIS−HCl, 1% w/v DTT, and 1% v/

v Ampholyte, pH 3.5–10) and incubated at 25°C for 1h and then

centrifuged at 12,000×g for 15min. The supernatant containing

proteins was stored at -80°C. Proteins amounts were assayed by

Bradford (1976) method.
Detection of proteins by 2-dimensional gel
electrophoresis

120µg protein was added to 320µg rehydration buffer including

8M urea, 2% CHAPS, 0.018M DTT, 2% IPG buffer (pH 3–10), and

0.002% bromophenol blue. Rehydration buffer was loaded to 17 cm

IPG linear gradient strips (Bio-Rad) with pH 4–7 in a rehydration tray
frontiersin.org
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at 25°C for 12–16h. Isoelectric focusing (IEF) was carried out on a

Multiphor II electrophoresis system (Amersham Pharmacia Biotech)

at 20°C pursuant to the following conditions: 150Vh at 0–300 V,

300Vh at 300–500 V, followed by 2000Vh at 500-3500 V and finally

39,500Vh at 3500V. A maximum of 50µA per strip was used for the

electric current. Equilibrium buffer comprising of 50mM Tris-HCl

(pH 8.8), 6M urea, 30% glycerol (v/v), 2% SDS, 1% DTT, and

bromophenol blue was used for balancing IEF strips for 15 min.

Afterwards, strips were put onto 12.5% SDS-PAGE gels on Protein II

Xi Cell (Bio- Rad) apparatus. Gels were stained using silver nitrate

according to Blum et al. (Blum et al., 1987) protocol. After staining,

the gels were scanned using Bio-Rad’s GS800 densitometer and then

converted into TIF format using PDQuest software. Melanie software

(version 7) was used for quantitative and qualitative evaluation of

protein spots in different treatments (Fatehi et al., 2012; Fatehi et al.,

2013). Only spots with reproducible alternations (at least 1.5-fold

change) in three biological replicates were used in further analyzes.
In gel digestion and of protein Identification
by MALDI/TOF/TOF MS

In-gel digestion and mass spectrometry were carried out

according to Pakzad et al. (Pakzad et al., 2019). Briefly, spotه were

manually excised from the gels and destined for 1 h at 28 C by fresh

wash solution (50% acetonitrile 50 mM ammonium bicarbonate

(50:50 v/v)). Then washing solution were eliminated and spots

dried for 30 min at 37°C. Protein reclamation and alkylation were

carried out by 10 mM dithiotreitol (DTT) and 55 mM iodoacetamide

(IAA), respectively, and then tryptic digestion were done in 50mM

ammonium bicarbonate (pH 8) using MassPREP automated digester

station (PerkinElmer). Peptides were extracted using a solution

containing 2% acetonitrile and 1% formic acid and lyophilized.

Using a solution including of 0.1% TFA (trifluoroacetic acid) and

10% acetonitrile, lyophilized peptides were solved. The peptide mixed

in 5 mg/mL of a-cyano-4-hydroxycinnamic acid (CHCA) (MALDI

matrix), 50% acetonitrile, 6mM ammonium phosphate monobasic

and 0.1% trifluoroacetic acid. The Mass Spectrometry information

were obtained using an AB Sciex 5800 TOF/TOF System, MALDI/

TOF/TOF (Framingham, MA, USA) with a 349 nm Nd : YLF

OptiBeam On-Axis laser.
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Mass spectrometry data was analyzed by MASCOT software

(Version 2.2, Matrix Science, London, UK) against Swiss-Prot.

Protein properties were gained from UniProt database (https://

www.uniprot.org/). More information about the function of

proteins was obtained from the scientific literature.
Bioinformatics analysis

The Gene Ontology (GO) analysis of identified proteins were

investigated via Uniprot (http://www.uniprot.org) and string

database (https://string-db.org). Protein–protein interaction was

evaluated by the search tool for interactions of chemicals (STITCH)

(http://stitch.embl.de).
Validate identified proteins using
quantitative real-time PCR

Based on the proteomics results, we validated three identified

proteins via q-PCR. Total RNA was extracted from control and

treated pistachio leaf by RNX – plus kit (Sinaclon, Iran). Synthesis

of cDNA and qRT-PCR were done as illustrated by Sadeghi, Mirzaei

(Sadeghi et al., 2022). Primers were designed using Primer 3 software

(Table 1). Three biological and technical replicates were considered

for each sample. The EF1a gene was considered as an endogenous

control (Moazzam Jazi et al., 2016) and normalization of the CT value

of each gene was done by REST software (Relative Expression

Software Tool). Change of transcription levels were quantified

through the Pfaffl method (Pfaffl et al., 2002).
Statistical analysis

To evaluate the significant differences between mean values of

control and osmotic treatment t-test were performed using SAS

software v9.1 (SAS Institute Inc., Cary, NC, USA). The

measurements are presented as mean ± standard deviation (SD) of

18 samples.
TABLE 1 The sequence of primers designed in this study.

