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Plant growth and its changes over space and time are effective indicators for

signifying ecosystem health. However, large uncertainties remain in

characterizing and attributing vegetation changes in the ecologically fragile

South China Karst region, since most existing studies were conducted at a

coarse spatial resolution or covered limited time spans. Considering the highly

fragmented landscapes in the region, this hinders their capability in detecting

fine information of vegetation dynamics taking place at local scales and

comprehending the influence of climate change usually over relatively long

temporal ranges. Here, we explored the spatiotemporal variations in vegetation

greenness for the entire South China Karst region (1.9 million km2) at a

resolution of 30m for the notably increased time span (1987-2018) using

three decadal Landsat images and the cloud-based Google Earth Engine.

Moreover, we spatially attributed the vegetation changes and quantified the

relative contribution of driving factors. Our results revealed a widespread

vegetation recovery in the South China Karst (74.80%) during the past three

decades. Notably, the area of vegetation recovery tripled following the

implementation of ecological engineering compared with the reference

period (1987-1999). Meanwhile, the vegetation restoration trend was strongly

sustainable beyond 2018 as demonstrated by the Hurst exponent.

Furthermore, climate change contributed only one-fifth to vegetation

restoration, whereas major vegetation recovery was highly attributable to

afforestation projects, implying that anthropogenic influences accelerated
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vegetation greenness gains in karst areas since the start of the new millennium

during which ecological engineering was continually established. Our study

provides additional insights into ecological restoration and conservation in the

highly heterogeneous karst landscapes and other similar ecologically fragile

areas worldwide.
KEYWORDS

vegetation greenness, spatial-temporal evolution, afforestation, climate change,
ecological fragile areas
1 Introduction

Vegetation, an integral part of terrestrial ecosystems, is of

great significance for stabilizing global climate through

photosynthesis and respiration (Pan et al., 2011; Griscom

et al., 2017; Song et al., 2022). Meanwhile, as an indicator of

ecosystem status, vegetation structure and function are highly

responsive to climatic and anthropogenic influences (Li et al.,

2020; Piao et al., 2020). Therefore, monitoring vegetation

changes and unraveling the potential drivers are fundamental

for ecosystem management and conservation.

Since ecologically fragile region is more easily influenced by

climate change and anthropogenic disturbance, vegetation

variations in these areas have gained increasing attention in

recent years (Dardel et al., 2014; Li et al., 2021). Karst is among

the most vulnerable ecosystems in the world (LeGrand, 1973).

Of all karst regions worldwide, the South China Karst region is

one of the three largest and most concentrated karst

development areas worldwide (Lolcama, 2010), which contains

eight Chinese provinces and approximately 1.9 million km2 in

total area and carbonate rocks area of over 0.50 million km2.

This region hosts over 200 million people and has serious

shortage of cultivated land resources per capita (Jiang et al.,

2014). The intense human pressures have given rise to the

destruction of vegetation, intensified soil erosion and large-

scale exposure of bedrocks, resulting in severe ecological

degradation known as karst rocky desertification, which

occupied 11.35×104 km2 or 22% of the whole karst regions as

of 2000 (Brandt et al., 2018). To reverse the expansion of rocky

desertification land as well as promote vegetation cover, the

central and local governments carried out many ecological

engineering programs around 2000, including the Natural

Forest Protection Program, Grain for Green Program, and

Comprehensive Treatment of Rocky Desertification (Liao

et al., 2018). Therefore, the vegetation dynamics monitoring

and analysis are critical to examine the effectiveness of ecological

engineering in karst areas.

The normalized difference vegetation index (NDVI)

constructed by the red and near-infrared spectral bands is
02
considered to be closely related to vegetation coverage and

productivity (Huete et al., 2002), which makes it one of the

most widely utilized remotely sensed indices to investigate

vegetation dynamics across global and regional levels (Myneni

et al., 1997; Pinzon and Tucker, 2014; Zhou et al., 2020; Lv et al.,

2022). Numerous studies have employed time series of NDVI

data to examine the vegetation variations in the South China

Karst region since the launch of the ecological engineering

around 2000 (Cai et al., 2014; Wang et al., 2015; Tong et al.,

2016). These studies all used MODIS NDVI products with a

resolution of 250-1000m to investigate the vegetation changes in

the karst areas of South China during approximately the same

time span, yet the reported vegetation change trends and spatial

distribution were largely inconsistent. Differing spatial scales

(i.e., pixel sizes) may be a vital reason for the inconsistency in

vegetation trends (Fensholt and Proud, 2012), especially for the

spatially heterogeneous South China Karst, which features

staggered distribution of ground objects and discontinuous soil

and vegetation cover (Zhang et al., 2017). Hence, it remains

challenging to characterize actual vegetation change trends

under complex terrain conditions by using coarse-resolution

imagery (Vogelmann et al., 2016). Moreover, considering that

ecological restoration projects started around 2000, the relatively

short time-series data adopted in previous studies were

impossible to characterize the vegetation changes prior to the

project implementation. In this regard, effectiveness of ecological

engineering on vegetation restoration may not be fully

quantified due to the lack of vegetation change information

before 2000 as the reference.

