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Flowering is the most studied ornamental trait in orchids where long vegetative
phase may span up to three years. Cymbidium orchids produce beautiful
flowers with astonishing shapes and pleasant scent. However, an unusually
long vegetative phase is a major drawback to their ornamental value. We
observed that under certain culture conditions, three cymbidium species
(Cymbidium ensifolium, C. goeringii and C. sinense) skipped vegetative
growth phase and directly flowered within six months, that could be a
breakthrough for future orchids with limited vegetative growth. Hormonal
and floral regulators could be the key factors arresting vegetative phase.
Therefore, transcriptomic analyses were performed for leafless flowers and
normal vegetative leaves to ascertain differentially expressed genes (DEGs)
related to hormones (auxin, cytokinin, gibberellin, abscisic acid and ethylene),
floralintegrators and MADS-box genes. A significant difference of cytokinin and
floral regulators was observed among three species as compared to other
hormones. The MADS-box genes were significantly expressed in the leafless
flowers of C. sinense as compared to other species. Among the key floral
regulators, CONSTANS and AGAMOUS-like genes showed the most differential
expression in the leafless flowers as compared to leaves where the expression
was negligible. However, CONSTANS also showed downregulation. Auxin
efflux carriers were mainly downregulated in the leafless flowers of C.
ensifolium and C. sinense, while they were upregulated in C. goeringii.
Moreover, gibberellin and cytokinin genes were also downregulated in C.
ensifolium and C. sinense flowers, while they were upregulated in C.
goeringii, suggesting that species may vary in their responses. The data
mining thus, outsources the valuable information to direct future research on
orchids at industrial levels.
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Introduction

Orchids provide the best aesthetic nutrition to mankind.
Cymbidium is an important genus within the tribe Cymbidieae
and contains about 80 species. The species are perennial herbs
possessing diverse traits, such as thick and short stem with 4-6
leaves in two whorls and pseudobulbs. The raceme, emerging
from the leaf axil of pseudobulblet, is bilaterally symmetrical and
bears fragrant flowers (Yang et al., 2021a). Since antiquity,
Cymbidiums have been grown in ancient China, later
spreading to Europe during the Victorian era (Hew, 2001).
Continuous diversification of perianth color and floral pattern,
and a unique fragrance make them the most popular orchids
(Kim et al, 2016; Ramya et al., 2019). So far, the Royal
Horticultural Society has registered more than 150,000
commercial Cymbidium hybrids (Yang et al.,, 2021a).
Therefore, Cymbidium becomes the ideal taxon to study the
flower development and the morphological evolution of orchids
(Motomura et al., 2010).

However, the long waited flowering after a vegetative growth
of more than two years makes their value less economic (Ahmad
et al, 2021a; Ahmad et al., 2022a). Thus, reducing vegetative
growth is central to studies involving orchids. After seed
germination, protocorm is established, the first stage of
embryo development, to obtain nutrition for the developing
plantlet through symbiotic relationships with fungus. The plant
embryo develops into a miniature sporophyte after fertilization
(Fang et al,, 2016). The embryogenesis proceeds through two
phases: morphogenesis and maturation (Bentsink and
Koornneef, 2008; Braybrook and Harada, 2008). During
morphogenesis, organization occurs for different body
components, such as apical-basal polarity, functionally
organized domains, cell differentiation and tissue specification
(Steeves and Sussex, 1989). Genetic regulators play significant
roles in the regulation of axis polarity and division plane (Jeong
et al., 2012; Ueda and Laux, 2012).

Phytohormones has been considered as important regulators
of orchid flowering (Goh and Yang, 1978). Auxin plays
significant roles as morphogen (Bhalerao and Bennett, 2003;
Benkova et al., 2009; Moéller and Weijers, 2009; Lau et al., 2011;
Finet and Jaillais, 2012). Its concentration gradient across plant
body provides cues for tissue specification (Zoulias et al., 2019).
Cytokinin is plant growth activator. Synthetic cytokinin
application promotes flowering in Dendrobium and
Phalaenopsis orchids. Moreover, cytokinin applied in
combination with gibberellin (GA) enhances flowering (Hew
and Clifford, 1993). GAs are well-known regulators of important
developmental processes, such as flowering time (Ding et al.,
2013; Hyun et al, 2016). Abscisic acid (ABA) coordinates
flowering time and bud break (Wang et al., 2013b; Shu et al,
2016). Fluctuations in ethylene levels can either promote or
delay flowering in many species, such as pineapple (Trusov and
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Botella, 2006), roses (Meng et al., 2014), rice (Wang et al., 2013a)
and Arabidopsis (Achard et al., 2007). For example,
accumulation of ethylene triggers TEOSINTE BRANCHED 1/
CYCLOIDEA/PCF (TCP) genes, which ultimately inhibits the
progression of cell cycle (Dubois et al., 2018). Moreover,
ethylene induces the expression of ERF5 and ERF6 and EFR6
induces gibberellic acid interacting enzyme GA2-OX6, leading to
reduced bioactive GA levels and accumulation of DELLA
proteins (Skirycz et al., 2011; Dubois et al., 2013; Meng et al.,
2013). Thus, hormones could be the key to stimulate altered
growth cycles leading to leafless flowering in orchids.