Gene Forward and Reverse primers sequence (5′ - 3′) GC% Annealing temperature (°C) Amplicon size (bp)

Actin F: GTCAGCCACACTGTCCCCAT 60 62.13 91

R: GGGCGTCAGTAAGGTCACGA 60 61.87

Catalase isozyme 1 F: CAGGCGGACAAATCACTGGG 60
55

61.31
61.19

135

R: ACAGCAGTCATCCTTCCCGT

Abscisic acid receptor PYL9 F: CCAAACCCAACCCAAAGGTGA 52.38 60.97 131

R: CTCTGGGCTCGTGTCTGTGA 60 61.53

Aspartokinase 2 F: AGTGAGTTGTGAGGGAGCGA 55 60.83 132

R: CTCTCAGCAGAGGACACGGA 60 60.96
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Results

Biochemical parameters

MDA concentration was assayed as a lipid peroxidation product.

Osmotic stress did not change its concentration, while it increased the

level of phenolic compounds. Proline content was dramatically

increased when osmotic stress was applied. Stress affected

photosynthetic pigments except carotenoid, so that chlorophylls

were degraded under stress (Figure 1).
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Identification of differentially regulated
proteins

In present study, for finding the impact of osmotic stress, pistachio

seedlings were treated with PEG6000 to apply osmotic stress for two

weeks. Then, proteins of three biological replicates for treatment and

control were extracted from leaves and separated by 2-DE (Figure 2). Silver

nitrate and Melanie software were used for gel staining and analyzing,

respectively. Only differentially accumulated protein spots that represented

reproducible alterations were used for further analysis by MS.
FIGURE 1

The effect of osmotic stress on photosynthetic pigments, MDA, proline and phenolic compounds in leaves of pistachio under osmotic stress compared
with control. Bars indicated the SD (n = 3). Statistic were carried out at p = 0.05 according to the t test.
FIGURE 2

2-DE gel images of protein profiles from pistachio leaves. Control (A) and PEG treatment (B). 17cm IPG strip (pH 7-14) was used for loading proteins and
SDS-PAGE was done with a 12% gel. Gel was stained using CBB G-250. Proteins with differential regulation levels are marked by arrows.
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Out of 280 detected spots, 25 protein spots were significantly

altered in response to osmotic stress, accounting for about 8.9% of the

detected spots. Among them, only four proteins (spots 57, 64, 102,

and 137) were down-regulated and the others were up-

regulated (Table 2).

MALDI-TOF/TOF MS was applied to distinguish possible

identities of differentially expressed spots. Mascot search engine
Frontiers in Plant Science 05
searched the Swiss-Prot database, while a higher score as well as

higher sequence coverage was our criteria for selection.

The calculated pIs of nearly half of the identified proteins were in

the acidic pH range and those of the other half were in the neutral and

alkaline pH range. 64% of them were distributed in the range of 10,000

– 100,000 Da. whereas, monoisotopic mass of protein 31 was below

10,000 Da and those of proteins 60, 88, and 162 were above 100,000 Da.
TABLE 2 Protein properties of differentially expressed proteins of pistachio leaves under osmotic stress.

Annotations Spot No. Accession No. Score Coverage% MW
(Da) pI Accumulation Status

