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In the context of “Carbon Emissions Peak” and “Carbon Neutrality”, grazing

exclusion (GE) has been applied widely to rehabilitate degraded grasslands and

increase carbon sequestration. However, on the QingZang Plateau (QZP), the

impacts of GE on the carbon dynamics of alpine grasslands are poorly

understood, particularly at a regional scale. To fill this knowledge gap, we

evaluated the responses of carbon sequestration to GE in different alpine

grasslands across QZP by using meta-analysis. The effects of GE on

ecosystem carbon fractions were dependent on GE duration, grassland types

and climate factors. Specifically, our results indicated that GE had more

obviously positive effects on carbon stock across the alpine meadow than

the alpine steppe. However, when considering different GE duration, the longer

duration of GE was more effective for increasing ecosystem carbon

sequestration (R2 = 0.52, P<0.0001) in the alpine steppe. Our results further

demonstrated that annual mean precipitation (AMP) and temperature (AMT)

began to dominate ecosystem carbon sequestration after three years of GE

duration across the alpine meadow; and AMP was an important climate factor

limiting ecosystem carbon sequestration (R2 = 0.34, P<0.01) in the alpine

steppe. In terms of plant carbon fraction, GE generated continuous positive

effect (P<0.05) on aboveground biomass with the increased GE duration in the

alpine meadow, while this positive effect disappeared after the 8th year of GE

duration. And no positive effects were found on belowground biomass in the

11th year in alpine steppe. For soil organic carbon (SOC), there existed periodic

fluctuations (increased and then decreased) on SOC in response to GE. For

microbial biomass carbon, there were no obvious trends in response to GE
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duration. In general, we highlighted that the responses of different carbon

fractions (plant-soil-microbe) to GE were non-uniform at spatial and temporal

scales, thereby we should adopt different carbon management practices for

sustainable development of different grasslands.
KEYWORDS

QingZang Plateau, alpine grasslands, grazing exclusion, carbon dynamics,
meta-analysis
Introduction

Global warming induced by the increasing emission of

carbon dioxide is receiving great attention all over the world

(Mullan et al., 2019; Xue et al., 2021; Zhou et al., 2021). At the

General Assembly of the United Nations in September 2020,

China made it clear that it would reach the “Carbon Emissions

Peak” by 2030 and strive to achieve “Carbon Neutrality” by 2060

(Yuan et al., 2022; Zhao et al., 2022). China has a large area of

degraded grassland (Li et al., 2008) with huge potential for

increasing carbon sequestration. It is reported that the

grasslands on the QingZang Plateau (QZP) have degraded

severely (Sun et al., 2021; Sun et al., 2022). Overgrazing is

considered as one of the primary causes leading to large-scale

grassland degradation across QZP, while ecological restoration

projects might have great potential effects to increase carbon

sinks (Sun et al., 2019). Grazing, trampling and excessive digging

by livestock could damage the aboveground parts of vegetation,

which generate negative effects on the nutrients cycles of alpine

ecosystem (Sun et al., 2018; Yuan et al., 2020), consequently

aggravate the grassland degradation (He et al., 2008). To restore

the degraded alpine grassland, grazing exclusion (GE) with

fences has been widely adopted by the local government since

2003 (Sun et al., 2020a).

Although GE, as a kind of ecological restoration project on

the QZP, might have great potential to increase carbon

sequestration, the influences are far from conclusive.

Specifically, in terms of plant biomass, some studies observed

that GE increased the aboveground biomass (AGB) (Liu and

Nie, 2012; Yang et al., 2017) and the belowground biomass

(BGB) (Du and Gao, 2021; Wang F, et al., 2020), while other

studies found that GE could have a relatively neutral effect on

AGB (Yuan et al., 2020) or negative impacts on AGB (Yan et al.,

2014) and BGB (Wu et al., 2021). A previous study observed that

short-term GE increased AGB but decreased BGB in the alpine

meadow (Zhu et al., 2021). Other studies found that AGB

increased and then decreased (Chen et al., 2019), BGB

decreased and then increased (Hong et al., 2015) with the

extension of GE duration across the alpine steppe. As for the

soil organic carbon (SOC), the GE effects were also inconsistent,
02
including both positive (Wu et al., 2010; Fan et al., 2013) and