In recent decades, an increasing number of long time-series

dense satellite images can be publicly accessed, which

tremendously advances the quantification of regional and

global vegetation change trends at a longer temporal scale

(Zhu et al., 2016; Curtis et al., 2018; Hansen et al., 2020; Cai

et al., 2022). Among these datasets is the AVHRR-based GIMMS

NDVI dataset, which has also been used for vegetation trends

analysis in the karst regions (Tong et al., 2017). Despite the

relatively long time span (1981-2015), there remain several well-

known issues in the AVHRR-derived NDVI data, such as lack of
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reliable onboard calibration (Teillet et al., 1997), satellite orbital

drift over time (Pinzon, 2005), seasonal variations in sun-sensor

viewing geometry (Fensholt and Proud, 2012), and interference

by atmospheric water vapor (Liu et al., 2022). These drawbacks

may cause adverse influences on the time-series observed NDVI

(Nagol et al., 2014; Wang et al., 2021). Furthermore, the coarse

spatial resolution of 8km for GIMMS NDVI3g data hampers its

applicability in detecting vegetation dynamics taking place at

local scales.

As mentioned above, the scientific community has been

empowered to observe the general trend of vegetation greening

in the South China Karst region at different spatial scales using

dense satellite imagery (Brandt et al., 2018; Peng et al., 2021).

However, it still remains disputed whether the Karst greening

should be ascribed to climate change (Liu et al., 2018), human-

induced ecological engineering (Qiao et al., 2021), or the joint

influence of anthropogenic activities and climate variations

(Wu et al., 2020). Overall, most existing studies were

conducted using vegetation trend products having a coarse

spatial grain or covering a short time span, thereby limiting

the reliability of the attribution of vegetation dynamics. In

particular, the potential influence of climate variations on

vegetation dynamics using MODIS NDVI products (starting in

2000) may not be fully captured since climate change becomes

more evident at long temporal ranges (Seidl et al., 2017). To date,

characterization and attribution of vegetation variations

covering the complete South China Karst (1.9 million km2) at

30m spatial scale for the past three decades remain

largely understudied.

Therefore, this paper aims to characterize and attribute the

vegetation dynamics covering the entire spatially heterogeneous

South China Karst region for the past three decades using time

series of Landsat images and the cloud-based Google Earth

Engine platform. The specific research objectives are: (1) to

assess spatiotemporal change patterns of vegetation in the South

China Karst region at 30m spatial scale and for a notably

increased time period (1987-2018), and to examine the

sustainability of vegetation trends beyond 2018, (2) to further

compare vegetation trends from the perspective of differing karst

geological conditions, and (3) to develop a pragmatic research

framework for spatially identifying the primary drivers of

vegetation variations as well as quantifying their relative roles.
2 Materials and methods

2.1 Study area

South China Karst region (96°50′-117°18′ E, 20°6′-34°12′
N) is among the largest and most well-developed karst

concentrated areas worldwide, which covers eight Chinese
Frontiers in Plant Science 03
provinces including Guangxi, Guizhou, Yunnan, Sichuan,

Chongqing, Guangdong, Hunan and Hubei (Figure 1). The

region occupies 1.93 million km2, of which 0.51 million km2

underlain by carbonate rocks. Besides, the study area mainly

belongs to tropical/subtropical monsoon climate types, with an

annual mean temperature > 15°C and annual precipitation

> 1100 mm.
2.2 Data sources

All available surface reflectance collections provided by

Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI images

spanning from 1987 to 2018 were obtained from the Google

Earth Engine (GEE) platform. All acquired Landsat imagery

were atmospherically corrected using LEDAPS algorithms for

Landsat 5 and 7 satellites and the LaSRC algorithms for Landsat

8 satellite. Moreover, the CFMASK algorithm was implemented

to per-pixel detect and mask out snow, clouds and cloud

shadows for all collected Landsat surface reflectance images

(Zhu et al., 2015). In addition, the NDVI vegetation index was

computed using the near infrared and red bands, and an

intercept and offset were applied to Landsat 8-derived NDVI

in order to compensate for the difference in sensor bands

configuration between Landsat 5/7 and Landsat 8 satellites

(Roy et al., 2016). Pixels with NDVI value higher than 0.90

and lower than -0.9 were masked to reduce the influence of

errors like Scan Line Corrector (SLC) failure of Landsat 7 ETM+

on the final analysis (Fassnacht et al., 2019). The annual median

value synthesis method was pixel-wisely employed to derive the

final NDVI image for each year of the studied period (Taylor

et al., 2020).