Photosynthesis and metabolism

Ribulose bisphosphate carboxylase large chain 57 P28458 58 12 52115 5.91 _*

Ribulose bisphosphate carboxylase small subunit 64 P07180 58 28 20446 6.73 _

Oxygen-evolving enhancer protein 1 102 P85194 57 29 34487 5.4 _

Photosystem I assembly protein Ycf4 137 Q8WI09 60 24 21398 9.83 _

Aspartokinase 2, chloroplastic 133 O23653 62 22 60137 6.31 +*

Glyceraldehyde-3-phosphate dehydrogenase A 113 P19866 52 28 43338 7.62 +

Putative cytochrome c oxidase subunit II PS17 31 P84733 41 100 1707 9.62 +

Thiosulfate/3-mercaptopyruvate sulfurtransferase 1 112 O64530 48 16 42152 5.95 +

Cytosolic sulfotransferase 4 12 Q8RUC1 54 35 32368 8.68 +

Stress response

Abscisic acid receptor PYL9 116 Q84MC7 41 31 21173 5.89 +

Phospholipase D alpha 3 122 P58766 41 7 93931 6.36 +

18.1 kDa class I heat shock 117 P19037 40 25 18123 6.77 +

Catalase-2 119 P25819 63 24 57237 6.63 +

Catalase isozyme 2 173 Q9XHH3 43 19 57141 7.71 +

Probable serine/threonine-protein kinase CST 34 P27450 51 19 46482 9.58 +

DNA and RNA processing

DEAD-box ATP-dependent RNA helicase 7 16 Q39189 62 24 73187 9.29 +

DNA repair protein RAD50 162 Q9SL02 68 22 153632 5.98 +

Replication protein A 70 kDa DNA-binding subunit D 174 Q9FME0 58 33 70676 6.1 +

Protein argonaute MEL1 60 Q851R2 66 8 117987 9.34 +

Cell wall biosynthesis

Prolyl 4-hydroxylase 5 147 Q24JN5 42 11 32842 7.75 +

Probable galacturonosyltransferase 3 165 Q0WQD2 58 15 78178 7.27 +

Transporting and movement

Putative aluminum-activated malate transporter 11 22 Q3E9Z9 38 24 17149 9.55 +

Kinesin-like protein KIN-7H 88 F4JZ68 57 27 122375 5.53 +

Signal transduction

Guanine nucleotide-binding protein alpha-1 subunit 126 P18064 59 32 44860 5.96 +

Other

F-box/kelch-repeat protein At3g17530 114 Q9LUP5 48 26 44807 7.43 +
*+: Up-regulated expression, _: Down-regulated expression, ND, no data.
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Functional classification of differentially
regulated proteins

As shown in Figure 3, the study of biological functions of

differentially accumulated proteins led to their classification into

seven diverse groups. Most of them contributed to photosynthesis

and metabolism accounting for 36% then followed by stress response

(24%), DNA and RNA processing (16%), and cell wall biosynthesis

(8%), transporting (8%). Furthermore, the remaining proteins were

associated with signal transduction (4%) and other (4%).
Protein-chemical interaction

In this study, we evaluated the network of protein-protein/chemicals

interactions involving in osmotic stress in pistachio leave using STITCH

database against Arabidopsis thaliana. All of 25 identified proteins were

detected with the STITCH database. The PCI network indicated a strong

interaction network between identified proteins and several chemical

compounds in different pathways (Figure 4). Identified chemical

compounds related to plant response under osmotic stress were

included proline, guanosine triphosphate, arginine, nicotinamide,

H2O2, pectin, glucan, glutamate, phosphoglycerate kinase 1, phosphate,

glucose, chitin, topoisomerase II, estradiol, malondialdehyde, cytochrome

p450 72c1, cytochrome oxidase 2, cytochrome c oxidase subunit 3,1,4-

beta-D-xylan synthase, allene oxide cyclase 2, putative nucleolar GTP-

binding protein 1, ATP-dependent RNA helicase DHX8/PRP22,

silencing defective, large subunit ribosomal protein L24e, cell wall-

associated kinase, alpha-ketoglutarate-dependent dioxygenase alkB,

ethylparaben, replication factor A1, G protein alpha subunit 1,

magnesium chloride, hypersensitive to ABA1, pescadillo-related

protein, putative xyloglucan glycosyltransferase 8, phosphoglycerate

kinase 1. Also STITCH database were predicated that various pathways

controlled by hormones and their crosstalk, consisting of brassinolide,

gibberellin, ethylene, salicylic acid, ABA, auxin, and jasmonate.
Frontiers in Plant Science 06
Gene ontology analysis

According to the analyses of GO enrichment, investigated

proteins were in various ranges of biological processes (Figure 5),

included of metabolic process (16.78%), response to stimulus (16%),

cellular component organization or biogenesis (9.48%), oxidation-

reduction process (8%), DNA metabolic process (5.1%), meiotic cell

cycle (4.38%), DNA repair (4.38%), reproduction (4.38%),

carbohydrate biosynthetic process (4.38%), DNA recombination

(3.65%), photosynthesis (3.65%), reductive pentose-phosphate cycle

(2.2%), carbon fixation (2.2%), double-strand break repair (2.2%),

meiotic nuclear division (2.2%), telomere maintenance (2.19%),

reciprocal meiotic recombination (2.19%), meiosis I (2.19%) and

mitotic recombination (1.46%).

Findings of the GO enrichment analyses displayed that identified

proteins, under osmotic stress, mainly located in intracellular part

(22%), intracellular membrane-bounded organelle (19.64%),

cytoplasm (17.26%), macromolecular complex (6.54%), organelle

envelope (5.35%), intracellular organelle lumen (4.16%), nuclear

part (4.16%), thylakoid (3.57%), plastid envelope (3.75%), nuclear

lumen (3.75%), chloroplast stroma (3.57%), stromule (2.97%), Mre11

complex (1.19%), heterotrimeric G-protein complex (1.19%) and

cytoplasmic side of plasma membrane (1.19%) (Figure 5).

The enrichment of molecular functions illustrated the most

processes related to catalytic activity (42.25%), ion binding

(35.21%), oxidoreductase activity (15.49%), cytochrome-c oxidase

activity (4.22%) and ribulose-bisphosphate carboxylase activity

(2.81%) (Figure 5).