A number of MADS-box genes have been identified in
orchids with their significant roles in flowering, and advanced
models have been suggested for orchid flower development
(Aceto and Gaudio, 2011; Yang et al,, 2017). Studies have
documented the functional characterization of a number of
genes related to flowering in orchids, such as FT homologs and
FD, the gene encoding FT interacting protein, in Phalaenopsis
aphrodite, Oncidium Gower Ramsey, and Dendrobium nobile.
Moreover, the LEAFY and CONSTANS-like genes have been
identified in Phalaenopsis aphrodite; while the genes for co-
regulated transcription factors such as SQUAMOSA promoter
binding-like genes (SPL-like) and CINCINNATA-like (TCP-
like) have also been found in orchids (Hou and Yang, 2009;
Chou et al,, 2013; Lin et al.,, 2013; Jang, 2015; Lin et al., 2016;
Liu et al., 2016). The MADS-box gene AP1/AGLY is involved
in the regulation of floral transition and flower organ
development (Theiflen, 2001). The AP1/SQUA-like genes
play key roles in meristem identity determination (Chen
et al,, 2007). A number of SEP (SEPALLATA)-like genes
play roles in orchid floral structure formation (Salemme
et al., 2013). API acts as a hub between SOCI and SVP,
both determining the floral organ identity (Honma and
Goto, 2001).

Surprisingly, we observed leafless flowering in three orchid
species in closed environment chambers. The vegetative growth
was absolutely bypassed by the developing protocorms, directly
flowering without leaves. It offsets a new direction on research
for rapid orchid flowering with limited vegetative growth.
Transcriptome analysis was performed to compare leafless
flowers and healthy leaves for C. ensifolium, C. goeringii and
C. sinense. Important hormonal and flowering regulators were
mined, which may serve as building blocks to plan functional
studies for rapid orchids.

Materials and methods
Plant materials and growth conditions

The Cymbidium species (C. ensifolium, C. goeringii and C.
sinense) were grown in the tissue culture facility of Fujian
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Agriculture and Forestry University. The media contained NAA
(0.5 mg LY, 6-BA (8.0 mg LY, activated carbon (1.5 g LY,
sugar (35 g L'') and agar (7.0 g L'"). The growth temperature was
set to 26 = 2 °C at a light intensity of 2,500-3,000 Lx and the
photoperiod was 12 h/day. After about six months, the leafless
flowers were produced, and the fully opened flowers were
collected for RNA Sequencing. The leaf samples were obtained
from normally growing species as a reference.

RNA-seq library preparation
and sequencing

A total of six tissues in replicates (18 samples) were used for
RNA extraction using TaKaRa RNA extraction kit. The cDNA
libraries were produced using the total RNA. The mRNA was
obtained using the Oligotex Midi Kit (Qiagen, Germany) and the
quality and quantity of mRNA was checked on Nano-Drop
spectrophotometer (Thermo Fisher Scientific, USA). Then, the
cDNA libraries were prepared following the Illumina protocol
and the library products were evaluated through Qubit®2.0 and
Agilent 2200 TapeStation (Life Technologies, USA). The purified
products were diluted to 10 pM for the generation of in situ
clusters through HiSeq2500 pair-end flow cells and pair-end
sequencing (2 x 100). In the end, reference-based sequencing
was carried out by using the reference genome of each species.
The gene expression was calculated based on FPKM (fragments
per kilobase per transcript per million mapped reads).

