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The global environment is dominated by various small exotic substances,

known as secondary metabolites, produced by plants and microorganisms.

Plants and fungi are particularly plentiful sources of these molecules, whose

physiological functions, in many cases, remain a mystery. Fungal secondary

metabolites (SM) are a diverse group of substances that exhibit a wide range of

chemical properties and generally fall into one of four main family groups:

Terpenoids, polyketides, non-ribosomal peptides, or a combination of the

latter two. They are incredibly varied in their functions and are often related

to the increased fitness of the respective fungus in its environment, often

competing with other microbes or interacting with plant species. Several of

these metabolites have essential roles in the biological control of plant diseases

by various beneficial microorganisms used for crop protection and

biofert i l izat ion worldwide. Besides direct toxic effects against

phytopathogens, natural metabolites can promote root and shoot

development and/or disease resistance by activating host systemic defenses.

The ability of these microorganisms to synthesize and store biologically active

metabolites that are a potent source of novel natural compounds beneficial for

agriculture is becoming a top priority for SM fungi research. In this review, we

will discuss fungal-plant secondary metabolites with antifungal properties and

the role of signaling molecules in induced and acquired systemic resistance

activities. Additionally, fungal secondary metabolites mimic plant promotion

molecules such as auxins, gibberellins, and abscisic acid, which modulate plant

growth under biotic stress. Moreover, we will present a new trend regarding
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phytoremediation applications using fungal secondary metabolites to achieve

sustainable food production and microbial diversity in an eco-

friendly environment.
KEYWORDS
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1 Introduction

Plants and their associated fungi share a long history of co-

evolution. Indeed, beneficial and/or pathogenic relationships with

fungi are likely one of the critical traits acquired by the first

terrestrial plants (Heckman et al., 2001; Humphreys et al., 2010).

The association between fungal microbes (e.g., mycorrhizal,

endophytic, saprophytic, and pathogenic microbes) and their

host plants have shaped and formed various modifications.

Generally, fungi interact with the host plants in different ways.

For instance, necrotrophs survive on dead host tissues, biotrophs

feed on plant resources without killing the host plant, and

hemibiotrophs have an asymptomatic period followed by a

necrotrophic stage (Horbach et al., 2011). Interestingly, the

beneficial side of soil microbiota is a promising sustainable

alternative to improve crop health and productivity. For

example, mycorrhizal root colonization positively influenced

plant growth and nutrient uptake (e.g., N and P availability). In

addition, combining multiple rhizospheric microbes, such as B.

amyloliquefaciens, mycorrhizal, and Pseudomonas, significantly

varied the plant microbiome structures. As a result, it has

positive effects on plant growth, by improving nutrient

acquisition and/or water uptake, and the plant nutrient use

efficiency (Cozzolino et al., 2021; Chandrasekaran, 2022).

However, biocontrol agents as beneficial microbes or their

chemical metabolites are essential in protecting plants against

destructive phytopathogenic fungi, even under unfavorable

environmental conditions. These chemical molecules, known as

Secondary Metabolites (SMs), were defined by (Kossel, 1891) as

molecules generated mainly by microbes and plants with a relatively

low molecular weight (in most cases, three kDa). Various chemical

components used in pharmaceutical and commercial purposes are

derived from filamentous endophytic fungi. According to

biochemical synthesis, fungal SMs are classified into polyketide,

nonribosomal, alkaloids, and terpenes, which have potential

ecological and medicinal applications (Sinha et al., 2019; Yu et al.,

2021). The adage “necessity is the mother of invention” appears true

when we consider plants, despite being nonmotile and simply lacking

a highly developed immune system. Plants are not powerless against a

wide range of biotic and abiotic stresses; instead, wielding an arsenal

of chemicals to deter enemies, fend off pathogens, outcompete
02
competitors, and outperform environmental constraints (Ballhorn

et al., 2009; Schäfer and Wink, 2009). Although SMs could not be

involved in fundamental cellular operations, they perform essential

bio-ecological roles assisting the host organism in adapting to its

environmental niche and regulating interactions between species

(Perez-Nadales et al., 2014; Scharf et al., 2014). Previously, plant

biologists paid little attention to these chemical molecules because

they were formerly assumed to be physiologically unimportant. On

the other side, organic chemists have studied their chemical structures

and characteristics intensively since the 1850s and have a different

point of view. It has been suggested that SMs play an active and

critical role in possible defensive mechanisms, particularly chemical

warfare between plants and pathogens (Croteau et al., 2000).

These molecules have also been identified in plants as herbivore

repellents, pollinator attractants, allelopathic agents, toxicity

protection, UV-light shielding, and signal transduction. Diverse

fungal bioactive secondary metabolites include phytotoxins (SMs

secreted by phytopathogenic fungi that attack plants), mycotoxins

(SMs produced by fungi that invade crops and cause toxins in

humans and other animals), pigments (colored substances with

antioxidant properties), and antibiotics (natural products capable of

inhibiting or killing microbial competitors) (Demain and Fang, 2000;

Keller et al., 2005; Chiang et al., 2009). Additionally, these

metabolites play a crucial role in mediating fungal activity, such as

sporulation and hyphal extension, while others target plant

development and metabolism (Keller et al., 2005). Through this

review, we shed light on several topics showing fungal-plant

associations and summarize the hidden power of their secondary

metabolites to achieve sustainable economic food production under

resecure environmental resources.
2 Plant secondary metabolites

2.1 Hormone production and
plant resistance

Plant secondary metabolites are categorized into three

groups based on the biosynthetic pathways they are derived

from: (1) flavonoids and phenolic compounds, (2) N- containing
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alkaloids, and (3) terpenoids. These metabolites are essential for

plant fitness and survival via signaling hormones and attractive

substances for pollinators and seed development that modulate

plant growth (Wink, 2003). A recent study by (Bean et al., 2022)

argued that the cytokinins generated by plant symbiotic

Trichoderma strains might be exploited to stimulate plant

development, affecting the symbiotic fungi’s colonization

strategy and regulating the host plant’s phytohormone for

improved plant resistance to diseases. In addition, a plant-

fungus interaction system was created to study the role of

auxin in controlling the growth and maturation of Arabidopsis

(Arabidopsis thaliana) seedlings concerning infection with

Trichoderma virens and Trichoderma atroviride (Contreras-

Cornejo et al., 2009). Another study (Contreras-Cornejo et al.,

2015b) measured stomatal aperture and excess water in leaves of

Arabidopsis wild-type (WT) seedlings and ABA-insensitive

mutants, abi1-1 and abi2-1, inoculated with T. virens or T.

atroviride. Compared to untreated seedlings, inoculated

Arabidopsis WT seedlings had lower stomatal aperture and

water loss. T. atroviride is thought to modify root-system

architecture by altering mitogen-activated protein kinase 6

activity and ethylene and auxin action (Contreras-Cornejo

et al., 2015b).