Climate data including annual average temperature and

annual total precipitation during 1987-2015 were acquired

from the Resource and Environment Science and Data Center

(RESDC), Chinese Academy of Sciences (https://www.resdc.cn/),

which were generated by the ANUSPLIN spatial interpolation

method based on the daily observations from over 2400

meteorological stations in China. These two climatic factors

were rasterized to the same resolution and geographical

coordinate system as the counterparts of Landsat NDVI

dataset. Digital elevation model (DEM) at 30m resolution was

obtained from the Shuttle Radar Topography Mission (SRTM)

digital elevation dataset (version 3) deposited on the GEE

platform. Topographic slope and aspect were calculated by the

DEM data within ArcGIS 10.2 environment. In this study, we

also used lithological types vector data at the 1:500,000 scale

(Figure 1D), which was provided by the Institute of Karst

Geology, Chinese Academy of Geological Sciences (http://

www.karst.cgs.gov.cn/). Land cover data for the time periods

1990 and 2018 at 1km resolution were obtained from the
frontiersin.org
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RESDC. Furthermore, statistical data regarding artificial

afforestation area and economic investment of ecological

projects for the eight provinces in South China from 2002 to

2016 were derived from the China Forestry Statistical Yearbooks.
2.3 Methods

2.3.1 Vegetation trends quantification
In this study, the nonparametric Mann-Kendall test was

adopted to assess the direction and statistical significance of the

temporal trend of NDVI on the pixel scale, with the significance

level set at P<0.05, corresponding to the test statistics |Z|>1.96.

Moreover, we employed the nonparametric Theil-Sen median

trend analysis to calculate the slope of the trend. Theil-Sen slope

estimator mainly computes the median slopes between all n(n-

1)/2 pair-wise combinations of the time-series data, which is

robust and insensitive to data abnormality (Qi et al., 2019). The

calculation formula is as follows:
Frontiers in Plant Science 04
TS ¼ Median
NDVIj − NDVIi

j − i

� �
,  1987 ≤ i < j ≤ 2018 (1)

where, N = n (n − 1)/2, n is the length of the time series (32 years

in this study), NDVIi and NDVIj represent the NDVI values of a

pixel in years i and j, respectively. TS is the median of the slope of

N-pair data combination. If TS > 0, the time-series NDVI data

show an increasing trend, and vice versa.
2.3.2 Sustainability of vegetation trends
in the future

The Hurst exponent, based on the rescaled range (R/S)

analysis, is an effective method to reveal the future

development trend of time-series data relative to the historical

observations. Here we used the Hurst exponent to indicate the

sustainability of vegetation dynamic trends beyond the study

period (i.e., after 2018). The main calculation process is shown as

follows (Sánchez Granero et al., 2008):
FIGURE 1

The study area. (A) Location of the South China Karst region in China, (B) elevation distribution and provincial boundaries, (C) spatial distribution
of vegetation types and (D) Karst and Non-Karst region in the study area.
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Step 1: the time series {x(t)} (t = 1, 2,…, n) is divided into t
subsequence x (t), for each subsequence t = 1,…, t

Step 2: define the mean sequence:

〈 x 〉t =
1
t o

t

t=1
x(t),  t = 1, 2,…, n (2)

Step 3: calculate the cumulative deviation:

X(t, t) = o
t

u=1
(x(u) − 〈 x 〉t ),     1 ≤ t ≤t (3)

Step 4: create a range sequence:

R(t) = max
1≤t≤t

X(t, t)� min
1≤t≤t

X(t, t),           t = 1, 2,…, n (4)

Step 5: create a standard deviation sequence:

S(t) =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
t o

t

t=1
(x(t) − 〈 x 〉t )

2,        t = 1, 2,…:n

s
(5)

Step 6: rescale the range:

R(t)
S(t)

= (ct)H (6)

The value of Hurst exponent (H value) is derived by fitting

the equation log(R/S)n = a + H × log(n) based on the least

squares method, which ranges from 0 to 1. When the H value is

equal to 0.5, it conveys that the NDVI time series is a stochastic

series without sustainability; When the value of H is greater

than 0.5, it means that the time series is sustainable, and the

future trend will be consistent with that during the study

period; Whereas the value of H is less than 0.5, it indicates

the anti-sustainability of the time series, namely, the trend in

the future will be opposite to the counterpart during the

study period.
2.3.3 Relationships between vegetation
variations and climatic factors

To assess the correlation between climatic variables and

NDVI, partial correlation analysis was employed in this study,

which measures the degree of association between two variables

while excluding the influence of correlated one or one or more

control variables. The calculation formula of partial correlation

coefficients is as follows:

rxy·z =
rxy − rxzryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(1 − r2xz)(1 − r2yz)
q (7)

where rxy·zis the partial correlation coefficient of variable x and

variable y excluding the influence of variable z; Variables rxy, rxz
and ryz represent the simple correlation coefficients of variables x

and y, x and z, y and z, respectively. The T-test method was used

to validate the statistical significance of the derived partial
Frontiers in Plant Science 05
correlation coefficient, which was set at the significance level

of 0.05.

2.3.4 Relative contribution of climate change
and anthropogenic activities

In this study, we adopted the residual trend analysis

(RESTREND) method to unravel the relative contribution of

climate change and human activities to vegetation changes (Peng

et al., 2021). The general principle of the RESTREND method is

to establish a multivariate regression model between NDVI and

climatic variables, and then derive the NDVI residuals between

observed NDVI (NDVIobs) and predicted NDVI (NDVIpre)

driven by the resultant NDVI-climate model. The change

trend of NDVI residuals over time can be attributed to the

impact of anthropogenic activities. The specific calculation

procedures are shown as follows:

Firstly, we developed a multivariate regression model between

NDVI (response variable) and climate factors (temperature and

precipitation as explanatory variables). To better reflect the effects

of ecological engineering on vegetation change, the NDVI-climate

model was constructed during the reference period without

project influences, i.e., before the implementation of ecological

engineering (1987-1999) instead of the full period (Tong et al.,

2017). The calculation formula is as follows:

NDVIpre(i, t) = a ∗Temp(i, t) + b ∗ Prec(i, t) + c (8)

where i is the location of the pixel, t is the year, a is the regression

coefficient between NDVI and annual average temperature

(Temp), b is the regression coefficient between NDVI and

annual precipitation (Prec), and c is a constant term.