Functional annotation

Publically available datasets were used to map the assembled
genes. The mapping was done the BLASTX program (threshold
E-value < 10”°) for KEGG (Kyoto Encyclopedia of Genes and
Genomes), GO (Gene Ontology), KO (KEGG ortholog) and NR
(non-redundant) annotations. The KEGG and GO annotations
results were classified into pathways and functional categories
the R software for phyper function (https://en.wikipedia.org/
wiki/Hypergeometric_distribution). The false discovery rate
(FDR) was used to calculate corrected p values and the terms
with g value < 0.05 were recognized a significantly enriched.

Differentially expressed genes

The clean reads were aligned using the Bowtie2 software and
their expression levels were ascertained using RSEM (v1.2.8)
with default parameters. Then, the DEGs were obtained using R
software for DEGseq package (v1.10.1). The significantly
differential genes were filtered at a threshold p-value < 0.001
and the log2FC > 1.
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Identification of hormone and flowering
related DEGs

The DEGs were filtered using keywords, such as flowering,
MADS, auxin, cytokinin, gibberellin, abscisic acid, and ethylene
to identify genes related to flowering and hormonal regulation.
Those with significant difference were selected for drawing
heatmaps using TBtools.

Similarly, the DEGs were filtered with biological processes
annotations related to the regulation of hormones, flower
development, flowering time, biological clocks and other
related pathways.

Statistical analysis

The transcriptomic data was analyzed using the Pearson
correlation coefficient, log2 fold change and threshold p and ¢
values for DEGs.

Results
Transcriptome data

For C. ensifolium, each sample produced an average of 6.37
Gb of data. The average alignment rate of the sample compared
to the genome was 86.60%, and the average alignment rate of the
compared gene set was 66.55%. The predicted new genes were
5,139 and the total number of expressed genes was 26,227, of
which the known genes were 21,642 and 4,585 were predicted
new genes (Supplementary Tables 1-3).

For C. goeringii, each sample produced an average of 6.59 Gb
of data. The average alignment rate of the sample compared to
the genome was 78.44%, and the average alignment rate of the
compared gene set was 60.53%. The predicted new genes were
4,400 and the total number of expressed genes detected was
30,992, of which the known genes were 26,763 and 4,229 were
predicted novel genes (Supplementary Tables 4-6).

In the case of C. sinense, each sample produced an average of
6.62 Gb of data. The average alignment rate of the sample
compared to the genome was 82.54%, and the average
alignment rate of the compared gene set was 61.90%. The
predicted new genes were 3,909 and the total number of
expressed genes detected was 27,282, of which the known
genes were 23,457 and 3,825 were predicted new genes
(Supplementary Tables 7-9).

Expression analysis and comparison
among three species

The expressions of leafless flowers were compared with the
leaves for three orchid species. The empirical cutoff gene values
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were sued with positive expressions. The distribution of FPKM
values is presented as boxplots, showing the uniform median
and quartile distribution of DEG expression between samples of
each species (Supplementary Figure 1).

C. goeringii showed the highest number of upregulated and
downregulate genes (4089) (Supplementary Figure 2), as
compared to C. ensifolium (3414) and C. sinense and C.
sinense (2807) (Supplementary Figure 2). C. ensifolium showed
the highest number of flower specific DEGs than other
two species.

Gene annotation analyses

The GO and KEGG annotations were obtained for each
species. The GO biological process annotation of C. ensifolium
shows that the highest number of genes were enriched in
metabolic and cellular processes (Supplementary Figure 3). In
cellular components, the maximum number of genes were
obtained in cellular anatomical entities and intracellular
components. The most enriched molecular functions were
shown in catalytic activity and binding. The GO annotations
of C. goeringii were similar to C. ensifolium and C. sinense.
However, the number of genes were less in C. sinense as
compared to other two species (Supplementary Figure 3).

For the KEGG pathway enrichment, plant hormone signal
transduction pathway was the highly enriched pathway among
other pathways, including phenylpropanoid biosynthesis and
plant pathogen interaction pathway (Supplementary Figure 4).

Flowering and hormone related GO
biological processes

We filtered the GO biological processes for flowering and
hormonal regulation (Figure 1). Figure 1A shows the biological
process enrichment for C. ensifolium. Flower development
(GO:0009908) was enriched by the highest number of genes
(44), followed by floral organ development (GO:0048437) and
flora whorl development (GO:0048438). The key biological
processes for meristem activity included meristem
development (G0O:0048507) and meristem maintenance
(GO:0010073). For biological clock regulation, the highest
number of genes were observed for vegetative to reproductive
phase change (GO: 0010228) and circadian rhythm
(GO:0007623). The highest number of genes were enriched in
response to auxin (GO:0009733), auxin-activated signaling
pathway (GO:0009734) and cellular response to auxin
(GO:0071365). The other key hormone-related biological
processes included cytokinin metabolic process (GO:0009690),
gibberellin metabolic process (GO:0009685), response to ABA
(GO:0009737), ABA-activated signaling pathway (GO:0009738),
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cellular response to ABA stimulus (GO:0071215), and response
to ethylene (GO:0009723).