Phytohormones such as ethylene (ET) (Soanes et al., 2002),

salicylic acid (SA) (Janda and Ruelland, 2015), jasmonic acid (JA)

(Wasternack, 2007; Quirino et al., 2010), and abscisic acid (ABA)

(Hauser et al., 2011; Contreras-Cornejo et al., 2015a; Contreras-

Cornejo et al., 2015b) aid in plant growth, and control fungal

invasion and insect attacks. Moreover, these regulators (e.g., SA)

are essential for plant health survival under phytopathogenic

attacks, which involve systemic acquired resistance (SAR) and

induced systemic resistance (ISR) (Janda and Ruelland, 2015). In

addition, JA stimulates plant protection against a wide range of

plant pathogens and pests (Kunkel et al., 1993), but is

downregulated by biotic stress (Kilaru et al., 2007; Tamaoki

et al., 2013) (Figure 1). Minor metabolites (e.g., methyl

salicylate, pipecolic acid, abietane diterpenoid dehydroabietic,

and a glycerol-3-phosphate-dependent factor) have emerged as

inducers during the initiation of SAR. These components have

been linked to prime SAR activation under biotic exposure (Ryals

et al., 1996; Shah et al., 2014). ISR is another defensive strategy

defined by activating pathogenesis-related (PR) genes

responsible for the secretion of certain defense enzymes. These

defensive proteins reduce cell damage caused by free radicals and

protect the plant cell wall against destructive fungal diseases

(Mwaniki et al., 2005; Yao and Tian, 2005; Reise and Waller,

2009; Derksen et al., 2013).

Furthermore, ISR is related to methyl jasmonate (MeJA)

inducible cell wall biosynthesis and lignification (Cheong and

Choi, 2003; Yang et al., 2022). In addition, IAA, the primary

auxin in higher plants, significantly influences plant

developmental stages when in the form of free IAA, compared

to IAA conjugates which were primarily ineffective (Zhao, 2010).
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For example, IAA stimulates the development of expansins,

proteins that promote cell wall loosening. As a result, the host

is more susceptible to different pathogen invasions.

Hemibiotrophic or necrotrophic fungi synthesize IAA and can

regulate plant growth to provide nutrition for fungal

development and colonization, disrupting plant defensive

responses such as programmed cell death (PCD) (Ludwig-

Müller, 2015). Studies by Tanaka et al. (2011) and Li et al.

(2013) have observed that the pathogenMagnaporthe oryzae can

release IAA at the site of hyphal infection. In turn, this also

stimulates the host to synthesize endogenous IAA at these sites.

However, it remains unclear how M. oryzae induces host IAA

production at the molecular level (Tanaka et al., 2011; Li

et al., 2013).
2.2 Antifungal metabolites from plants

Antifungal compounds secreted from host plants are

categorized into two potential defense groups: The first is called

phytoanticipins, and are constitutively synthesized in healthy plants

under natural conditions. For instance, Hebe cupressoides and

blackcurrant (Ribes nigrum) produce the phytoanticipin flavanone

sakuranetin (Atkinson and Blakeman, 1982) in the leaves of rice

(Oryza sativa) (Kodama et al., 1992; Perry and Foster, 1994). The

second group is synthesized de novo in response to biotic

(pathogens) or abiotic stressors (e.g., salinization, drought, and

heavy metal ion exposure). These SMs may be generated in one

organ while being constitutively utilized in another. For example,

phytocassanes, a type of phytoanticipin, include flavonoids and

phenolics (e.g., coumarins and lignans) (Crozier et al., 2008). The

leaves and skin of fruits contain an abundant source of these

chemicals. Their precursors play a crucial role in protecting

plants under biotic conditions and stimulating nodule formation

for biological nitrogen-fixing (Crozier et al., 2006). Phenolic

components are plant substances of the phosphate and

phenylpropanoid pathways. These materials interact with

membrane proteins, causing structural and functional

deformation and modifying microbial cell permeability (Küçük

et al., 2007). These changes affect membrane dysfunction and

subsequent disruption through different methods: (1) interference

with the cell energy (ATP), (2) inhibition of the enzyme activity,

and (3) prevention of energy consumption (DeOliveira et al., 2011).

Plant hosts inhibit pathogen proliferation by secreting different

antimicrobial compounds, such as saponins (e.g., Avenacin). For

instance, the tomato saponin, tomatine, stimulates phosphotyrosine

kinase and monomeric G-protein signaling pathways in F.

oxysporum cells, resulting in elevated Ca2+ and reactive oxygen

species (ROS) burst via cell membrane binding, causing cell

component leakage (Ito et al., 2007). In addition, maize plants

infected with Fusarium graminearum demonstrated higher levels of

sesquiterpenoid phytoalexins and zealexins. Notably, zealexin

displayed antifungal efficacy against numerous phytopathogenic
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fungi (F. graminearum, A. flavus, Rhizopus microsporus) (Huffaker

et al., 2011). Plant species generate specific saponins

against different phytopathogenic fungi (Osbourn, 1996).

Generally, mutualistic or pathogenic interactions between

fungi and plants involve the simultaneous molecular signals

generated from the interacting species (Pusztahelyi et al., 2015).