negative effects (Shi et al., 2013; Wu et al., 2021). Besides, some

studies demonstrated that there is a hump-shaped pattern of

AGB and SOC in response to GE duration (Li et al., 2018; Cao

et al., 2019; Chen et al., 2019). Some studies reported that long-

term GE improved SOC across alpine meadow and alpine steppe

(Wang F, et al., 2020; Wu et al., 2010), while others found SOC

decreased with longer GE duration in the alpine meadow (Fan

et al., 2012; Shi et al., 2013). Meanwhile, discrepant results were

reported on the responses of microbial biomass carbon (MBC)

to GE, with increasing (Wu et al., 2010; Wei et al., 2018),

decreasing (Li et al., 2013), and no significant changes (Luan

et al., 2014). GE improved MBC (Wu et al., 2010; Du et al.,

2020), but other studies found GE reduced MBC (Shi et al., 2013;

Zhang et al., 2015) after a longer GE duration across the alpine

meadow. Therefore, we elicit the hypotheses that the differences

in GE duration, ecosystem type, and environmental condition

may strongly affect the influences of GE on carbon dynamics (Su

and Xu, 2021; Yuan et al., 2020; Zhang et al., 2021).

In generally, systematic and explicit studies are needed to

better understand the effectiveness of GE and its suitable

duration for carbon sequestration under different habitat

conditions. Herein, we conducted a meta-analysis to evaluate

the responses of various carbon fractions to GE across different

alpine grasslands on the QZP. We aimed to understand: 1) the

responses of carbon dynamics in plants, soil and microbial

biomass to GE in alpine grasslands; 2) and revealed the

possible causes. We hope our study could provide more

information and suggestions for policymakers on how to

develop useful management in the future to improve the

grassland carbon sink in the global alpine area.
Materials and methods

Study area

The QZP (73 ° 1 9 ′ - 1 04 ° 4 7 ′E , 2 6 ° 0 0 ′ - 39 ° 4 7 ′N)

(Supplementary Figure S1) is the highest plateau worldwide

with an average altitude over 4000 m (Qin et al., 2018), which
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includes Qinghai Province, Tibet Autonomous Region, and part

of Sichuan Province, Gansu Province, Xinjiang Autonomous

Region and Yunnan Province (Fu et al., 2021). The QZP is

characterized with a fragile environment, and is extremely

sensitive to global change (Yang et al., 2022). Alpine meadow

and alpine steppe are the main grassland ecosystems across QZP

(Duan et al., 2021). The main species are Stipa purpurea and

Festuca ovina in the alpine steppe, and Kobresia pygmaea and

Kobresia tibetica in the alpine meadow (Wang et al., 2022).
Data collection

ISI Web of Science (https://www.webofscience.com/) and

China National Knowledge Infrastructure (CNKI) (https://www.

cnki.net/) were used to collect papers published from 1991 to

2021 on GE experiments across the QZP. We used the keywords

of “Qinghai Plateau, Tibetan Plateau and QingZang Plateau” in

combination with “grazing exclusion” or “fence”, respectively, to

screen the articles that meet our criteria, and then 315 articles

(Supplementary Table S1) were finally used in our study. Paper

selections were based on the following criteria: (1) the

experimental data must have been collected from field

experiments (grazing vs. GE) on the QZP; (2) the duration of

GE lasted at least one year; (3) there were no other treatments

(e.g., warming, burning or mowing) in the field studies. Data,

including AGB, BGB, total biomass (TB), SOC, MBC, and site

information (longitude, latitude, annual mean precipitation

(AMP), temperature (AMT), and ecosystem types) were

collected from each study. In addition, the SOC data were

grouped according to the soil depth of 0–10 cm, 10–20 cm

and > 20 cm, respectively. The data we collected were either

directly from the tables or via using the GetData Graph Digitizer

software (ver.2.20, www.getadata-graph-digitizer.com/) to

extract the data points from the documentary figures.
Data analysis

Meta-analysis (Hedges et al., 1999) was carried out via

MetaWin 2.1 to evaluate the response of carbon fractions

(AGB, BGB, TB, SOC and MBC) to GE. We computed the

natural log converted response ratio (RR) using Eq1:

RR = Ln(�Xt=�Xc)

where �Xt and �Xcrepresent the average value of various carbon

fractions (AGB, BGB, TB, SOC or MBC) in the GE and grazing

group, respectively.