For C. goeringii, more number of genes were enriched for
flowering and auxin regulation as compared to rest of the
integrators (Figure 1B). The highly enriched biological
processes for flowering included flower development
(G0O:0009908), regulation of flower development
(G0O:0009909), floral organ development (GO:004837) and
floral whorl development (GO:0048438). Meristem
development (GO:0048507) and meristem maintenance
(G0O:0010073) were the main biological process for meristem
activity. Vegetative to reproductive phase transition (GO:
0010228) and circadian rhythm (GO:0007623) were mainly
involved in biological clock regulation. Response to auxin
(GO:0009733), auxin-activated signaling pathway
(GO:0009734) and cellular response to auxin (GO:0071365)
were the highly enriched auxin-related pathways. Among the
other highly enriched biological process for hormones included
response to ABA (GO:0009737) enriched by 60 genes, ABA-
activated signaling pathway (G0O:0009738) and cellular response
to ABA stimulus (GO:0071215)

For C. sinense, the flowering related biological process
enrichment was less as compared to other two species
(Figure 1C). The highly enriched biological processes for
flowering included flower development (GO:0009908), and
floral organ development (GO:004837) and floral whorl
development (GO:0048438). Meristem enrichment was also
less than other two species, including mainly meristem
development (G0O:0048507) and meristem maintenance
(GO:0010073). Vegetative to reproductive phase transition
(GO: 0010228) was the key biological clock regulation.
Interestingly, the auxin regulatory processes were highly
enriched in C. sinense as compared to C. ensifolium and C.
goeringii. Response to auxin (GO:0009733) was enriched in 149
genes, auxin-activated signaling pathway (G0:0009734) in 80
genes and cellular response to auxin (GO:0071365) was enriched
in 80 genes. The other key hormone-related biological processes
included cytokinin metabolic process (GO:0009690), gibberellin
metabolic process (GO:0009685), response to ABA
(GO:0009737) enriched by 43 genes, ABA-activated signaling
pathway (GO:0009738), cellular response to ABA stimulus
(G0O:0071215), and response to ethylene (GO:0009723).

Auxin regulators

The auxin regulation was mainly manifested as auxin
responsive proteins, auxin response factors (ARFs) and auxin
transport proteins (Figure 2). More number of downregulated
auxin-related genes can be seen in C. ensifolium as compare to
other species (Figure 2A). Moreover, the number of auxin-
related genes was high in C. ensifolium as compared to other
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species. The downregulated genes were mainly related to auxin
responsive proteins and auxin binding proteins, while the
upregulated genes were mainly related to ARFs. Four auxin
efflux carrier components were found and only one of them was
upregulated while other three were downregulated. The auxin
response protein SAUR71-like and SAUR76-like, auxin efflux
carrier component 1c and 1b, auxin response factor 16, and
auxin binding protein ABP19a-like were the most
downregulated genes in the leafless flowers. The most
upregulated included auxin responsive protein IAA2, auxin
responsive proteins SAUR32 and SARU72-like, and auxin
induced protein 10A5.

For C. goeringii, the auxin regulatory genes were
more upregulated than downregulated genes (Figure 2B).
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The upregulated included a large proportion of auxin
responsive proteins, while the downregulated contained
mostly the ARFs. Two auxin efflux carrier components were
upregulated in the leafless flowers of C. goeringii (Figure 2B).
SAUR71-like was also among the most downregulated gene
flowers, while the upregulated included TAAS8, and auxin
response factor ARF5.

More number of downregulated auxin genes were observed
in C. sinense, including mainly the auxin responsive proteins and
AREFs (Figure 2C). Two components of auxin efflux carriers were
observed: one was upregulated and the other was downregulated
in the leafless flowers. AFR13-like was the most upregulated
gene, while SARU32-like, SAUR66-like and TAA10 were the
most downregulated genes (Figure 2C).