Recent studies have shown that the Neofusicoccum genus

comprises 50 species naturally associated with plants

worldwide. Still, many Neofusicoccum species belonging to the

Botryosphaeriaceae and Botryosphaeriales families cause diverse

grapevine diseases, such as leaf spots, fruit rots, shoot dieback, and

vascular discoloration of the wood. Furthermore, diverse SMs were

identified from the Neofusicoccum speciesN. botryoisocoumarin A,

and N. botryosphaerones that cause fruit ripe rot harvest disease. Of

these, the SM isosclerone, is likely related to both fungal

pathogenicity and virulence (Salvatore and Andolfi, 2021). In

addition, some SM gene clusters are expressed in the host plant,

and others are not. For instance, when Fusarium fujikuroi infects

another plant, its ability to transcribe fusaric acid biosynthesis (FUB)

1, which codes a polyketide synthase (PKS) involved in

manufacturing the fusaric acid toxin, is inhibited (Niehaus et al.,

2014). Thus, it is challenging to predict how SMs will contribute to

pathogenesis. For example, the pathogenesis of Pyricularia oryzae,

which cause rice blast disease, is dependent on the accumulation of

fungal melanin as an SM. However, tenuazonic acid, a hybrid non-

ribosomal peptide synthetase (NRP)/PKS mycotoxin,

nectriapyrones, phytotoxic polyketide compounds, and pyriculols

do not play significant roles (Motoyama et al., 2021). Many fungal

SM clusters cannot be created in a laboratory setting due to the

inability to replicate the specific environmental conditions that

typically induce synthesis in nature. Still, their functions can be

investigated by selectively activating them. Because specific plant

SMs can be hazardous to the producer, the accumulation of these

substances is controlled in suitable compartments andoften

accumulate in lesser amounts than primary metabolites (Dewick,

2002). Nevertheless, in specific tissues, they can accumulate to

greater concentrations (Takanashi et al., 2012).
2.3 Metabolites in plant
mutualistic interactions

Plants actively influence microbial populations that

occupy their surfaces or colonize their internal structures

(Bednarek et al., 2010). Host plants exude various substances

to communicate with the microbial community. A well-studied

example is a release of root exudates (e.g., phenolics, amino

acids, terpenoids, and sugars) by the host to communicate with

rhizosphere microbial species (e.g., arbuscular mycorrhiza

(AM)) (Baetz and Martinoia, 2014). The relative abundance of

these chemicals varies according to plant species, genotypes,

developmental stages, and environmental conditions

(Korenblum et al., 2020). Plant secondary metabolites (PSMs)
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are divided into non-volatile chemicals and volatile organic

molecules (VOCs). These components are secreted via plant

roots (root exudates) into the rhizospheric zone, actively using

ATP as an energy source or passively through diffusion. Root

components that influence plant microbiome signal interactions

in the rhizosphere are becoming more widely understood (Sasse

et al., 2018; Yuan et al., 2018; Williams and de Vries, 2020).

Interestingly, it has been suggested that various rhizodeposits

may affect the rhizosphere microbiome community (Pascale

et al., 2020) and that some root exudates influence the

microbiome assembly prior to microbial root surface

interactions (Sasse et al., 2018). In addition, coumarin,

triterpenes, flavonoid, benzoxazinoid, and phytohormones are

secondary metabolites that impact both the growth and

inhibition of specific rhizospheric microbes (Jia et al., 2016;

Holmer et al., 2017; Hu et al., 2018; Voges et al., 2019). These

findings will aid in elucidating how natural habitat diversity,

crop genetic variation, and plant introduction between locales

may manipulate plant microbiome recruitment via root

exudates (Pang et al., 2021). For example, the legume plant

soybean (Glycine max) has been investigated for its mutualistic

connections with an arbuscular mycorrhizal fungus, which

releases a variety of metabolites into the soil (e.g., saponins)

(Sugiyama, 2019). Flavanones (such as strigolactones) are signal

molecules for soybean-arbuscular mycorrhizal fungi symbioses

which can boost ectomycorrhizal fungal growth and improve

AM fungi colonization. In addition, flavanones have been shown

to stimulate ectomycorrhizal fungal spore germination in the

genera Pisolithus and Suillus, as well as induce synthesis of

symbiotic effector protein in the mushroom Laccaria bicolor

(Garcia et al., 2015; Pei et al., 2020). In line with these findings,

the suppression of flavonoid and phenylpropanoid secretion

inhibits endophyte and ectomycorrhizal colonization of the

maize and poplar tree root system, respectively (Alam

et al., 2021).
3 Phytopathogenic fungi

Interactions between plants and fungi are complex and elicit

many molecular reactions. For example, fungal penetration and

infection process often requires several key steps to develop the

disease: host-pathogen contact, release of phytotoxins, and cell

wall degrading enzymes (CWDEs) for host tissue penetration,

initial lesion development in host tissue, lesion enlargement,

then eventually, the death of the vulnerable plant (Laluk and

Mengiste, 2010). However, the cuticle-covered plant cell wall is

the primary line of protection against pathogen invasion. To

overcome this barrier, the pathogen must penetrate the plant by

either directly penetrating the plant via hydrolytic enzyme

secretion or indirectly through natural openings such as

stomata or physical wounds (Ghozlan et al., 2020).
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Meanwhile, incompatible interactions and susceptible plants

may initiate various defense signals but similar gene expression

patterns. Interestingly, the period required to alter the

transcriptome was observed to generate the most variation,

whereby defense gene activation required more time in

response to a compatible interaction than an incompatible

interaction (Li et al., 2006). The ability to generate a

phytotoxin to prevent the growth of plants correlates with

pathogenicity in various fungal infections. Toxins produced by

fungi are either host-selective (HSTs) or non-host-selective

(NHSTs). HSTs are often active only against host plants, have

a distinct mechanism of action, and are poisonous to the host.

Therefore, HST synthesis is critical for the virulence of these

fungi (Horbach et al., 2011). HST toxins are chemically varied,

ranging from low-molecular-weight molecules to cyclic peptides.