Subsequently, based on the established regression model for

the reference period, we calculated the predicted NDVI over

2000 to 2015 on the pixel scale, which was considered as the

NDVI driven by climate change alone. Then, we computed the

residual difference between observed NDVI (NDVIobs) and

predicted NDVI (NDVIpre), and obtained the time series

NDVI residuals (NDVIres), which were expected to reflect the

vegetation trend driven by human activities. The calculation

formula of residual difference is as follows:

NDVIres(i, t) = NDVIobs(i, t)�NDVIpre(i, t) (9)

where NDVIres(i, t), NDVIobs (i, t) and NDVIpre (i, t) represent

the NDVI residual, observed NDVI and predicted NDVI values

simulated by climate change of pixel i in year t, respectively.

In this study, the effect of climate change on vegetation

variations was represented by the trends of NDVIpre, whereas the

effect of human activities was measured by the trends of NDVIres.

To discern the climatic and anthropogenic influences on

vegetation change, we calculated the trends of NDVIpre,

NDVIobs and NDVIres using the Theil-Sen slope estimator.

Finally, the relative importance of climate change and human
frontiersin.org
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activities to vegetation dynamics was determined on the basis of

Slope(NDVIobs), Slope(NDVIpre) and Slope(NDVIres) as shown in

Table 1 (Qi et al., 2019; Li et al., 2021).
3 Results

3.1 Vegetation dynamics and
sustainability assessment

3.1.1 Temporal variations of NDVI from
1987 to 2018

The interannual changes in NDVI indicated a significantly

increasing trend of vegetation cover in southern China during

1987-2018 (Figure 2A), with an increase rate of 0.0053 yr-1 (r =

0.87, P<0.001). Moreover, it is found that during the

conservation period (2000-2018), the annual increase rate of

NDVI (0.0074 yr-1) has nearly doubled in contrast with the

counterpart over the reference period (1987-1999). This

indicates that vegetation growth has been substantially

improved after the establishment of ecological restoration

projects. In addition, the discrepancy in NDVI temporal

change under different geological backgrounds has also been

investigated (Figures 2B, C). The annual increase rate of NDVI

in karst areas (0.0059 yr-1) was greater than that in non-karst

areas (0.0051 yr-1), which suggested the vegetation restored more

rapidly in karst areas compared with non-karst areas.

3.1.2 Spatial differentiation of vegetation trends
during 1987-2018

Figure 3A shows the variation trend of annual NDVI over

the past three decades on the pixel scale. Specifically, the

proportion of pixels with significant (P< 0.05) increase in

vegetation cover reached 74.80% in southern China, which

was primarily contributed by forest ecosystems (55%),

followed by croplands (24%) and grasslands (19%). In
Frontiers in Plant Science 06
contrast, only 2.18% of the study area presented a significantly

decreasing trend, which was largely concentrated in urban

clusters and their surrounding areas, such as the Pearl River

Delta of Guangdong and Wuhan urban agglomeration of Hubei.

Furthermore, we compared the difference of vegetation

change trends prior to and after the implementation of

ecological restoration projects (Figures 3B, C). Notably, after

the implementation of the projects (2000-2018), the proportion

of pixels with significant vegetation restoration increased to

57.45%, more than triple the amount before the project

implementation (17.17%). Moreover, only 1.93% of the study

area presented a significant downtrend in vegetation cover,

which was slightly higher than that before the project

implementation (1.64%). The slope difference between the two

periods also revealed evident spatial heterogeneity (Figure 3D).

Regions where the NDVI slope over the conservation period was

larger than that prior to 2000 accounted for 62.86% of the study

area, implying that accelerated vegetation restoration has been

observed in the most areas of South China Karst region.

3.1.3 Sustainability of vegetation trends
beyond 2018

The future vegetation trends after 2018 was also examined

based on the rescaled range (R/S) analysis (Supplementary

Figure S1). The mean Hurst exponent of NDVI in southern

China was 0.661, indicating that the vegetation change trend is

sustainable in the South China Karst region as a whole. Spatially,

pixels with Hurst exponent exceeding 0.5 accounted for 93.30%

of the study area (Supplementary Figure S1A). The spatial

pattern of future vegetation trends based on vegetation

dynamics (1987-2018) and Hurst exponent was shown in

Supplementary Figure S1B. The majority (72.22%) of the total

area revealed a sustained uptrend in vegetation cover beyond

2018 (Table 2). Additionally, it is found that the area proportion

of persistent vegetation improvement in karst areas (74.12%)

was higher than that in non-karst areas (71.55%). Meanwhile,
TABLE 1 Identification method and contribution quantification of the drivers for vegetation changes under differing scenarios.