&

[ISE05NN MBS0 GL31794 Auxin-binding protein 4

|INCEIONN NSO0ENN GL33448 Auxin-responsive protein SAUR32
NG PSS GL19274 Auxin response factor 16 isoform X6
GEI MNOEEN 124891 Auxin response factor 5

ISP MG GL17282 Auxin response factor 2-like

NGHENN NSNS GL07778 Auxin-responsive protein IAA11
|INNSISONNN INGHOIN GL04254 Auxin response factor 3-like isoform X2
I ST 118656 Auxin response factor 7

[N INEGI GL00457 Auxin-induced protein X10A

[INISESISEN MNBI0NEM GL01109 Auxin-repressed 12.5 kDa protein-like
[IRNIEENN NONEI GL01975 Auxin-responsive protein IAA3-like
|IRISITN IO GL14844 Auxin-responsive protein IAA7-like isoform X1
[INZIETN OSSN GL32687 Auxin-responsive protein SAUR72-like
|GG MO GL00247 Auxin-responsive protein SAUR76
[IRNGIE0NNN INOMEIN G102281 Auxin-responsive protein IAA8-like
S NI GL29769 Auxin-responsive protein SAUR50-like
[ENNGIGRNN INDIOOMN GL12003 Auxin-responsive protein SAUR76-like
[ISHISIN INGEN GL12844 Auxin efflux carrier component 4
IR0 SIS GL09984 Auxin-binding protein 1-like isoform X2
[INSEIEEIN INESENN GL14390 Auxin-binding protein ABP19a-like
[IENENN INSOBENN GL34011 Auxin response factor 17-like isoform X1
[NTROGIN IEEN GL 16230 Auxin-induced protein 6B

[INNSORTN IEHENN GL 28319 Auxin-responsive protein IAA17
[IN25ENN BNISEENN GL16017 Probable Auxin efflux carrier component 1c
|G I2EHENN GL12644 Auxin response factor 11-like isoform X1
|G MESE0M GL20025 Auxin response factor 18-like isoform X1
[INGOI2ENN BAVSHANN GL08414 Auxin response factor 2-like isoform X1
|IINEREONN MNEEIOSMN GL12824 Auxin response factor 3-like isoform X1
[ISEIENN MOEA GL08702 Auxin-responsive protein IAA1
|INSIE2NN MNSIOOM GL00949 Auxin-responsive protein IAA4 isoform X1
[ISENENN MNSHPEI GL19182 Auxin response factor 15-like
|IN2ISENN NS00 GL14711 Auxin response factor 9-like isoform X1
|ISEN BN G102850 Auxin transporter-like protein 2
IGO0 MNSOBEIN GL12222 Auxin-induced protein 22D

INCISTINN BSSE0MN GL16203 Auxin-responsive protein SAUR71-like
|INIGHEI BNISIE G102810 Auxin transport protein BIG

|ICOIEEIN MBI GL12265 Auxin-responsive protein IAA27
[ISEIEENN MNSESI GL04963 Auxin response factor 2 isoform X2

|NIERENN BNSHEHEIN GL15706 Auxin-responsive protein IAA21-like
3
03\ (,o,?y
%)

SERONN MNDE00N Mol009170 ARF17-like isoform X1
027 ARF5

Low expression

[IG2MEIN NST0SNN Mol018285 Al

A

inding protein 4
sponsive protein SAUR78

ARF13-like
ARF19 isoform X2
[__ ARF2 isoform X2
[0IAN NS 101024248 Auxi
| INEEEN V01010946 Auxi
IO IAEES Mol012551 Auxi

nsport protein BIG
duced protein 6B-like
sponsive protein IAA11

sponsive protein SAUR76
X carrier component 4

RF18-like isoform X1

Mol0148

| N0 Mol

9
3 Auxi
5 Auxi

Aux

protein IAA1
duced protein 22D

sponsive protein IAA17

i rotein SAUR32-like

7 Auxin transporter-like protein 2
AU )

protein SAUR32
in IAA10

protein |

26

ive protein IAA27
inding protein ABP19a-like
e isoform X2

duced protein 10A5
sponsive protein IAA2

64 Auxin-res
Mol001828 Auxin-responsive protein IAA26
Mol016617 Probable Auxin e
09128 Auxin efflux carrier component 1
116238 Anxin-resgonsive
01004460 Auxin-RE!
020741 ARF18-like isoform X2

ux carrier component 1b

rotein SAUR
IV

c
66-like
ULATED GENE INVOLVED IN ORGAN SIZE isoform X2

01014788 ARF2 isoform X2

L
Mol0r

115667 Auxin-induced protein X10A

Mol008263 Auxin-responsive protein IAA21-like

Mol019036 ARF16 isoform X6

Mol004324 ARF15-like
A

FIGURE 2

12.5 kDa protein-lik

Auxin pathway genes for C ensifolium (A), C goeringii (B) and C sinense (C).