The polypeptides required to create HSTs are derived from genes

found on a conditionally dispensable chromosome that regulates

host-specific pathogenicity (Hatta et al., 2002). The process of

host-selective pathogenesis via HSTs is well recognized, and

around 20 HSTs have been identified. While the earliest stages of

the disease do not differ significantly between necrotrophs,

hemibiotrophic, and obligate biotrophic fungi, diverse

techniques for acquiring nutrients are employed. For example,

necrotrophic fungi have a more comprehensive host range than

biotrophic fungi (Ghozlan et al., 2020).
3.1 Biotrophic fungi

Biotrophic plant fungi are one of the significant causes of

crop losses. Successful pathogenesis requires the formation of

specialized structures surrounding the host plant plasma

membrane, such as haustoria and intracellular hyphae, to

facilitate attachment, host recognition, penetration, and

proliferation. The regulation of fungal gene expression can

interfere with haustorium and hyphae formation, preventing

them from forming and reducing overall pathogenicity

(Kahmann and Basse, 2001). In addition, biotrophic fungi

have evolved a limited secretory activity, particularly of lytic

enzymes. Furthermore, carbohydrate-rich and protein-

containing interfacial layers separate fungal and plant plasma

membranes, resulting in long-term suppression of host defense.

Finally, haustoria are used for nutrient absorption and

metabolism. Biotrophic fungi have numerous strategies for

protecting their effectors from plant receptor molecules.

Once a fungal effector has evaded the mechanism of plant

defense, the plant can no longer prevent further infection.

Subsequently, the host reduces the production of defense

signaling molecules like salicylic acid (Mendgen and Hahn,

2002). In addition, plants use two main strategies to restrict

the invasion and growth of biotrophic fungal pathogens:

penetration resistance and programmed cell death (PCD)-

mediated resistance. The host plant strengthens cell walls and
Frontiers in Plant Science 05
membranes to suppress spore germination and prevent

haustorium formation through penetration resistance. In

addition, a second resistance mechanism is activated to

terminate the nutrient supply of the penetrated epidermal cell,

which inhibits fungal growth and induces programmed cell

death (Gebrie, 2016).

Moreover, immune defenses induced by biotrophic

pathogens involve the accumulation of antimicrobial

metabolites and local cell death conferred by a hypersensitive

response (Toruño et al., 2016). Plant pathogens use effectors to

inhibit immune responses (Toruño et al., 2016). While specific

effectors have evolved to circumvent immunological

identification by the plant, others defend the fungus from

plant-derived apoplastic defensive strategies or modify

intracellular plant responses (De Jonge et al., 2010; Marshall

et al., 2011; Hemetsberger et al., 2012; Tanaka et al., 2014). Plant

defenses are frequently not unique to a particular pathogen but

target a broad spectrum of microorganisms. As a result, various

pathogens have developed effectors that target the same

defensive responses independently from one another (Ökmen

and Doehlemann, 2014). In contrast, suppressing defense-

related host responses by one pathogen may encourage

subsequent infections by other pathogens (Abdullah et al., 2017).

Biotrophic fungi and their respective metabolism have been

investigated chiefly on nonobligate biotrophs such as

Cladosporium fulvum (Thomma et al., 2005), Mycosphaerella

graminicola (Palmer and Skinner, 2002; Deller et al., 2011), and

Magnaporthe grisea (Talbot, 2003). Biotrophs generate haustoria

for nutrition absorption, prevent the induction of host defense,

and alter the host plant metabolism (Panstruga, 2003; Biemelt

and Sonnewald, 2006). Little is known about obligatory

biotrophs, such as powdery mildews or rust fungi (Duplessis

et al., 2011). Species derived from M. grisea cause disease in at

least 50 grass and sedge plant hosts, including maize, rice, rye,

wheat, barley, oats, finger millet, perennial ryegrass, weed, and

ornamental grasses (Couch and Kohn, 2002). Within the species

complex, M. oryzae (previously known as M. grisea) isolates

form the pathotype Oryza, which causes rice blast disease. M.

oryzae infections typically lose 10-30% of rice production

annually. This fungus affects all aerial portions of rice, causing

leaf blast, collar rot, neck and panicle rot, and node blast

(Skamnioti and Gurr, 2009). Analysis of the rice transcriptome

infected with M. oryzae indicated that host phytoalexins were

highly expressed, suggesting their vital role in response to the

pathogen attack. Different gene expression patterns against

compatible and incompatible fungal strains have also been

observed, suggesting more substantial implications against

incompatible interactions. For example, several rice genes have

demonstrated roles in the biosynthesis of certain phytocassane:

OsCPS2 and OsKSL7 in the biosynthesis of phytocassane A-E,

and, OsCPS4 and OsKSL4, in the biosynthesis of momilactone A

and B, of which showed incompatible upregulation.

Furthermore, two days following inoculation, resistant plants
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accumulated more phytoalexins in a shorter period than

susceptible plants (Hasegawa et al., 2010). Nonetheless,

significant phytoalexin gene induction was detected in the

incompatible interaction compared to gene expressions in the

compatible interaction in the same rice cultivar at the beginning

of the infection phase (Kawahara et al., 2012).
3.2 Special metabolites of biotrophic
phytopathogens

Although the mechanistic understanding of the obligate

biotrophic filamentous pathogenic effectors remains

understudied, numerous facultative biotrophs and necrotrophs

have been functionally described. Moreover, insufficient genetic

transformation and gene deletion tools available to perform

reverse genetics in obligate biotrophs are significant factors in

this knowledge gap (Ökmen et al., 2021). Various methodologies

are used to characterize the functional properties of obligatory

biotrophic pathogen effectors. One such approach is the

heterologous expression of pathogenic effectors in plants

(Germain et al., 2018; Xu et al., 2020). However, heterologous

expression of specific effectors in planta can cause significant

pleiotropic abnormalities that compromise symptom

assessment. For example, the type III secretion system (T3SS)

of Pseudomonas syringae and Pseudomonas fluorescens or

Pseudomonas atropurpurea is employed in another approach

for functional evaluation of numerous intracellular effectors

from obligate biotrophs, such as rusts and powdery mildews.