RR’s variance (v) was calculated by Eq2:

v =
S2t

nt �X2
t
+

S2c
nc �X2

c
(2)
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where nt and nc denote the sample sizes of GE and grazing

group. St and Sc denote the standard deviations of the concerned

carbon fractions (AGB, BGB, TB, SOC and MBC) of GE and

grazing group, respectively.

The mean response ratio (RR++) was calculated by following

Eq3:

RR++ = o
m
i=1ok

j=1wijRRij

om
i=1ok

j=1wij

(3)

where the reciprocal of the variance (w=1/v) is the weight (W)

of each RR (Zhan et al., 2019). A random effect model was used

to calculate the RR++ and its 95% bootstrap confidence intervals

(CIs). If CIs were not through zero, the statistical result was

considered to be significant; otherwise, it was insignificant.

We used the composite index of carbon stock function

(CSFI) to indicate the composite carbon stock (AGB, BGB and

SOC) of the ecosystem across the alpine meadow and the alpine

steppe (Zhang et al., 2021), DCSFI and DZ(i) are the relative

increment of composite and single carbon stock function

response to GE, Eq4:

CSFI =o
3

i=1
Z ið Þ=3

Z ið Þ = xi − xmeanð Þ=std
DCSFI = CSFIGE − CSFIG

DZ ið Þ = Z ið ÞGE−Z ið ÞG

8>>>>>>><
>>>>>>>:

(4)

where xi is the observation value of the single carbon stock

function i (i is AGB, or BGB, or SOC), and Z(i) represents the

standardization of xi. xi, xmean, and std represent the measured

value, or the mean value, or the standard deviation of carbon

stock function i, respectively. CSFIGE and Z(i)GE represent

carbon stock functions in the GE group, while CSFIG and Z(i)

G represent carbon stock functions in the grazing group.

SigmaPlot for Windows version 10.0 (Systat Software, Inc.,

Chicago, IL, USA) was used to explore the relationships among

the RRs of carbon fractions (AGB, BGB, TB, SOC, and MBC),

and also the connections between DCSFI and the GE duration,

DZ(AGB), DZ(BGB) as well as DZ(SOC) across the alpine

meadow and the alpine steppe. The segment function is

calculated as follows (Eqs 5-10):

t1 = min tð Þ (5)

t3 = max tð Þ (6)

f 1 tð Þ = y1* T1 − tð Þ + y2* t − t1ð Þ
T1 − t1

(7)

f 2 tð Þ = y2* T2 − tð Þ + y3* t − T1ð Þ
T2 − T1

(8)
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f 3 tð Þ = y3* t3 − tð Þ + y4* t − T2ð Þ
t3 − T2

(9)

f = if t ≤ T1,   f 1 tð Þ, if t ≤ T2, f 2 tð Þ, regionf tð Þð Þð Þ (10)
Results

Response patterns of carbon fractions
to GE

In the alpine meadow, the mean value of AGB, BGB, TB,

SOC and MBC was 219.34 and 314.89 g/m2 (Figure 1A), 1455.3

and 1763.75 g/m2 (Figure 1B), 1571.77 and 1391.85 g/m2

(Figure 1C), 44.49 and 46.04 g/kg (Figure 1D), and 489.2 and

465.01 mg/kg (Figure 1E) in the grazing and GE group,

respectively. In the alpine steppe, AGB, BGB, TB, SOC and

MBC with the mean value was 81.67 and 142.4 g/m2 (Figure 1A),

519.38 and 556.8 g/m2 (Figure 1B), 472.07 and 607.13 g/m2

(Figure 1C), 25.93 and 20.8 g/kg (Figure 1D), and 580 and 264.46

mg/kg (Figure 1E) in the grazing and GE group, respectively.