Slope
(NDVIpre)

Slope
(NDVIres)

Relative contribution
of climate change (%)

Relative contribution of
human activities (%)

Attribution

The zone of
vegetation
recovery

Scenario
1

>0 >0 Slope(NDVI)pre
Slope(NDVI)obs

� 100
Slope(NDVI)res
Slope(NDVI)obs

� 100
Both climate change and human
activities contributed to vegetation
recovery

Scenario
2

>0 <0 100 0 Climate-induced vegetation recovery

Scenario
3

<0 >0 0 100 Human-induced vegetation recovery

The zone of
vegetation
decrease

Scenario
1

<0 <0 Slope(NDVI)pre
Slope(NDVI)obs

� 100
Slope(NDVI)res
Slope(NDVI)obs

� 100
Both climate change and human
activities induced the vegetation decrease

Scenario
2

<0 >0 100 0 Climate-induced vegetation decrease

Scenario
3

>0 <0 0 100 Human-induced vegetation decrease
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the area proportion of persistent vegetation degradation in karst

areas (1.42%) is lower than the counterpart in non-karst areas

(2.41%). These findings highlighted comparatively more

sustainable increasing vegetation trends in karst areas in

contrast with non-karst areas.
3.2 Comparative analysis of vegetation
dynamics in different geological regions

The multi-year average NDVI in the karst areas was larger

than the counterparts in non-karst areas during all three time

periods (Supplementary Figure S2A), suggesting that karst

regions had relatively higher vegetation cover in comparison

with non-karst areas. Regarding the vegetation dynamic trends,

karst areas shared comparatively larger area ratio of significant

vegetation increase (76.61%) than that in non-karst regions

(74.21%) over the period 1987-2018 (Supplementary Figure

S2B). This indicated that vegetation restoration was more

evident in karst areas. If divided into two periods, prior to the

launch of ecological engineering (1987-1999), the majority of

pixels showed no significant changes for both karst and non-

karst regions. Conversely, after the project implementation

(2000-2018), the vegetation change was dominated by

significant uptrends in both geological regions.
3.3 Attribution of vegetation dynamics

3.3.1 Correlations between climate change and
vegetation dynamics

To quantify the influence of climate change on vegetation

variations, we calculated the partial correlation coefficients

between climatic factors and NDVI at the pixel scale, which

showed evident spatial differences (Supplementary Figure S3).

Specifically, regions where temperature and NDVI were

significantly (P< 0.05) positively correlated covered 21.38% of

the whole area. These regions were also the areas with partial
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correlation coefficient greater than 0.5, mostly located in Yunnan

province and Northwest Sichuan Plateau. By comparison, the

proportion of the areas where the temperature had significant

negative relationship with NDVI attained only 2.15%, which was

largely distributed in the Pearl River Delta and the coastal areas

of western Guangdong. Consequently, up to 76.47% of regions

had no significant correlations between annual temperature

and NDVI.

Moreover, the partial correlation coefficients between annual

precipitation and NDVI also revealed apparent regional

differentiation (Supplementary Figures S3C, D). Regions where

annual precipitation and NDVI presented a significant positive

correlation accounted for only 3.75%. Geographically, it was

mostly concentrated in southern Guangxi and northern

Guangdong, and the partial correlation coefficient was larger

than 0.5. In addition, regions where annual precipitation was

significantly negatively correlated with NDVI were slightly

higher in proportion, accounting for 5.91%, which was largely

concentrated in northwest Yunnan and southwest Sichuan. As a

consequence, 90.34% of the areas had no significant

relationships between annual precipitation and NDVI. These

findings suggest that, in spite of the warmer and drier climate

change trend during the past three decades (Supplementary

Figure S4, S5), climatic factors have no significant impacts on

vegetation change in most areas of southern China, implying

that non-climate variables contributed largely to vegetation

recovery in the South China Karst.
3.3.2 Relative contribution of climate change
and anthropogenic activities

In this study, we identified the driving factors of vegetation

change on the pixel scale using multivariate regression and

residual trend analysis method (Figure 4). Analysis showed

that the significant increasing vegetation trends led to

anthropogenic influences standalone occupied 40.75% of the

total area of significant vegetation increase, principally located in

the eastern Sichuan Basin, mountain areas of southwestern
B CA

FIGURE 2

Interannual variations of NDVI from 1987 to 2018 in (A) southern China, (B) karst region, and (C) non-karst region. Note that the black solid line
is the linear fitting of NDVI for the full time series (1987-2018), while the red and green solid line denote the linear fitting of NDVI for the
reference period (1987-1999) and conservation period (2000-2018), respectively.
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Sichuan, northern and eastern Hubei. Contrastingly, climatic

factors alone contributed only 21.37% to significant vegetation

increase, which was largely distributed in the southwestern

Sichuan and northwestern Yunnan. This indicated that the

relative importance of anthropogenic activities to vegetation

restoration was far greater than the counterpart of climate
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change in the South China Karst. In addition, the area of

vegetation increase caused by the joint influence of climate

change and anthropogenic activities covered 37.88% of the

whole area of significant vegetation increase, which was found

scattered in the north of Northwest Sichuan Plateau, southwest

Yunnan, north Hunan and northwest Guangdong. In contrast,
B

C D

A

FIGURE 3

Spatial distribution patterns of NDVI trends for different periods in southern China. (A) Full time series (1987-2018), (B) reference period (1987-
1999), (C) conservation period (2000-2018), and (D) difference in Sen’s slope of vegetation trends calculated by Theil-Sen slope estimator
between the conservation period and reference period. Note that the grey area denotes not statistically significant (P > 0.05), and the bright
green solid dot denotes the location of the capital cities of eight provinces in southern China.
TABLE 2 Area ratio of different future vegetation change trend types based on the Theil-Sen trend slope (TSNDVI), Mann-Kendall test (|Z|) and
Hurst exponent (H).