The growth of Pseudomonas spp. transformants that transport

the required effectors into the host cell during infection

positively contribute to virulence (Upadhyaya et al., 2014;

Ramachandran et al., 2017; Montenegro Alonso et al., 2020).

Although the T3SS system transports effectors into host

plant cells, it is unclear whether fungal effectors, which

function in the apoplast and are essential for haustorium

development, play a role in host colonization (Ökmen et al.,

2021). Furthermore, several biotrophic pathogen effectors

decrease PAMP-triggered immunity (PTI) and enhance disease

establishment. Because PAMPs from bacterial and fungal

pathogens differ due to phylogenetic distance, PTI responses

elicited by Pseudomonas spp. cannot be well-evaded by pathogen

effectors unless the signaling pathways that lead to PTI are

conserved (Ökmen et al., 2021). In addition, a host-induced gene

silencing (HIGS) test was established to assess the virulence

function of obligatory biotroph effector genes during host

colonization (Yin and Hulbert, 2018; Yang et al., 2020).

However, the requirements for stable transgenic host lines of

HIGS constructs make this technique time-consuming (Ökmen

et al., 2021).

Chemical signals are required for M. grisea appressorium

development. The appressorium of M. grisea adheres tightly to

the host surface by synthesizing an appressorial glue made of
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glycoproteins, neutral lipids, and glycolipids (Gilbert et al.,

1996). The nontoxic plant metabolite zosteric acid binds water

and improves the surface’s hydrophilicity, reducing the

appressorial glue’s binding ability. Zosteric acid prevents M.

grisea spore adherence and infection capability on artificial

hydrophobic surfaces and plant leaves (Todd et al., 1993;

Stanley et al., 2002). Two effective inducers of germination and

appressorium development inM. grisea are 1,16-hexadecanedial

and 1,16-hexadecanediol, derived from cutin monomers (Gilbert

et al., 1996). In order to penetrate the rice cuticle, turgor pressure

inside the appressorium increases up to 8MPa, resulting in

several biochemical and morphogenetic changes (Howard

et al., 1991). This unusually high pressure and mechanical

penetration raised questions about the role of secreted fungal

cell wall-degrading enzymes in the initial stages of natural host

invasion (Howard and Valent, 1996). In addition, a thick

melanin layer was observed to be deposited outside the cell

wall of M. griseato to achieve the observed high turgor pressure.

Several natural substances reduced melanin synthesis safely to

prevent dangerously high pressure, likely by targeting the same

sites. These include coumarin (phenolic substances), a typical

plant SM, scytalol D synthesized by Scytalidium spp., and the

lipid biosynthesis inhibitor cerulenin (Wheeler and Bell, 1988;

Thines et al., 1995), initially derived from an isolate known as

Cephalosporium caerulens, related to the phytopathogenic

fungus Sarocladium oryzae found in rice (Bills et al., 2004).
4 Fungal secondary metabolites

Research has begun to uncover the function of secondary

metabolites from fungi, including polyketides, terpenes, and

nonribosomal peptides (Boruta, 2018). Although these

secondary metabolites have no direct role in growth,

development, reproduction, or energy production, there is

some indication of a positive role in regulating host survival in

different ecological niches. For example, most secondary

metabolites exhibit biological activity, encouraging efforts to

produce new drugs (Uzuner et al., 2012). Penicillin is the first

antibiotic with a broad spectrum of activity, the most well-

known secondary metabolite of a fungal origin. The discovery of

penicillin altered medical practices, redirected pharmaceutical

research and undoubtedly saved many lives during World War

II. The source of this antibiotic was isolated from the fungus

Penicillium notatum, by Alexander Fleming. This discovery

marked a significant advancement in medicine and science for

treating bacterial illnesses (Bennett and Chung, 2001). Inhibiting

the growth of fungi and preventing systemic resistance

mechanisms are often carried out by secondary metabolites

found in thousands of fungi (Keller et al., 2005). Terpenoids,

polyketides, nonribosomal peptides, and compounds produced

from shikimic acid make up the four major chemical categories

of fungal secondary metabolites.
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The microbial fermentation process is the most frequently

utilized technique in microbial biotechnology. The primary

industrial applications of this technology include the detection

of secondary metabolites and the production of certain

molecular products. In liquid-grown crops, fermentation

occurs under submerged conditions (Kour et al., 2020). Solid-

state conditions are one type of technology for cultivating

microbial culture processes to generate bioactive compounds

in agro-industrial settings. A vital feature of this technology is

that fermentation occurs on a solid substrate with low moisture

content (lowest limit: 12%). Since fungi can grow in lower water

levels than bacteria, which need free water for fermentation, they

are suitable for this culture method. Solid-state fermentation is a

low-cost method based on organic materials like wood chips and

agricultural waste. It has been employed for synthesizing both

primary and secondary metabolites because of its advantages

over submerged fermentation (Kellogg and Raja, 2017). The

biological consequences of secondary metabolites, particularly

their antibacterial activity, have recently become known.

Alternaria alternata, Alternaria brassicicola, and Aspergillus

fumigate have antifungal, antibacterial, anthelmintic, and

anticancer activities. In addition, there are known uses for

fungal secondary metabolites in many different industries,

including agriculture. Population growth has resulted in a

discernible rise in agricultural demand (Akone et al., 2016). A

key concern is the increased demand for food crops to satisfy

consumer demand. Using fungal secondary metabolites, which

are aimed at improving the efficient growth of food crops, is one

of many strategies to boost crop productivity. In addition, fungi

and insects that aid in pests (such as aphids, beetles, and

grasshoppers) and pathogen control are targeted by fungal

secondary metabolites. Numerous reports have suggested that

these secondary metabolites, which were screened from different

fungal species, have agricultural uses (Almassi et al., 1991).

Throughout history, in both ancient and modern times,

fungi have been widely employed in food and medicine.