Evaluation of KEGG pathways demonstrated that differentially

accumulated proteins enriched in metabolic pathways (35.29%),

microbial metabolism in diverse environments (14.70%), Carbon

fixation in photosynthetic organisms (11.76%), homologous

recombination (11.76%), carbon metabolism (11.76%), glyoxylate

and dicarboxylate metabolism (8.82%) and non-homologous end-

joining (5.88%) (Figure 5).
FIGURE 3

Functional classification of differentially regulated proteins of pistachio leaves under osmotic stress condition. The percentage of annotated proteins
related to each pathway illustrated in pie charts.
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Analysis of transcriptional expression
change by qRT-PCR

Changes in the transcription level of three selected genes of

differentially abundant proteins were investigated by qRT-PCR

(Figure 6). Results of qRT-PCR analysis indicated that transcription

level of genes related to spots 116 and 133 increased in response to
Frontiers in Plant Science 07
osmotic stress. The change of the expression level of representative

genes was the same as their protein expression.

Discussion

Plants have established numerous defense mechanisms against

osmotic stress such as osmotic adjustment by ion transport
FIGURE 4

Analysis of the network of protein – chemical of identified proteins using STITCH 5.0. AT2G44860, large subunit ribosomal protein L24e; AT3G17530, F-
box and associated interaction domain-containing protein; WAK1, Serine/threonine-protein kinase; At5g14060, aspartokinase 2; SDE3,
SILENCINGDEFECTIVE; AT1G11780, alpha-ketoglutarate-dependent dioxygenase alkB; ST4A, sulfotransferase 4A; AGO2, argonaute 2;P4H5, prolyl 4-
hydroxylase 5; AOC2, allene oxide cyclase 2; THM1, thioredoxin M1, RPA1A, replication factor A1; YCF4, unfolded protein binding; GPA1, G protein
alpha subunit 1; NBS1, nijmegen breakage syndrome 1; PLDALPHA3, phospholipase D; RBCS1A, ribulose bisphosphate carboxylase small chain 1A,
AT4G35090, catalase 2; TOPII, topoisomerase II; AT4G17585, aluminum activated malate transporter family protein;HAB1, HYPERSENSITIVE TO ABA1;
CSLD5, 1,4-beta-D-xylan synthase; AT5G14520, pescadillo-related protein; MST1, thiosulfate sulfurtransferase;COX1, cytochrome oxidase; AT3G26560,
ATP-dependent RNA helicase DHX8/PRP22; RCAR1, abscisic acid receptor PYL9; RAD50, DNA repair protein RAD50; RBCL, ribulose-bisphosphate
carboxylases;ATCSLC08, putative xyloglucan glycosyltransferase 8; GAUT3, galacturonosyltransferase 3; PGK1, phosphoglycerate kinase 1;PRH75,
DEAD-box ATP-dependent RNA helicase 7; AT5G66310, ATP binding microtubule motor family protein; ATR, serine/threonine-protein kinase ATR;AGB1,
GTP binding protein beta 1; CYP72C1, cytochrome p450 72c1; AT2G07687.1, cytochrome c oxidase subunit 3; COX3, cytochrome c oxidase subunit 3;
MRE11, MEIOTIC RECOMBINATION 11; COX2, cytochrome oxidase 2; Hsp70-15, Heat shock protein 70.
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reregulation and osmoprotectants synthesis, preservation of

membrane stability, activation of antioxidant defense, reregulation

of cell cycle, and metabolic changes (Xiong and Zhu, 2002; Zhang and

Shi, 2018). Polyethylene glycol (PEG), which has no toxic effect on the

plant, induces osmotic stress by withdrawing water from the

protoplasm and apoplast (Toorchi et al., 2009). In this study, the

altered contents of some biochemical compounds and several

differences in protein expression patterns due to dehydration

resulted from PEG were detected in pistachio.
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Biochemical Parameters

Tolerant plants to osmotic stress have potency to sustain

homeostasis of metabolic using increase of different solutes (Blum,

2017). In this study, accumulation of several organic solutes like

proline and phenolics were increased, indicating a positive role of

these compounds in the pistachio plant under osmotic stress. Proline

acts not only as a compatible osmolyte but also as a ROS scavenger, a

buffer for cellular redox potential, and a nutritional source under
FIGURE 5

Analysis of Gene ontology (GO) of differentially accumulation proteins of pistachio leaves under osmotic condition. Pathways of four groups of functional
enrichment consisting of biological process, cellular component, molecular function and KEGG were analyzed via the STITCH database.
FIGURE 6

Transcriptional expression levels of two differentially abundant proteins in pistachio leaves in response to osmotic stress based on qRT-PCR analysis
results. Error bars indicated the SD (n = 3) Statistic were carried out at p = 0.05 according to the LSD test.
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stress (Hayat et al., 2012; Chun et al., 2018). An increase of about six-

fold in proline content was observed here. An increase in proline

accumulation as an osmolyte in response to dehydration has been

observed in a wide range of plants (Skirycz et al., 2010; Benhassaini et

al., 2012; Kim et al., 2016; Jungklang et al., 2017; Zegaoui et al., 2017;

Koenigshofer and Loeppert, 2019; Mattioli et al., 2020). Pálet al. (Pál

et al., 2018) had also confirmed the enhancement in the amount of

proline under osmotic stress. Owing to ability to forgive hydrogen,

decrease and extinguish radical oxygen, phenolics have oxidation

virtues and have a main role as sweepers of ROS in plant under

various stresses (Naikoo et al., 2019; Mechri et al., 2020). A potent

relation exists among osmotic tolerance and increased accumulation

of phenolic compounds (Dey and Bhattacharjee, 2020; Naikoo et al.,

2019). Piwowarczyk et al. (Piwowarczyk et al., 2017) reported that

concentration of phenols elevated in grass pea plant under PEG-

induced osmotic stress, similar to our results. Several studies

illustrated that concentration of proline and phenols increased

under salinity and drought stress in pistachio plants (Khoyerdi

et al., 2016; Akbari et al., 2018; Jamshidi Goharrizi et al., 2020).