AGB, BGB, and TB increased significantly with GE in both

alpine meadow and alpine steppe (Figure 2A). Also, GE had

remarkably positive effects on SOC and MBC in the alpine

meadow, while it had no significant impacts on SOC and MBC

in the alpine steppe (Figure 2A). Furthermore, the effects on

these carbon fractions varied with duration of GE (Figure 2B–F).

In both alpine meadow and alpine steppe, there were no obvious

trends in TB and MBC with the increased duration of GE

(Figures 2B, F). In the alpine meadow, GE showed an

apparently positive effect on AGB regardless of the duration of

GE (Figure 2C), however the increase in AGB disappeared at the

8th year of GE across the alpine steppe (Figure 2C). Besides, no

obvious effects were found on BGB at the 11th year of GE in all

of these grasslands (Figure 2D).

GE had significant impacts on SOC across the three soil

depths in the alpine meadow, and the response ratio of SOC

decreased with increasing soil depths (Figure 3A). Nevertheless,

there were no significant effects of GE on SOC in the alpine

steppe regardless of the soil depths (Figure 3A). In addition, in

different soil depths, we found that there existed periodic

fluctuations (increased and then decreased) on SOC in

response to GE (Figures 3B–D).
The response ratios of carbon
sequestration to GE

In the alpine meadow, significantly positive relationships

between RR of TB and RR of BGB (R2 = 0.79, P<0.0001,

Figure 4B), RR of AGB and RR of BGB (R2 = 0.21, P<0.0001,

Figure 4C), MBC ’s RR and SOC ’s RR (R2 = 0.33,
Frontiers in Plant Science 04
P<0.0001, Figure 4D), and AGB’s RR and SOC’s RR (R2 =

0.13, P<0.0001, Figure 4E) were observed. Besides, the RR of TB

firstly decreased and then increased with the increase in the RR

of AGB (R2 = 0.30, P<0.05, Figure 4A), and the turning point of

RR was 0.33. On the contrary, the RR of SOC firstly increased

and then decreased with the increased RR of BGB (R2 = 0.16,

P<0.0001, Figure 4F), and the RR inflection point was 1.24.

In the alpine steppe, the RR of TB was positively correlated

with the RR of both AGB (R2 = 0.44, P<0.05, Figure 4A) and

BGB (R2 = 0.41, P<0.001, Figure 4B). Nevertheless, all of the

relationships between AGB’s RR and BGB’s RR (Figure 4C),

MBC’s RR and SOC’s RR (Figure 4D), and SOC’s RR and AGB’s

RR (Figure 4E) were all not significant.
The relationships of DCSFI with carbon
fractions, ecosystem types, climatic
factors and GE duration

There was a significantly increasing tendency of DCSFI with
the increased GE duration in the alpine steppe (R2 = 0.52,

P<0.0001, Figure 5A), while the duration of GE had no

significant effect on DCSFI in the alpine meadow (R2 = 0.0001,

P=0.86, Figure 5A). Both of DZ(AGB) and DZ(BGB) had

significant positive impacts on DCSFI across the alpine

meadow (R2 = 0.85, P<0.0001, Figure 5B; R2 = 0.69, P<0.0001,

Figure 5C) and the alpine steppe (R2 = 0.72, P<0.0001, Figure 5B;

R2 = 0.69, P<0.0001, Figure 5C). Also, DCSFI was positively

correlated to DZ(SOC) (R2 = 0.18, P<0.05, Figure 5D) and AMP

(R2 = 0.34, P<0.01, Figure 6B) in the alpine steppe. DCSFI was
not significantly correlated to AMT in alpine grasslands