Alcohol, antibiotics, enzymes, chemical compounds, and

medication can be produced from fungi. Thus, the use of fungi

in the production of diverse proteins further emphasizes their

importance. For example, fungi produce anticancer,

antidiarrheal, antitumor, antihypertensive, and antimutagenic

medications with a significant impact on the global growth of

nutraceuticals and the functional food business. The fruiting

body of the mushroom, its mycelium, and its extracts or

concentrates have the potential to treat a wide range of human

illnesses and are, therefore, recognized as functional foods.

However, there are still numerous instances where the active

principle must be discovered to comprehend the mechanism

fully. Fungi produce various chemicals, from fundamental

metabolites such as enzymes and citric acid to secondary

metabolites like antibiotics and alkaloids. The five fungal

secondary metabolic pathways include polysaccharides, amino

acids, the polyketide pathway, the mevalonic acid pathway, and
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the shikimic acid pathway. Most of these components are

employed as medicines (Shu, 2007). Some of these include the

fungus Agaricus campestris to treat sinusitis, inflammation, and

tuberculosis, Laricifomes officinalis as an herbal remedy to cure

night sweats and diarrhea, andfinallyDaedaleopsis flavida, which

effectively treats jaundice by lowering bilirubin and biliverdin

levels (Devi et al., 2020).
4.1 Arbuscular mycorrhizal fungi

It is well known that Arbuscular mycorrhizal fungi (AMF)

increase the availability of nutrients and water uptake for host

plants, resulting in 4-25% of their photosynthetic energy

toward AMF roots (Wipf et al., 2019). As obligate biotrophs,

AMF soil microorganisms cannot complete their life cycle

without colonizing host plants. Sugar transport constitutes a

key pillar for understanding this behavior. Both partners exert

strict control over the flow of carbon produced during

photosynthesis in plant leaves toward the root that AMF has

infected. Starch was once considered a crucial component for

AMF symbiosis (Berdeni et al., 2018; Chen M. et al., 2018),

since sucrose is derived from the host and is broken into

functional hexose forms for the fungal symbiont. Therefore,

AMF exclusively consumes hexose from its host. However, due

to differences in structure and activities, AMF components

play diverse roles in hexose metabolism (Figure 1). For

example, AMF extra radical mycelium lacks the sucrose-

cleaving capacity that is necessary for it to be able to digest

hexoses and improves photosynthesis (Gupta et al., 2021).

Phloem transports sucrose to the apoplast, where invertases

and synthase break it down before being released into the

cortical cell of the root system to be supplied to AM fungus

(Wang et al., 2017).

Additionally, some studies indicate that AMF colonization

increases alkaline invertase activity, making hexose accessible for

AMF development. After being taken up by the fungus from the

host plant, carbon is transferred to different radical mycelium to

generate spore and hyphal growth. Signaling pathways play

critical roles in environmental sensing, mating behaviors,

morphogenesis, and host communication in plant pathogenic

fungi. Ca2+ has a crucial role as a messenger molecule in the

signaling process for various processes (Liao et al., 2018). Host

constitutive defense includes chemical and physical barriers that

prevent the majority of microorganisms from attaching to or

entering the plants (Paludan et al., 2021). In plant-pathogen

interactions, the first layer of induced defense is the pathogen-

associated molecular pattern (PAMP)-triggered immunity

(PTI). Defense mechanisms are triggered when pathogen-

derived chemicals or structures are recognized by plant pattern

recognition receptors (PRRs), inducing PTI (Cavaco et al., 2021).

Pathogens send effector proteins into host cells, where they

disrupt defensive mechanisms to evade PTI. Plants recognize
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effectors via resistance (R) genes, resulting in effector-triggered

immunity (ETI), which improves and accelerates the immune

response. When one or more pathogen effectors successfully

obstruct PTI responses, pathogens can infect susceptible hosts

(ETS) (Thakur et al., 2019; Naveed et al., 2020). There are many

changes between ETS and ETI due to the co-evolution of

effectors in pathogens and corresponding R-genes in the host

plants. This network of interconnected pathways frequently

overlaps and results in a single phenotypic outcome (Abro

et al., 2019). PTI and ETI are considered two separate and

succeeding branches of plant immunity, but there are several
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situations where effectors are qualified to be categorized as

PAMP effectors. Exogenous elicitors include the pathogen

membrane or cell wall components, host enzymes, or the

pathogen itself, recognized through the undermining of host

defenses and/or the facilitation of nutrition intake (Thakur and

Sohal, 2013; Meena et al., 2022). Endogenous elicitors are

chemicals that originate from host plants and are often the

outcome of damage caused by pathogen enzyme activity.

Consequently, these PAMPs and damage-associated molecular

patterns (DAMPs), synonymous with exogenous and

endogenous elicitors, induce PTI. As discussed below, PAMPs
FIGURE 1

A schematic diagram to show the different plant responses against pathogenic fungi in the absence and presence of Arbuscular
mycorrhizal fungi (AMF) colonization. (A) Absence of root colonization by AMF causes more damage when compared to mycorrhizal
plants due to the development of symptoms in response to necrotrophic and biotrophic pathogens. In addition, host plants with
undeveloped root systems have a low ability to uptake nutrients from the soil, leading to plant death by the end. (B) A symbiotic
relationship between plant roots and Arbuscular mycorrhizal fungi (AMF) significantly alters ecosystems and impacts plant production via
plant growth promotion due to improved acquisition of mineral nutrients through the extensive AM fungal hyphal network
(mycorrhizosphere) with a massive mycorrhizal network around the root system. Furthermore, host plants can thrive under various
abiotic/biotic stresses (including drought, salt, herbivory, temperature, metals, and pathogens) due to the symbiotic localization of
Arbuscular mycorrhizal fungi (AMF) via complex signal communications that increase the photosynthetic plant rate. Hence, the release
of strigolactones (SLs) as part of the root exudates induces the branching of AMF hyphae to promote mycorrhization. Changes in the
root exudate patterns induce changes in the soil microbial community, possibly by attracting antagonists of pathogens. In addition, there
are various ways of AMF-induced biotic stress tolerance in plants via competition with soil pathogens and nutrients uptake, altered root
exudates which support beneficial microbes and suppress phytopathogens in the rhizosphere, AMF colonized roots have little or no
space for pathogen entry. Interestingly, a general reduction in the damage and incidence of disease caused by soilborne pathogens was
noticed due to defense power from the priming of the plant. The role of the phytohormones (e.g., JA and ET) in the relationship
between the host plant and its symbiotic fungi are well known. Phytohormones participate as signaling molecules and improve host
plant ISR (Induced Systemic Resistance). In contrast, the development of necrotrophic pathogens in plant–fungal pathogen interaction
signals is restricted due to the primed jasmonate-regulated plant defense mechanisms.
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can have various chemical structures, ranging from proteins to