Therefore, considering the presented results and literature data, the

increased accumulation of phenolics and proline may be propounded

as a main elements related to the tolerance of pistachio to

osmotic stress.

Lipid peroxidation of cell leading to produce malondialdehyde

indicating severity of injury to the cell membrane (Morales and

Munné-Bosch, 2019). Our data showed that malondialdehyde

content did not changed that maybe due to the physiological

adaptation and or elevated activity of antioxidant systems that

diminished ROS levels and membrane injury. On the other hand,

our result contradicts results of Khoyerdi et al. (Khoyerdi et al., 2016)

and Goharrizi et al. (Goharrizi et al., 2020). The principal reason for

this conflict is probably differences in type of reaction pistachio

varieties to osmotic stress as well as differences in the way of

implementing stress treatment.

The photosynthesis process and its severity rely on content of

pigments such as Chl a, Chl b, and carotenoids and effect the biological

productivity. Also, photosynthetic pigments harvest the light for

photosynthesis process (Rahneshan et al., 2018; Lan et al., 2020).

Osmotic condition can injury the chlorophyll content and prevent

synthesis of chlorophyll pigments, therefore chlorophyll degradation is

one of the subsequences of osmotic stress (Akbari et al., 2018; Garcıá-

Morales et al., 2018). In this study, decline in chlorophyll content were

observed under osmotic stress. In general, this reduction can be

imputed to various factors, such as the sluggish synthesis or rapid

degradation of the pigments in cells, decrease in synthesis of

chlorophylls, derangement in the complex of pigment–protein and

thought deficits in ions that are necessary for chlorophyll biosynthesis

(Akbari et al., 2018; Behzadi Rad et al., 2021; Zhu et al., 2021). Lan et al.

(Lan et al., 2020) reported that chlorophyll content remarkably reduced

in wheat under PEG-induced osmotic stress, similar to our results. Also,

our findings are in compliance with (Behzadi Rad et al., 2021) who

reported that the chlorophyll content of pistachio leaves reduce under

salinity condition. Carotenoids function as photoprotection by

absorbing extreme light and protect chloroplasts from harmful ROS

level therefore protect chlorophyll from major damage (Rahneshan

et al., 2018). In this study, no change in carotenoids concentration was

observed (Figure 1).
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Photosynthesis and metabolism related
proteins

The most important enzyme in photosynthesis is ribulose

bisphosphate carboxylase (Rubisco), which consists of two types of

large and small subunits, plays main role in the fixation of CO2.

The alteration in photosynthesis of plants highly related to the

Rubisco activity. It has been reported that drought stress had a

harmful impact on the function of Rubisco in various plants, led to

decrease of biosynthesis and degradation of subunits and finally

diminution of photosynthesis (Zhang et al., 2016; Shayan et al.,

2020). In this study, subunits of Rubisco down-regulated which was

agreement with our pervious study (Pakzad et al., 2019). Also,

Jamshidi Goharrizi et al. (Jamshidi Goharrizi et al., 2020) using

analyzing the leaf proteome profiling of pistachio demonstrated

that ribulose bisphosphate carboxylase/oxygenase large chains were

down-regulated under salinity stress condition.

OEE1 is one of member of the PSII related to photoreactions, and

plays a role in stabilizing the cluster of Mn in the PSII that is initial

locate of water splitting. A loss of this protein leads to a full inability

for evolve oxygen in PSII (Chaves et al., 2009; Dubey, 2018; Heide et

al., 2004; Mayfield, 1999). The decreased levels of this protein were

occurred under osmotic stress. In contrast to our results Buendig et al.

(Buendig et al., 2016), reported a decrease in the abundance of OEE1

in potato genotypes under osmotic stress. A diminish in the

accumulation of OEE1 maybe therefore due to harm to PSII and

represents a considerable decrease of efficiency photosynthesis under

osmotic stress (Chaves et al., 2009; Dubey, 2018). PSI assembly

protein Ycf4 (YCF4) plays a significant role in the assembly of PSI

and its firm hold to the thylakoid membrane (Nellaepalli et al., 2018;

Hui-Hui et al., 2019). In this study, we found that the accumulation of

YCF4 were reduced under osmotic stress, illustrating that osmotic

stress reduce quantity and integrity of PSI protein. Cytochrome c

oxidase subunit II PS17 is the final enzyme related to respiratory

chain, oxidizing cytochrome c and make molecular water using

transfer electrons to molecular oxygen. It has been reported that

alterations in expression of the cytochrome c oxidase level were

attended with alterations in the accumulation of proteins related to

photosynthesis and carbohydrate metabolism under stress condition

(Çulha Erdal et al., 2021). Increased accumulation of this protein has

been reported by Çevik et al. (Çevik et al., 2019) and Çulha Erdal et al.