Code Future trends TSNDVI |Z| H Area proportion (%)

Southern China Karst areas Non-karst areas

1 Uncertain — ≤1.96 [0, 0.5] 4.08 4.40 3.97

2 Decrease to increase <0 >1.96 [0, 0.5] 0.03 0.02 0.04

3 Increase to decrease >0 >1.96 [0, 0.5] 2.58 2.48 2.62

4 Persistent stable — ≤1.96 (0.5, 1] 18.93 17.55 19.42

5 Persistent decrease <0 >1.96 (0.5, 1] 2.15 1.42 2.41

6 Persistent increase >0 >1.96 (0.5, 1] 72.22 74.12 71.55
Note that the specific properties of the numeric code of the six future vegetation trend types in Supplementary Figure S1 were consistent with the counterparts in Table 2.
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the areal proportion of human-induced vegetation decrease was

rather trivial, covering only 1.56% of the areas with significant

vegetation changes, which were primarily distributed in the

highly developed urban areas and their surrounding regions,

such as the Pearl River Delta region in Guangdong province.

Similarly, the proportion of climate and human-induced

vegetation decrease was also small (1.48%), and areas showing

vegetation decrease caused by climate change alone covered

only 0.16%.

To quantitatively disaggregate the climatic and

anthropogenic effects on vegetation dynamics in the South

China Karst region, we further investigated the relative

contribution of climate change and human activities to

vegetation dynamics on the pixel scale (30m) (Figure 5).

Specifically, the relative role of climate change to vegetation

variations was mostly concentrated within 20%, accounting for

70.59% of the total area with significant NDVI change (P< 0.05),

indicating that climate change imposed a minor effect on

vegetation variations in most areas. Whereas areal proportion

of regions with climate change contributing more than 80% to

vegetation increase achieved only 19.73%, which was primarily

located in the south of Northwest Sichuan Plateau, northwest

and southwest Yunnan. By comparison, the regions with relative

contribution of anthropogenic activities to vegetation increase

exceeding 80% covered 52.67% of the areas with significant

vegetation change, far larger than the counterpart of climate

change. These regions were widely distributed in the eastern

Sichuan, eastern and northern Hubei, southern Guangxi and

eastern Guangdong. This indicates that anthropogenic activities
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are the dominant driver for the significant vegetation recovery in

most areas of the South China Karst region, which is largely

a t t r ibutable to the implementat ion of large-sca le

ecological engineering.

Statistical data showed that from 2002 to 2016, the Chinese

government has invested 40.94 billion USD in total into the

afforestation projects (Figure 6), and more than 16,000 km2 of

trees has been planted annually in southern China. Analysis

showed that there was a significant (P< 0.05) positive

relationship between annual NDVI and afforestation area in

the southern China as a whole and its eight provinces

(Supplementary Figure S6). This implies that the afforestation

projects significantly enhanced the increase of regional

vegetation cover.
4 Discussion

4.1 Spatial-temporal changes of
vegetation greenness

This study constructed a three decadal vegetation index

dataset at 30m spatial resolution covering the complete South

China Karst region using time-series Landsat images, and

obtained fine-scale information on vegetation dynamics during

1987-2018. In accordance with other research, our study also

revealed an extensive vegetation recovery in the vegetation

across the South China Karst during the past three decades

(Macias-Fauria, 2018; Peng et al., 2021). Our result showed that
FIGURE 4

Spatial distribution of driving factors for vegetation variations in the regions with significant NDVI change (P< 0.05) in southern China.
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the proportion of pixels with significant vegetation greening

reached 74.80% from 1987 to 2018 using Landsat-based NDVI

data (Figure 3A), significantly higher than the counterpart

detected by the GIMMS NDVI3g data used by previous

research (Tong et al., 2017; Zhao et al., 2020; Zhang et al.,

2021). It is noteworthy that these studies all applied long time-

series GIMMS NDVI3g dataset at 8km resolution. Generally

speaking, the larger the pixel, the more likely it is to contain

differing land cover types, that is, the more significant the mixed

pixel effect (Hansen and Loveland, 2012). Especially for karst

areas, small-scale vegetation change is particularly common due

to the complex mosaic landscapes and the resulting high spatial

heterogeneity in this region (Zhang et al., 2017). Hence, coarse

spatial resolution greatly limits the response range of vegetation

change that can be detected (Vogelmann et al., 2016; Huang

et al., 2020). For instance, Wang et al. (2021) found that GIMMS

NDVI data underestimated the changes of alpine vegetation

growth over the past 30 years based on long-term field

observations. Notably, our study found that there were much

more pixels (57.45%) showing vegetation greening during the

conservation period (2000-2018) in contrast to the reference

period (17.17%) during 1987-1999. This indicates that the

vegetation restoration has accelerated in the South China Karst

ensuing the practice of ecological projects starting around 2000

(Chen et al., 2021). Similar phenomenon has also been reported

in the Chinese Loess Plateau where the Grain for Green project

has been largely established (Sun et al., 2015).