Frontiers in Plant Science

frontiersin.org


https://doi.org/10.3389/fpls.2022.1043099
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Ahmad et al.

Floral accelerators: cytokinins
and gibberellins

Cytokinin regulatory genes were much less than other
hormones (Figures 3A-C). In C. ensifolium (Figure 3A) and C.
sinense (Figure 3C), the cytokinin-related genes were
downregulated in the leafless flowers. Only 6 cytokinin genes
were observed in C. goeringii (Figure 3B), including 3
upregulated and 3 downregulated genes. Four LOGI genes
were found in C. ensifolium; two were upregulated and two
were downregulated. Three LOG genes were found in C.
goeringii; two were downregulated and one was upregulated.
Only one LOG gene was upregulated in C. sinense and the
remaining three were downregulated.

A total of 20 gibberellin related DEGs were found in C.
ensifolium (Figure 3D), including 12 upregulated and 8
downregulated. Most of these genes regulate various steps of
gibberellin biosynthesis. Gibberellin regulated protein 3-like,
Gibberellin regulated protein 4-like and gibberellin 3-beta-
dioxygense 6 were the highly downregulated genes in the
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leafless flowers, while gibberellin 20 oxidase 1-4 and
gibberellin 2-beta dioxygenase 8 were the highly upregulated
gene. Out of 10 highly expressed gibberellin genes, 8 were
upregulated and 2 were downregulated in C. goeringii
(Figure 3E). Among the upregulated proteins, gibberellin
regulated protein showed the highest difference in the leafless
flowers as compared to leaves. In C. sinense, 12 DEGs were
found related to gibberellin, including 7 downregulated and 5
upregulated DEGs (Figure 3F). Here, gibberellin 20 oxidase 1-D
was the most significantly downregulated and the gibberellin 2-
beta dioxygenase 3 was the most upregulated gene. Gibberellin
regulation was significantly different in C. goeringii as compared
to C. ensifolium and C. sinense.

Floral inhibitors: ABA and ethylene

An equal number of upregulated and downregulated ABA
regulators were found in C. ensifolium (Figure 4A), with a total
of 20 DEGs, higher than other two species. PYL2 was only
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expressed in leafless flowers, while PYL4 and CYP707A2 showed
significant downregulation. Some genes appeared in multiple

isoforms. C. goeringii showed 8 downregulated and 4
upregulated DEGs, which also appeared in isoforms with both

10.3389/fpls.2022.1043099

upregulated and downregulated forms (Figure 4B). Here PYL4
was mainly downregulated. Out of 15 highly differential ABA

genes in C. sinense, 8 were downregulated and 7 were
upregulated in the leafless flowers (Figure 4C). PYL4 showed

FIGURE 4
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the most differential expression in healthy leaf as compared to
leafless flower, while ABA-inducible protein PHV expressed at
extremely high level in flowers as compared to leaf.

After auxin, the ethylene related DEGs were the most
abundant among hormone regulators in three Cymbidium
species (Figures 4D-F). In C. ensifolium, 40 DEGs showed
differential expression between leafless flowers and leaves, with
equally up- and down-regulated genes (Figure 4D). In C.
goeringii, 15 DEGs were upregulated and 11 were
downregulated in the ethylene pathway (Figure 4E). Most of
the genes were ethylene response factors (ERFs). However,
ethylene regulation in the leafless flowers of C. sinense was
much different than other two species (Figure 4F). Here, 17
ethylene-related DEGs were downregulated and 8 were
upregulated in the leafless flowers as compared to healthy leaves.

Flowering pathways and MADS-
box genes

A significant differential expression of floral integrators was
found for C. ensifolium (Figure 5A) and C. sinense (Figure 5C) as
compared to C. goeringii (Figure 5B) where almost equal number
of upregulated and downregulated DEGs were observed. Among
the 28 flowering related DEGs in C. ensifolium, 18 showed less
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expression in leafless flowers and 10 showed high expression
(Figure 5A). The floral integrators were mainly related to
flowering time control and cell cycle activities. The most
prominent expression differences were shown by CONSTANS
and AGLs as compared to other floral regulators. Out of 30
DEGs in C. goeringii, 13 showed high expression and 17 showed
low expression in leafless flowers (Figure 5B). 22 DEGs were
expressed in C. sinense; however, contrary to other two species,
here 16 genes were upregulated and only 6 were
downregulated (Figure 5C).