(Figure 6A). In addition, the AMT was significantly and

positively correlated with the AMP in the alpine meadow

(R2 = 0.23, P<0.0001, Figure 6C). In the alpine meadow,

DCSFI was significantly correlated with AMP and AMT

(P<0.05) at the 4th to 6th and 9th to 11th year of GE duration

(Supplementary Table S2).
Discussion

Responses of carbon fractions to GE in
alpine grasslands

GE generally improved carbon fractions of plant-soil-

microbe across alpine grassland (Figure 2A), which is in line

with previous studies (Hong et al., 2015; Du et al., 2020; Liu et al.,

2020; Li et al., 2021). This is because GE reduces the flow of

material and energy from the grassland ecosystem to livestock

(Deng et al., 2017). Moreover, GE can prevent grassland from

being eaten and trample by livestock, which would facilitate the

restoration of plant photosynthesis function, improve grassland
frontiersin.org
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productivity as well as soil aeration, increase the accumulation of

litter and humus, and further improve soil quality (Hao and He,

2019; Yang et al., 2018; Yu et al., 2021). Specifically, GE showed

more positive effects on these carbon fractions in the alpine

meadow than in the alpine steppe (Figure 2A). Different habitat

conditions were the key factors that controlled the influences of

GE on carbon storage between alpine meadow and alpine steppe,

with more carbon could be accumulated in relatively humid

regions (alpine meadow) than that in the relatively arid regions
Frontiers in Plant Science 05
(alpine steppe) (Su and Xu, 2021; Sun et al., 2020b). Both in the

alpine meadow and alpine steppe, GE was more effective in

promoting AGB than BGB (Figure 2A), which is consistent with

other studies (Xiong et al., 2014; Hong et al., 2015; Zhu et al.,

2021). According to previous studies, plants would allocate more

biomass to belowground parts to minimize the loss caused by

grazing (Diaz et al., 2007; Yan et al., 2013). Interestingly, GE was

less effective in increasing SOC than plant biomass in both alpine

meadow and steppe (Figure 2A). This is largely attributed to the
B

C D

E

A

FIGURE 1

Count distributions of (A) aboveground biomass (AGB), (B) belowground biomass (BGB), (C) total biomass (TB), (D) soil organic carbon (SOC)
and (E) microbial biomass carbon (MBC) in the “grazing” and “grazing exclusion (GE)” group across alpine steppe and meadow. “Max”, “Min”,
“Mean” and “SD” represents the maximum value, the minimum value, the average value and the standard deviation, respectively.
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fact that, unlike plant biomass, soil properties are relatively

stable since they are mainly derived from the decomposition

of litter, and the decomposition process by soil microbes is

relatively slow in the dry and cold QZP area (Chen et al., 2019;

Zhan et al., 2019). In addition, the positive effect of SOC had no

obvious synergistic raised trend with the increasing positive

effect of plant biomass during GE (Figures 4E, F).
Frontiers in Plant Science 06
Continuous beneficial effects for community biomass of the

alpine meadow and the alpine steppe disappeared with longer

GE duration (Figures 1C, 2C, D), consistent with previous

studies (Li et al., 2018; Chen et al., 2019). Explanations for the

results are as follows: Firstly, the grassland community tends to

be stable and the plant diversity may decrease with the

increasing duration of GE (Tenzin et al., 2018; Chen et al.,
B

C D

E F

A

FIGURE 2

(A) Response ratios (RR) of aboveground biomass (AGB), belowground biomass (BGB), total biomass (TB), soil organic carbon (SOC) and
microbial biomass carbon (MBC) in response to grazing exclusion (GE) across alpine meadow and steppe. The effects of GE duration on (B) TB,
(C) AGB, (D) BGB, (E) SOC and (F) MBC in alpine meadow and steppe. Error bars indicate 95% confidence intervals (CIs). The effect was not
significant if the 95% CIs of the effect size did not overlap with zero.
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2019); Secondly, the formation of the biological soil crusts on the

surface of grasslands caused by the removal of livestock

disturbance might limit the input of rainfall and litter, which

inhibited plant growth (Zhao et al., 2006; Zhang et al., 2008).