Moreover, we found that there existed a discrepancy in

vegetation dynamics under different geological conditions. To

be specific, from the perspective of interannual variations, a

higher increase rate of vegetation greenness was observed in

karst regions in contrast with non-karst regions (Figure 2). In

addition, more pixels showing significant vegetation uptrend
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were detected in karst regions (Supplementary Figure S2B). It

can be seen that vegetation restoration is more rapid and takes

place in larger areal proportions in the carbonate rock areas.

From the perspective of material circulation, rocks are the main

source of soil minerals. Because the types and contents of

minerals contained in rocks of different lithology are different,

the contents of nutrient elements provided by rocks vary greatly,

so lithology has a great impact on soil fertility (Wang et al.,

2004). The physical and chemical properties of soil play a key

role in the vegetation growth and its change trends, so lithology

is an important natural factor influencing the growth and change

of vegetation (Qiao et al., 2020). Hence, when implementing

ecological engineering in the future, it is necessary consider the

temporal and spatial differences of vegetation restoration under

different lithological conditions, and take ecological construction

and protection measures according to local conditions.
4.2 Effects of climate change on
vegetation dynamics

Numerous research has shown that climate change is one of

the leading drivers of vegetation variations in China (Zhu et al.,

2016; Jiang et al., 2022). However, our study illustrated that the

effects of climate change on vegetation dynamics in South China

Karst were limited as jointly demonstrated by the partial

correlation analysis (Supplementary Figure S3) and residual

trend analysis (Figure 5A). This accords with previous

research (Tong et al., 2016; Qiao et al., 2021). Moreover, the

relationship between NDVI and precipitation is even weaker

than that between NDVI and temperature. This may be because

the South China Karst mainly locates in the subtropical

monsoon climate zone, with abundant rainfalls and moderate
BA

FIGURE 5

Spatial distribution of relative contribution of climate change and human activities in regions with significant NDVI change (P< 0.05). (A) Climate
change, and (B) human activities.
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temperature (Liu et al., 2015), and the vegetation growth is not

responsive to slight changes in rainfalls (Piao et al., 2020). This is

different from arid and semi-arid areas where precipitation is the

primary controlling environmental variable affecting vegetation

growth (Sun et al., 2015), and increased precipitation promotes

vegetation cover in these areas. Furthermore, affected by the

special karst geological background, the South China Karst

region has a two-dimensional hydrological structure of surface

water and groundwater, which are well linked via fractures as

well as sinkholes (Wang et al., 2019). Despite abundant rainfall

in the growing season, surface runoff still flows into the

groundwater system through karst fissures, pits and rivers

(Zhang et al., 2017), which implies that the rainfalls in the

South China Karst cannot be fully utilized for the growth of

vegetation. Meanwhile, karst soil mainly comes from the residue

left after the dissolution of parent carbonate rock (Wang et al.,

1999). Due to the slow soil forming rate of carbonate rocks, the

soil layer in the region is generally thin and the soil cover is

scarce and discontinuous, especially in rocky desertification area

(Jiang et al., 2014). Although the annual precipitation in the

region is relatively high, the soil water holding capacity is weak.

This leads to low soil humidity in karst areas, which is not

enough to meet the surface evapotranspiration demand in the
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region and may give rise to the occurrence of extreme droughts

(Liu et al., 2011).

In this study, we found an apparent warming and drying

climate trend in the South China Karst region over the three

decades (Supplementary Figures S4, S5), especially after 2000,

which is in accordance with existing reports (Lian et al., 2015).

Although the increase of temperature will prolong the length of

vegetation growing season and increase the intensity of

photosynthetic rate (Dragoni et al., 2011), the sustained

temperature increase may further accelerate the plants

transpiration and surface evapotranspiration (Barriopedro

et al., 2012; Jia et al., 2022). Meanwhile, the decrease of

precipitation further promotes the decline of soil moisture in

karst areas (Liu et al., 2018), which may inhibit the growth of

vegetation to a certain extent. Although the trend of climate

change may be unfavorable to vegetation growth after 2000,

vegetation restoration trend during this period is more obvious

than that prior to 2000, which once again confirms that climate

change is not the primary factor for vegetation restoration in the

South China Karst.

However, extreme drought climate poses a serious threat to

the future development of vegetation (Li et al., 2019). Several

studies have pointed out that for the past half century, the
B

A

FIGURE 6

Annual (left y-axis) and cumulative (right y-axis) afforestation area and forestry investment in the eight provinces in southern China from 2002 to
2016. (A) Afforestation area, and (B) forestry investment.
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intensity and duration of seasonal drought events in South

China have also increased coupled with the increase of

temperature and decline of precipitation (Han et al., 2014; Yu

et al., 2014). In particular, southwest China suffered extreme

drought rarely seen in a century from 2009 to 2010, which

directly led to the decline of regional vegetation productivity, the

increase of tree mortality and the significant destruction of

vegetation (Barriopedro et al., 2012). Due to the occurrence of

rocky desertification, the frequency of extreme drought in karst

areas has increased in recent decades (Jiang et al., 2014).