A number of MADS-box genes were also found with
contrasting expressions in three species (Figure 6). The
MADS-box genes were almost equally upregulated and
downregulated in C. ensifolium (Figure 6A) and C. goeringii
(Figure 6B). However, the highest number of MADS-box (19)
were observed in C. sinense (Figure 6C) with 4 upregulated and
15 downregulated DEGs.

Discussion

Cymbidium orchids are thought to be the most precious and
beautiful flowers with enormous economic, ornamental and
aesthetic values. Cymbidium sinense, C. ensifolium and C.
goeringii are representative orchids with versatile and scented
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FIGURE 6

MADS-box genes for C. ensifolium (A), C. goeringii (B) and C. sinense (C).

flowers. However, an extended vegetative phase of 2-3 years puts
a major hurdle in their market success. Recently, studies have
been focusing the flowering time manipulation with no practical
output. There is an urgent need to devise strategies for the
development of new orchid varieties with limited vegetative
phase and controlled flowering time. Our study found that the
above mentioned three orchids escaped vegetative phase and
directly produced leafless flowers through protocorms in the
controlled environment. This abnormal flowering pattern lead to
transcriptome analysis in order to find differentially expressed
gene sets between leafless flowers and healthy leaves. We mainly
concentrated on DEGs related to hormone regulation and
flower integration.

Floral organ plan foundation needs multiple harmonized
spatiotemporal courses, including the perception of positional
information that stipulates floral organ founder cells and floral
meristem, coordinated organ outgrowth associated with the
generation and maintenance of inter-whorl and inter-organ
boundaries, and the meristem activity termination. Auxin
assimilates the gene regulatory networks to control these
processes, and play an instructive part in the tissue-specific
biosynthesis and transport to fashion local maxima,
perspicacity, and signaling (Cucinotta et al., 2021). ARFs
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(AUXIN RESPONSE FACTORs) are imperative to auxin
transport between bud and stem during bud break (Hayashi,
2012). Floral bud is regulated by endogenous hormones,
including promoters, such as IAA, CK, and GA3 and
inhibitors, such as ABA, ethylene and JA (Beveridge et al,
2009; Miiller and Leyser, 2011; Kebrom et al., 2013; Barbier
et al,, 2015; Wang and Wang, 2015; Yuan et al, 2015). A
continuous flower orchid Arundina graminifolia transcriptome
contained a large proportion of hormone-related genes, such as
auxin, gibberellin, and ABA (Ahmad et al, 2021a). In
Paphiopedilum callosum orchid, the GA; application
upregulates floral homeotic genes, such as AP3 and SEP in
the floral buds (Yin et al., 2022), thereby promoting continuous
flowering. Our data showed high gene enrichment for
phytohormones. GO annotation shows that most of the
genes were enriched in the auxin pathway, such as response
to auxin (GO:0009733) was shown by 163 genes, and auxin-
activated signaling pathway (GO:0009734), cellular response to
auxin (GO:0071365) and response to abscisic acid
(GO:0009737) by 72 genes, respectively (Figure 1A) in C.
ensifolium. Almost similar enrichments were observed in
other two species, suggesting that hormonal pathways may
share significant part in abnormal flowering phenotype. Auxin
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Overview of differential abundance of gene expression for flowering and hormonal pathway genes between leafless flowers and healthy leaves

(Ce: C. ensifolium; Cg: C. goeringii; Cs: C. sinense).

pathway genes were more downregulated in C. ensifolium and
C. sinense; while C. goeringii transcriptome showed more
upregulated DEGs (Figure 2). In C. ensifolium, auxin
response protein SAUR71-like and SAUR76-like, auxin efflux
carrier component lc and 1b, auxin response factor 16, and
auxin binding protein ABP19a-like were the most
downregulated genes in the leafless flowers. The most
upregulated included auxin responsive protein IAA2, auxin
responsive proteins SAUR32 and SARU72-like, and auxin
induced protein 10A5 (Figure 2A). SAUR71-like was also
among the most downregulated gene in C. goeringii flowers,
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while the upregulated included TAA8, and auxin response
factor ARF5 (Figure 2B). C. sinense showed AFRI13-like as
the most upregulated gene, while SARU32-like, SAUR66-like
and TAA10 were the most downregulated genes (Figure 2C). A
significant cytokinin downregulation can be seen in C.
ensifolium and C. sinense, suggesting that cell activities may
remain limited during abnormal floral bud growth (Figure 3),
which also correlated with limited gibberellin activity in both
the species. ABA was mainly downregulated in all the species
(Figure 4); while ethylene was more downregulated in C.
sinense than other two species. Ethylene regulates DELLA
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proteins in the gibberellin pathway (Meng et al., 2013). It
regulates flower bud development and flower formation in
bulbous plants (De Munk and Duineveld, 1986). Ethylene plays
a crucial role in the regulation of flower senescence (Dar et al.,
2021), suggesting it an inhibitor. However, the exact role of
ethylene in flower bud development needs extensive research.