(Çulha Erdal et al., 2021) under drought stress. Abundance of this

protein was elevated by osmotic stress in pistachio, indicating that

maybe help to generation of energy via respiratory chain, leading to

improve photosynthesis and carbohydrate metabolism levels. Totally,

the decrease in the expression of OEE1, Ycf4, and ribulose

bisphosphate carboxylase, implicitly indicated destructive effect of

osmotic stress on the photosynthesis process.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) plays a

vital role in the physiological plant function and energy production

via glycolytic pathway and protect of photosystem II from ROS under

stress condition (Fermani, 2007; Bertomeu et al., 2010). the study

conducted by Kappachery et al. (Kappachery et al., 2021) indicated that

Overexpression of gene encoding GAPDH in Arabidopsis thaliana

transgenic elevate antioxidant enzymes, photosynthetic pigments and

improve photosynthesis via increasing general PSII efficiency under salt

stress. In our study, GAPDH accumulation elevated in pistachio leaves
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treated with PEG6000, revealing that this enzyme may provide the way

for obtaining extra energy for regulation of cellular homeostasis and

also it maintain photosynthetic efficiency using protect photosystem II

from adverse effect of osmotic stress.

Aspartate kinase (AK) is the primary and the most vital enzyme in

phosphorylating L-aspartate, leading to biosynthesizing four

necessary amino acids: methionine, threonine, lysine, and isoleucine

(Jander and Joshi, 2009; Han et al., 2021). There are several evidences

demonstrated AK involved in osmotic stress (Chefdor et al., 2006;

Héricourt et al., 2013; Héricourt et al., 2016) and drought and

nutritional stress (Curtis et al., 2018). In this study the increased

accumulation of AK was determined, suggesting biosynthesis of

numerous amino acid leading to improve plant adaption abilities

under osmotic stress.

The function of the sulfotransferase superfamily is to transfer a

sulfuryl group from the general donor, PAPS, to a hydroxyl group

from a wide range of substrates, including glucosinolates, phenolic

acids, flavonoids, brassinosteroids, coumarins, jasmonates, and

terpenoids. They are involved in very diverse physiological

functions such as a response to pathogen or detoxification

(Hernàndez-Sebastiá et al., 2008; Hirschmann et al., 2014). In this

study two proteins belong to sulfotransferase superfamily;

Thiosul fate/3-mercaptopyruvate sul furtransferase 1and

sulfotransferase 4 was found to be increased under osmotic stress.

It has been reported that sulfurtransferases play a main role in ROS,

cyanide, and heavy metals detoxification and contribute to

metabolism of sulfur and cysteine (Papenbrock and Schmidt, 2000;

Nakamura et al., 2000; Most and Papenbrock, 2015; Yamasaki and

Cohen, 2016). Proteomic profiling on lettuce was conducted by Leitão

et al. (Leitão et al., 2021) indicated that accumulation of

sulfurtransferase was increased under stress induced by

pharmaceutical contamination. Also, several studied illustrated that

sulfurtransferases play a main role in plant response to abiotic stress

such as osmotic, salt and hormone stress (Jin et al., 2019). Overall,

increased expression of cytosolic sulfotransferase 4 and thiosulfate/3-

mercaptopyruvate sulfurtransferase 1 indicated a wide range of

changes associated with osmotic stress.
Stress response related proteins

Phospholipase D is a most important enzyme involved in

hydrolyzing membrane phospholipids, leading to generate

phosphatidic acid which act as a signaling molecule so that

promotes stomatal closure under osmotic stress (Saucedo-Garcıá

et al., 2015; Rodas-Junco et al., 2021). Many evidences illustrate

that PLD has an important role in plant tolerance under stress (Ji

et al., 2018; Alferez et al., 2019; Gnanaraj et al., 2021; Wei et al., 2022)

and adjust plant defense response to osmotic stress (Liu et al., 2021;

Liu et al., 2022; Hong et al., 2008). Our findings indicated that

abundance of Phospholipase D was increased under osmotic stress,

similar to results of (Urban et al., 2021).

Osmotic stress induce the ABA level in various plants, which is a

well-known reality (Haider et al., 2018; Kai etal., 2019; Xing et al.,

2016). In this study, the up-regulation of abscisic acid receptor PYL9

was observed, indicating activation of pathway related to ABA

signaling in pistachio plant toward response to osmotic stress.
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Transcriptomic analysis of grapevine leaves indicated that PYL9

induced under salt stress (Guan et al., 2018) Also, it Miao et al.

(Miao et al., 2018) reported that PYL9 overexpression improves

drought resistance.