Different studies show that large-scale drought has

significantly reduced vegetation activities through different

research approaches such as experimental methods, satellite

observations and dynamic vegetation models (Zhao and

Running, 2010). Considering that the duration and frequency

of drought are increasing, it may offset the effectiveness of

ecological restoration projects on vegetation increase (Wu

et al., 2014). In view of this, under the future climate change

scenarios, special attention should be paid to take more targeted

measures to counter the negative impact of extreme climate on

vegetation growth. For example, it is suggested to select more

drought resistant tree species in future afforestation projects to

improve rainwater utilization efficiency.
4.3 Anthropogenic influence on
vegetation dynamics

In this study, we quantified the relative role of anthropogenic

activities to vegetation variations at a pixel size of 30m in the

South China Karst region, and found that the vast majority of

the significant vegetation recovery was dominated by

anthropogenic influences (Figure 5). Consistent with our

results, increasing studies have also highlighted the significant

positive impact of human activities, especially large-scale

afforestation, on the increase of vegetation cover in karst areas

(Viña et al., 2016; Zhao et al., 2020). In addition, analysis

indicated a significant, positive association between NDVI and

afforestation area at the provincial level (Supplementary Figure

S6), implying that ecological projects would enhance vegetation

cover in the region, which accords with existing research (Niu

et al., 2019). Nevertheless, there are still some deficiencies in the

design of the existing ecological restoration projects, which need

to be improved in the follow-up project planning. For instance, a

limited number of fast-growing tree species has been prioritized

in current conservation measures, resulting in poor biodiversity

and vulnerability to insect damage or fire risks (Hua et al., 2016).

Despite the positive effects of ecological projects,

anthropogenic interferences such as urban expansion,

deforestation and reclamation could also impose adverse

effects on vegetation growth (Song et al., 2018). Our study

revealed that significant vegetation decrease was mostly
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observed in urban agglomerations such as Pearl River Delta

region of Guangdong province and Wuhan Urban

Agglomeration of Hubei province (Figure 3). Further, based

on the NDVI change trend during 1987-2018 and the

corresponding land use changes over the same period

(Supplementary Figure S7), we found that the areas with

significant vegetation degradation are highly consistent with

the regions experiencing urban expansion in the past three

decades. In addition, although local farmers can obtain certain

economic compensation by participating in the Grain for Green

Program (Liang et al., 2012), the income from crops cultivation

and agricultural subsidies exceeds the compensation standard

for ecological projects, resulting in deforestation and steeply

sloped cultivation in some regions. This may partly interpret the

vegetation browning detected in the region.
4.4 Limitations and future work

Overall, this study provides an easy-to-use research

framework for detecting and attributing vegetation changes in

highly fragmentized landscapes at large spatial spans while with

comparably high spatial resolution. However, there are still

several issues that need to be resolved in future research.

Firstly, this study quantified the partial correlation between

NDVI and climatic factors on the interannual scale, without

considering the time-lag effect of climatic factors on vegetation

growth (Saatchi et al., 2013; Wu et al., 2015). Secondly, previous

studies have shown that vegetation change is affected by many

other factors, such as nitrogen deposition and atmospheric CO2

concentration (Piao et al., 2020). Nevertheless, due to the lack of

long-term spatial data, the influences of nitrogen deposition and

CO2 fertilization on karst vegetation growth have not been

considered, which may further increase the uncertainty of the

research results. Moreover, we derived NDVI residual sequence

by eliminating the influence of climate variability based on the

constructed NDVI-climate model, and assumed that NDVI

residuals were mainly caused by anthropogenic factors.

However, extreme events such as wildfires and droughts may

also influence vegetation change (Song et al., 2019), whereas

their effects are not yet considered in the RESTREND method,

which might add to the uncertainty of the study.
5 Conclusions

This study examined the spatial and temporal variability of

vegetation greenness at a spatial resolution of 30m for the period

1987-2018 across the entire South China Karst using time-series

Landsat-based NDVI and the Google Earth Engine cloud

platform, which helps to resolve the contradiction between

high spatial heterogeneity in the karst landscapes and low
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spatial resolution remote sensing monitoring as practiced by

previous studies. The main conclusions were summarized

as follows:
Fron
1. This study confirmed an extensive vegetation recovery

in the South China Karst during the past three decades,

consistent with existing studies but with a higher

greenery proportion (74.80%) revealed by finer-

resolution satellite observations.

2. The area of vegetation recovery tripled after the

implementation of ecological engineering compared

with the reference period (1987-1999).

3. The majority of the vegetation restoration will be

sustainable after the study period as indicated by the

Hurst exponent.

4. The climate in the region tended to be warmer and drier,

whereas climate change imposed limited impacts on

vegetation variations.

5. Human-induced ecological engineering starting around

2000 dominated the vegetation recovery in most areas.
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