carbohydrates (Figure 1).
4.2 Genetic background of the fungal
SMs production

Fungal SMs are typically generated from the activation of

biosynthetic gene clusters (BGCs), comprised of synthases and/

or synthetases (such as polyketide synthase, terpene synthase

and/or cyclase, non-ribosomal synthase, and isocyanide

synthase) that utilize primary metabolites as substrates to

create carbon backbones, which are further modified by

tailoring enzymes (Clevenger et al., 2017). Some BGCs contain

cluster-specific transcription factors that positively control the

activity of the other BGC genes and regulatory genes that encode

proteins to reduce the toxicity of the BGC being produced.

Certain enzymes massively polymerize primary metabolites

during the formation of SMs to synthesize the backbone of the

SM compound. Constituents are then added to change SM

bioactivity. The enzymes responsible for backbone synthesis

also determine the type of chemically generated SM formed

(Monroy et al., 2017). For instance, non-ribosomal peptide

synthetases (NRPSs) from acyl-CoAs make polyketides and

terpene synthases. Cyclases manufacture terpenes from

activated isoprene units and non-ribosomal peptides from

amino acids, respectively. Caution should be exercised when

assuming the sources of lipopeptides since the term is also used

to describe compounds made from peptides produced by

ribosomes coupled to fatty acids or isoprenoids. Many people

refer to the PKS-NRPS-derived hybrid secondary metabolites as

lipopeptides (Grgurina, 2002; Cochrane and Vederas, 2016).

Since these small signal molecules influence bacterial-fungal

interactions, the underlying mechanism beyond the regulation

of antagonistic activity must be explored further. For example,

Ralstonia solanacearum causes bacterial wilt in many plants that

can also produce molecules such as ralstonins, isoquinolines,

and lipopeptides. Contrastingly, these molecules are involved in

the growth inhibition of the pathogen Aspergillus flavus by BGC

downregulation (Khalid et al., 2018). It is suggested that these

molecules affect microbial diversity, pathogenicity, and

microbial survival.

4.2.1 Environmental genes
The environment strongly influences the developmental

stage at which fungi begin to generate SMs. Environmentally-

sensitive fungal genes can activate BGCs both transcriptionally

and epigenetically (Hagiwara et al., 2017). The “one strain-many

compounds” (OSMAC) strategy for mining metabolites reflects

the long-withstanding concept of the significance of dietary

input. For instance, early studies on aflatoxin formation

uncovered that temperature and light could promote or delay

the production of natural compounds (Cary et al., 2015).
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Numerous research teams have linked the production of

fungus secondary metabolites to red and blue light

photoreceptors and/or their associated signal transduction

pathways. The aflatoxin and associated sterigmatocystin

mycotoxin BGCs are a well-known cluster inhibited by white

light (Nazari et al., 2016). Natural products like the polyketide

dihydrotrichotetron can be controlled by known transcription

factors like creA and/or cre1 genes. The Velvet complex

component veA, the blue light receptor FphA, and the

phytochrome FphA of the organism Aspergillus nidulans form

a complex that has been used to explain the connection between

light perception and the production of SMs (Kenne et al., 2018).

The revelation that phytochrome FphA of A. nidulans connects

with both blue light receptors and VeA, provides a molecular

explanation for the relationship between light sensing and the

generation of secondary metabolites (Larkin et al., 2018). The

transcriptional responses of BGCs to altered environmental

stress pathways, particularly oxidative stress, follow the theory

that SMs, like aflatoxin, function as reactive oxygen species

inhibitors (Zhao et al., 2017).

4.2.2 Transcriptional regulation
Up to 50% of fungal BGC promoters possess palindromic

patterns recognized by a cluster-specific transcription factor,

usually a C6-zinc cluster protein (Brown et al., 2015). A single

BGC may occasionally contain many transcription factors

binding sites. However, it is now known that various C6

transcription factors can regulate genes within BGCs and

various metabolic pathways. This contrasts with the previous

belief that C6 transcription factors exclusively control genes

inside a single BGC. Numerous “broad-domain” transcription

factors involve positive and negative regulation of many BGCs,

such as the pH regulator PacC, the nitrogen regulator AreA, and

the CAAX basic leucine zipper protein HapX47 (Amaike and

Keller, 2009). The Velvet complex, however, is a vital

transcriptional complex that influences the overall regulation

of secondary metabolites in all fungal taxa examined up to this

point (Pettit, 2011). Follow-up studies using microarray and

RNA-seq to analyze cascades of regulators involved in the

production of secondary metabolites have provided insight

into how BGC is controlled. BrlA, a C2H2 transcription factor,

is required to produce conidiophores by Aspergillus and

Penicillium species. In addition, genetic, ecological, and

mechanistic studies have provided irrefutable evidence that the

fundamental building block of microbial communication is

composed of fungal chemicals (Scherlach and Hertweck, 2018).

The regulatory networks of secondary metabolites and the

epigenome have been linked in numerous studies. For example,

the sterigmatocystin BGC of A. nidulans contains methylation

marks on histone H3 residues during the active growth phase but

is silent during the early growth phase (Schüller et al., 2022).