Up-regulation HSPs, as chaperones, involved in facilitating

protein conformation or refolding under stress conditions, because,

denaturation of proteins occurs as a result of the reduction of water

content in osmotic stress (Zang and Komatsu, 2007). The expressions

of HSP genes are prompted by denatured or damaged proteins (Xiong

and Zhu, 2002).Thus, their expressions are up-regulated in the stress

or some stages of growth and development (Park and Seo, 2015).The

elevated expression of a heat shock protein under osmotic stress was

observed in the present study. This result is agreement to studies of

Rahman et al. (Rahman et al., 2015) who reported increased

accumulation of 18.1 kDa class I heat shock protein and other

HSPs in transgenic sugarcane under drought stress induced

with PEG.

Following many stresses, oxidative stress also occurs due to

augmented ROS. Although ROS plays a key role in signaling and

regulation of many genes (Xiong and Zhu, 2002), enhancing its

concentration damages cellular structures seriously, so some

mechanisms have been established in the plant to prevent the

overproduction or to remove ROS (Toorchi et al., 2009), including

catalase activation or biosynthesis, which sweeps away H2O2 by its

activity. Increasing antioxidants as a common result of most abiotic

stresses, improves plant stress tolerance. Abiotic stress induces genes

for various catalase isoforms (Xiong and Zhu, 2002). Catalase in

interaction with plant natriuretic peptide (PNP) triggers the

regulation of ROS levels and cell redox homeostasis during the

salinity or drought stress (Turek et al., 2020). In this study two

spots (119 and 173) identified as catalase enzyme that their expression

were increased under osmotic stress. Augmented activity of the

antioxidant system due to increased expression of relevant proteins

during osmotic stress has been observed in other studies, as well

(Toorchi et al., 2009; Zhang and Shi, 2018).

Serine/threonine-protein kinase CST is a receptor-like

cytoplasmic kinase that acts as an inhibitor in such a way that

limits the extent of cell separation signaling, and causes cells to be

separated only in designated areas in abscission zone (Burr et al.,

2011). Several researches have been proven positive role of Serine/

threonine-protein kinases under stress condition in different plants

(Mao et al., 2010; Sun et al., 2013; Rampino et al., 2017; Mao et al.,

2010). In this study, activation of Serine/threonine-protein kinase

CST was increased. The role of this protein in response plant to biotic

stress was proved (Ghorbani et al., 2019).
DNA and RNA processing related proteins

Plants to dominate the stable challenge from a swiftly altering

environment have several particular adaptation mechanisms, among

which DNA and RNA processing are main strategies (Wong et al.,

2017; Song et al., 2021). In this study several proteins related to DNA

and RNA processing were identified included of DEAD-box ATP-

dependent RNA helicase 7, DNA repair protein RAD50, replication

protein A 70 kDa DNA-binding subunit D, and argonaute MEL1 are

proteins that participate in the processes assigned to DNA and RNA
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(Nonomura et al., 2007; Takashi et al., 2009; Gherbi et al., 2001;

Gallego et al., 2001; Aubourg et al., 1999). This display that plant to

adapt under osmotic condition could increase several transcriptional

and translation processes and seriously elevated the stability and

variety of proteins (Aubourgrt al., 1999; Nonomura et al., 2007). The

role of DNA and RNA processing has been indicated in studies

related to various environmental stress (Gao et al., 2019; Li et al.,

2020; Marondedze et al., 2020)
Cell wall biosynthesis related proteins

Like other results (Ngara et al., 2018; Zhang and Shi, 2018; Wang

et al., 2020), we also recognized some proteins associated with cell

wall construction, including prolyl 4-hydroxylase 5 and probable

galacturonosyltransferase 3, since the cell wall is the protective

barrier and the first front of defense against stress. Cell division,

which requires the formation of a new cell wall, is also inhibited under

osmotic stress (Xiong and Zhu, 2002). Hence, cell metabolism

changes to guide plant status from optimal growth to stress-

adapted growth, which requires alterations in the expression and

the activity of many proteins assigned to the intercellular space and

cell wall (Ngara et al., 2018). The synthesis of pectin, which is a

component of the ce l l wa l l , r equ i res the ac t iv i ty o f

galacturonosyltransferase (Boustani et al., 2017). 4-hydroxyproline,

which is an important component of cell wall glycoproteins, is

produced post-translationally by the activity of Prolyl 4-hydroxylase

5 on proline-rich sequences in glycoproteins (Velasquez et al., 2011).

In this study proteins related to cell wall stabilization was increased,

indicating that these proteins might help to the more consolidation of

cell wall in pistachio and leads to more osmotic tolerance and plant

could regulate the osmotic potential using changes to the cell wall.
Transporting and movement related
proteins

Kinesin-like proteins are motors that perform microtubule-based

movement, such as the transport of vesicles and organs, chromosome

segregation, and signal transduction, thus play a key role in

developmental and environmental processes (Ni et al., 2005).