SVP (SHORT VEGETATIVE PHASE), a flowering time
regulator, interacts with TCP TFs during bud bread (Singh
et al,, 2019). The C. goeringii SVP gene interacts with CgAPI
and CgSOCI in the regulation of flower development (Yang et al.,
2019). API performs a hub role between SOCI and SVP, which
are famous proteins determining floral organ identity (Honma
and Goto, 2001). SVP interacts with FLC and FLM, leading to
repression of FT during temperature and photoperiod pathways
for flowering regulation (Fujiwara et al., 2008; Gregis et al., 2009;
Tao et al,, 2012). It also regulates hormones, such as GA and
ABA during the bud break (Singh et al., 2018). CONSTANS (CO)
are the zinc finger TFs and involve flowering time regulation
(Ordonez-Herrera et al., 2018). We found all these important
floral and hormonal integrators with significant expression
difference between leafless flowers and healthy leaves
(Figures 5, 6). The flowering-related genes were comparatively
downregulated in C. ensifolium and C. goeringii as compared to
C. sinense, where most of the genes were upregulated (Figure 5),
suggesting that species may differ in their responses for genetic
regulators. CONSTANS were the most significantly
downregulated flowering genes in three species, although they
also showed upregulation, which was less differential than
downregulation (Figure 5). The other significantly upregulated
flowering genes included the hub genes known for multiple
regulatory pathways for floral integration, such as SEP, API,
AGLS6, FT and FCA.

Our recent studies have found a number of TFs related to
flowering regulation in orchids, especially the Arundina
graminifolia (Ahmad et al., 2020; Ahmad et al,, 2021a; Ahmad
et al, 2022a). Our study also showed a number of MADS-box
and zinc finger TFs with significant difference in the leafless
flowers and healthy leaves of three Cymbidium species
(Figures 5, 6), which are known floral regulators in orchids
(Teo et al., 2019; Valoroso et al., 2019; Ahmad et al., 2021b; Chen
etal, 2021; Yang et al.,, 2021b; Ahmad et al., 2022a; Ahmad et al.,
2022b). However, more flowering related genes and TFs were
upregulated in C. sinense as compared to other two species
(Figure 5), suggesting that C. sinense may have different body
plans than other Cymbidium orchids.

In short, the production of leafless flowers in Cymbidium
orchids provides a robust source to genetically engineer new
orchid varieties with limited vegetative phase. Our transcriptome
data is enriched with a number of hormonal and floral
regulators. CONSTANS, SPLs, AP and SEPs showed distinct
expression differences between leafless flowers and healthy
leaves. Among the hormones, auxin and ethylene contained
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the most abundant genes. The data is a raw material to devise
future research for transgenic orchids.

Conclusions

The subject matter is that, a strange leafless flowering
phenotype was observed in three Cymbidium species in
controlled environment (Figure 7B), wherein no leaf growth
was observed. The flowers appeared in six months, which is
astonishing when comparing normal growth cycle of more than
2 years for most of the orchids. The transcriptome data mined a
number of hormonal and floral regulatory genes, which were
differentially expressed in the leafless flowers and healthy leaves
of three species (Figure 7). Auxin and gibberellin related genes
showed high expression in C. goeringii, while the flowering
genes were highly expressed in C. sinense (Figure 7). Ethylene
and ABA related genes were mainly downregulated. CONSTANS
for flower regulation, auxin efflux carriers, LOGs in the cytokinin
biosynthesis pathway, gibberellin 20 oxidase in the GA
biosynthesis pathway, and PYLs in the ABA pathway could be
the key outputs of this study. This output provides enough
genetic information to build future functional ground for
reduced vegetative phase alteration in precious orchid species.
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