Thirdly, the increased GE duration might thicken the litter layer,

and further suppress plant photosynthesis (Su and Xu, 2021);

Lastly, the species composition might change after long-term

grassland succession leading to the degradation of plant

community structure (Zhang et al., 2021).

Besides, the positive response of SOC to GE was highest in

the soil depth of 0-10 cm (Figure 3A). The main reason might be

that GE directly regulates the plant and litter biomass, and the

contribution of litter and roots to soil nutrients is mainly

concentrated in the surface soil (Wang et al., 2012).

Furthermore, the unique, cold and harsh alpine climate of

QZP results in a relatively slow decomposition rate which

could increase the accumulation of SOC in the surface soil

(Wang et al., 2002; Yang et al., 2008). Notably, there were

periodic fluctuations of SOC in response to increased GE

duration (Figures 2E; 3B–D), since self-regulation and
Frontiers in Plant Science 07
relatively stable soil status might be necessary for maintaining

the stability of alpine ecosystems (Li et al., 2003).
Inherent mechanisms of carbon fractions
in response to GE in alpine grasslands

The relationship between the RR of AGB and the RR of BGB

was significantly positive (P<0.0001) in the alpine meadow, but

there was no significant relationship in the alpine steppe

(Figure 4C). The reason might be that plants tend to maintain

a relatively stable pattern between the aboveground and the

belowground parts in the alpine meadow (Enquist and Niklas,

2002). However, the RR of BGB was relatively stable in the alpine

steppe, and the stability of BGB might arise from the specific

survival strategies of the alpine steppe community. Compared

with the alpine meadow, the alpine steppe in a relatively arid and

barren soil environment was expected to struggle for its survival

(Shipley and Meziane, 2002; Zeng et al., 2014; Zhou et al., 2020).

In other words, the alpine steppe in a hostile environment was
B

C D

A

FIGURE 3

(A) Response ratios (RR) of soil organic carbon (SOC) for three soil depths (0–10, 10–20 and > 20 cm) in response to grazing exclusion (GE)
across alpine meadow and steppe. The effects of GE duration on SOC at the soil depth of (B) 0–10, (C) 10–20 and (D) > 20 cm in alpine
meadow and steppe. Error bars indicate 95% confidence intervals (CIs). The effect was not significant if the 95% CIs of the effect size did not
overlap with zero.
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unable to balance the aboveground and the belowground parts.

Moreover, the RR of SOC increased with increasing RR of BGB

within the threshold level of 1.24 (Figure 4F), since BGB was the

vital source of SOC (Li et al., 2014; Su and Xu, 2021). It is worth

noting that the RR of SOC is negatively related to the RR of BGB

beyond this threshold (Figure 4F), the increased root biomass

resulted in more root exudates secreting into the soil, and further

promoted the microbial activities and the turnover of SOC

(Zhan et al., 2020). In addition, the RR of MBC was
Frontiers in Plant Science 08
significantly correlated with the RR of SOC in the alpine

meadow, while no correlation was found across the alpine

steppe (Figure 4D). Previous studies had confirmed that the

turnover of soil carbon might be constrained under harsh habitat

conditions with limited soil resources in the alpine steppe (Zhan

et al., 2019), although the microbial growth and reproduction

directly depend on the soil resources (Sun et al., 2017).

With the increasing duration, GE had an obvious positive

effect on DCSFI in the alpine steppe, while had no significant
B

C D

E F

A

FIGURE 4

Relationships of response ratios (RR) between aboveground biomass (AGB), belowground biomass (BGB), total biomass (TB), soil organic carbon
(SOC) and microbial biomass carbon (MBC) in response to grazing exclusion (GE) across alpine meadow and steppe.
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effect on DCSFI in the alpine meadow (Figure 5A). The findings

indicated that it could be more effective for ecosystem carbon

sequestration in alpine steppe after longer duration of GE.

Compared with alpine meadow, alpine steppe with harsher

habitat conditions might need a longer recovery time (Sun

et al., 2020a). Furthermore, it might be ascribed to the

difference in water and heat availability between the alpine

meadow and the steppe, since the AMP varied with the AMT

in the alpine meadow, while no significant relationship was

found between AMP and AMT in the alpine steppe (Figure 6C).