Changes in the expression of microtubule-related proteins may alter

the morphology of stressed tissue. In this research, kinesin-like

protein KIN-7H revealed higher abundance in the PEG treatment.

Aluminum-activated malate transporter, which belongs to the

anion channels, is located in the membranes of different tissues and

has a various and fundamental range of physiological functions such

as aluminum resistance, signaling, anion homoeostasis, osmotic

adjustment, stomata regulation, and abiotic stress tolerance via

transporting malate or inorganic anions (Palmer et al., 2016;

Ramesh et al., 2018; Hejri et al., 2021). Maintaining sufficient

amounts of water is essential for plant growth and development

(Pasaribu et al., 2021). Therefore, the plant controls the ionic balance

in the cell to regulate the osmotic pressure during the osmotic stress.

Thus, aluminum-activated malate transporter 11 can play a

significant role in this process by transporting malate and inorganic

anions. Scientific reports suggest that abiotic stresses such as salinity
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regulate transporters either at the protein or mRNA levels (Xiong and

Zhu, 2002).
Signal transduction related protein

Under osmotic stress, plants sense the stress through signal

transmission networks and as a result start to react. They adapt to

stress conditions through different signaling pathways that affect a wide

range of protein expression (Zandalinas et al., 2020). Alterations were

reported in levels of various proteins related to signal transduction under

stress condition (Shan et al., 2018; Meena et al., 2019; Zhang et al., 2019;

Wang et al., 2022). A main protein to take a notice is guanine nucleotide-

binding proteins, named G proteins or GTPases. These proteins via

activity of moderator or transducers in different signaling systems located

in transmembrane adjust many cellular processes such as secretion,

transport etc. (Patel et al., 2020). G-proteins consisting of the Ga, Gb,
and Gg subunits, Based on our findings, The Ga subunit up-regulated

under osmotic stress. Ga subunit is the vital the member of G-protein

signal transduction so that activation of G-protein and downstream

signal depended on Ga (Liu et al., 2021; Liu et al., 2018; Pandey and

Assmann, 2004). Similar to our findings, several studies illustrated that

increased expression of the Ga subunit plays a significant role in plant

resistance to various abiotic stress such as salt (Misra et al., 2007), drought

(Ferrero-Serrano and Assmann, 2016), heat and cold (Chakraborty et al.,

2015; Chakraborty et al., 2015; Ma et al., 2015; Guo et al., 2020).
Other protein

F-box kelch-repeat proteins can adjust biosynthesis of

phenylpropanoid via regulating the turnover of phenylalanine

ammonia-lyase and also play a main role in a main role in providing

homeostasis via eliminating misfolded or injured proteins which could

destroy cellular activations (Zhang et al., 2013; Kamireddy et al., 2021).

In this study, the expression level of the F-box/Kelch-repeat protein

(At3g17530) was elevated under stress. To date, the function of this

protein is unclear but several studies indicated that proteins belong to

F-box/Kelch-repeat protein family play an important role in improve of

tolerance plant under stress condition (Curtis et al., 2013; Wang et al.,

2017; Venkatesh et al., 2020).
STITCH and GO analysis

Protein–protein/chemical interactions can notably modulate

different cellular activities, such as replication, transcriptional

regulation, defense responses, growth and development, processes of

signaling, and consonance of numerous metabolic pathways (Fukao,

2012; Braun et al., 2013). In this study, the interaction networks

proteins-proteins/chemicals in pistachio leaves treated by PEG were

analyzed using STITCH. The STITCH network predicted 33 proteins

and small molecules interacted with identified proteins using proteomic

technic. Also STITCH analysis indicated that all of proteins and small

molecules regulation by a set of hormones and their crosstalk.

According to KEGG analysis, the most proteins involved in

response to osmotic in pistachio leaves enriched in metabolic
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pathways that was similar to proteomic findings, indicating the

osmotic stress mostly impacts the metabolic pathways.
Conclusion

To better our knowledge about plant tolerance under osmotic

stress and molecular mechanisms behind related responses,

proteomics of pistachio leaves was performed. Osmotic stress

imposed a change in the expression of 25 proteins. 21 proteins were

highly expressed while four proteins were less expressed. These

identified proteins function in several biological processes such as

stress response, photosynthesis and metabolism, DNA and RNA

processing, and cell wall biosynthesis which point out their roles in

adaptation of pistachio under osmotic stress. Based on KEGG

analysis, proteins related to metabolic pathways have the most vital

role in pistachio response to osmotic stress. The decline in the

expression of Rubisco, OEE1, and photosystem I assembly protein

Ycf4 suggested the destructive effect of membrane dehydration

resulted from osmotic stress on the photosynthesis process. Altered

expression of some proteins associated with the cell wall was expected

because the wall is the first defense barrier against stress, and cell

division, which requires the formation of a new wall, is inhibited

under stress as well. Some proteins involved in DNA and RNA

processing were also overexpressed because osmotic stress activates

signaling pathways such as the ABA-related pathway, which

ultimately leads to altered gene expression and delayed cell division,

and stress-induced ROS may also damage DNA.
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