It has been proved that more precipitation and higher

temperature would facilitate ecosystem productivity and

carbon accumulation in the alpine meadow. However,

relatively limited precipitation and high temperature in the

alpine steppe were expected to generate strong water pressure

on plants, which resulted in low carbon accumulation (Bai et al.,

2004; Sun et al., 2020a). Additionally, DCSFI increased with the

increasing precipitation across the alpine steppe (Figure 6B),

indicating that precipitation is an important climatic factor that

limits ecosystem carbon sequestration responding to GE in the

alpine steppe. Therefore, in contrast to the alpine steppe,

favourable water and heat conditions were beneficial for
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grassland restoration in the alpine meadow. Moreover,

variations of CSFI were more positively correlated with

variations of AGB (Figure 5B) and BGB (Figure 5C) than SOC

(Figure 5D) across the alpine meadow and the steppe, indicating

that the plant biomass, not the soil, acts as the critical

contributor of ecosystem carbon stock in response to GE

across alpine grasslands. In the alpine region, the relatively low

temperature has limited the material cycles of soil and the

decomposition of litter, resulting in a slow response rate of

SOC to GE (Zhu et al., 2016; Chen et al., 2019). And GE directly

promotes grassland productivity by protecting the plant from

being eaten by livestock, and the low turnover of soil makes the

response of soil to GE lag behind that of the plant.
Implications for GE management

Although our results indicated that GE is an effective way

to increase carbon sequestration, long-term GE might reduce

the benefits of grassland restoration and weaken the potential

carbon sequestration. Consequently, GE could be removed

appropriately at that time. Since the habitat conditions are
B

C D

A

FIGURE 5

The relationships between DCSFI and (A) the duration of grazing exclusion (GE), (B) DZ(AGB), (C) DZ(BGB), and (D) DZ(SOC). The CSFI, AGB, BGB
and SOC represent the composite index of carbon stock function, aboveground biomass, belowground biomass and soil organic
carbon, respectively.
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diverse among different ecosystem types (e.g., alpine meadow

and alpine steppe), the potential of carbon sequestration and the

corresponding mechanisms might be different in response to

GE. Therefore, the management of GE using fences should be

treated differently in different habitat conditions. Especially,

according to our study, a longer duration of GE is conducive

to the increase of ecosystem carbon sequestration in the alpine

steppe (Figure 5A), and GE is more effective for improving

carbon stock in the alpine meadow (Figure 2A) but only in the

short-term GE (Figure 5A). GE could increase plant biomass

more obviously than SOC and MBC (Figure 2A), and plant

carbon fraction might play the dominant role in the ecosystem

carbon sequestration during GE (Figures 5B, C). Furthermore,

climatic factors instead of GE duration might dominate

ecosystem carbon sequestration responding to GE when GE

reaches a certain duration, for example, precipitation and

temperature began to have obvious effects on DCSFI after

about three years of GE duration across the alpine meadow

based on our study (Supplementary Table S2). In the future, a

sustainable observation network of GE should be constructed

across QZP to define an optimal duration of GE scientifically

based on a unified standard on the diverse alpine grassland

ecosystems across the QZP to make the research conclusion

more accurate and reliable.
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Conclusion

In conclusion, we found that the effect of GE on carbon

sequestration depends on GE duration, ecosystem type and

climate factors. Without considering the duration of GE, GE

was more effective in improving plant biomass, soil organic

carbon, and microbial biomass carbon across the alpine meadow

in general. When considering the GE duration, increasing

duration generated a more positive effect on the ecosystem

carbon sequestration in the alpine steppe. Moreover,

precipitation and temperature began to dominate ecosystem

carbon sequestration after three years of GE duration across the

alpinemeadow. The scientific duration of GE should be adopted in

the different grassland ecosystems as well as to reach the goals of

“Carbon Emissions Peak” and “Carbon Neutrality”, constructing a

sustainable observation network of GE across QZP based on a

unified standard in the future is highly recommended.
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