Although this study provides limited evidence that fungal SMs

improve ecological fitness (Alam et al., 2021), further research
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is essential to confirm similar phenomena. Together, it is likely

that many SM-encoding genes are controlled in a manner that

is consistent with fungal growth or in response to biotic and

abiotic stressors. Moreover,loss or overproduction of specific

SMs can affect alter fungal development and the ability to

interact with fungi of the same and/or other kingdoms

(Kalinina et al., 2017).
5 Do fungi have self-protection?

In order to prevent self-harm from hazardous BGC

products, BGCs can encode efflux transporters and cellular

BGC intermediate transporters. (Kaaniche et al., 2019).

Numerous fungi (e.g., Agaricus campestris) heal inflammation,

sinusitis, and tuberculosis and have been used in traditional

medicinal practices. Laricifomes officinalis, an herbal remedy,

can treat diarrhea and night sweats (Saini et al., 2016). With all

these therapeutic and physiological benefits, additional scientific

proof is needed to support these results (Venkatesh and Keller,

2019). Mushrooms are highly valued in the food and

pharmaceutical industries. They include more than simply

fundamental chemicals, which might offer certain advantages.

Maintaining the quality of mushrooms is difficult, though,

because even small changes to their genetics, soil, moisture,

temperature, and harvesting period can significantly impact the

concentration of vital components.
5.1 Manipulation of programmed
cell death

Programmed cell death (PCD) is apparent in all biological

systems and present in most evolutionary lineages (Frank and

Vince, 2019). The widespread presence of PCD is likely derived

from an ancient origin or that it is a result of extensive evolution.

In either scenario, PCD is crucial to the life histories of many

species, including fungi (Ramsdale, 2008). Different types of cell

death mechanisms can reveal the underlying variation in the cell

biology of subject species. However, it is now understood that

similar molecules to SMs play a crucial role in the induction of

cell death in organisms such as bacteria, yeast, plants, worms,

flies, and even humans (Carmona-Gutierrez et al., 2010).

Numerous studies have focused on elucidating the relevance of

similarly functioning molecules across these different organisms

with the possibility of opening a new avenue of research to

produce drugs to combat infectious diseases that affect plants

and animals. The primary hallmarks of PCD reactions in

animals are a series of morphological and biochemical

abnormalities that are mediated by external (extrinsic) or

internal (intrinsic) cell suicide programs (Green and

Llambi, 2015).
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Death signals in the intrinsic death pathway cause the release

of mitochondrial proteins, which amplifies the caspase cascade

(Tang et al., 2019; Kist and Vucic, 2021). Signals transmitted by

death receptors that are a part of the tumor necrosis factor

(TNF) receptor superfamily directly initiate the caspase cascades

extrinsic route. Activating caspase-independent suicide

pathways also include the movement of the apoptosis-inducing

factor (AIF) from the mitochondrion to the nucleus. This

presents another way stress can lead to cell death. DNA

degradation and nuclear fragmentation, which are brought on

by various nucleases, are typically linked to PCD. In addition, the

loss of phospholipid asymmetry caused by phosphatidylserine

moving to the plasma membrane outer leaflet is another feature

of PCD. Many fungi now exhibit programmed cell death

responses, although most research has concentrated on yeasts.

Functional studies of yeast genes show some similarities at the

molecular level between apoptosis in higher eukaryotes and

apoptosis in fungi. This is primarily due to the discovery of

caspase-like cysteine protease homologs (Bhattacharjee and

Mishra, 2020). Since many known elements of higher plant

and animal apoptosis have been identified in fungal genomes, it

is predicted that the proteins responsible for fungal cell death

will differ substantially from their mammalian counterparts to

allow for pharmacological treatments (Camilli et al., 2021;

Williams et al., 2021). The possibility that novel antifungal

drugs and fungicides will be developed to eliminate infections

by inducing fungal cell suicide rises with the finding of PCD

responses in a model pathogenic fungus. Identifying the

endogenous molecular switches that start fungal death is

essential to achieving these objectives (Dyer, 2019).

The fundamental cellular similarities between pathogenic

fungi and their hosts make it challenging to develop and

administer effective antifungal/fungicide therapy. However,

long-term use is not recommended because many antifungal

medications are incredibly harmful (Jorgensen et al., 2017).

Antifungal drugs currently concentrate on vital fungal cell

surface activities, including plasma membrane or cell wall

biogenesis. Various antifungal drug classes are currently

available to treat clinical fungal infections. Fungicides are also

often used to treat various plant diseases, targeting both general

and specific fungal diseases (Pegorie et al., 2017). Two in

particular, include sulfur-containing fungicides and

strobilurins, which block the activity of the ubiquinol-

cytochrome oxidoreductase of the cytochrome bc1 complex I.

Finding new targets for antifungal therapy is crucial since

pathogenic fungi routinely display dangerously high levels of

resistance to conventional antifungal medications in clinical

settings, especially those targeting the electron transport chain

(Bongomin et al., 2017). Several variables, including the patient’s

pharmacokinetics of medication and the state of their immune

system, can influence the effectiveness of antifungal therapy. For

example, resistance may emerge due to ineffective patient
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dosing, inadequate antifungal drug selection, or repetitive

exposure (Naderer and Fulcher, 2018).

A decrease in ATP levels often accompanies cell death,

although cell fate also depends on plasma membrane integrity

and mitochondrial membrane potential (Gonçalves et al., 2019).

Only a few environmental factors, such as acetic acid, hydrogen

peroxide, and AmB, can cause C. Albicans to initiate a PCD

response, characterized by the rapid emergence of several

traditional apoptotic markers seen in mammalian cells. This

includes a loss of cell viability when stained with dye propidium

iodide, sustained oxygen consumption, and metabolic activity

during cell death, and the production of ROS in apoptotic cells

(Nguyen et al., 2018). The overexpression of plant defense

molecules results in a hyperbranched phenotype or spiral

hyphae production. Distinct hyphal branching patterns have

long been linked to growth suppression.

Interestingly, proteins involved in the PCD response of

filamentous fungi possess homologous more similar to those

in the mammalian cell death pathway than in Saccharomyces

cerevisiae. Additionally, some proteins linked to cell death in

humans and filamentous fungi share a higher degree of

similarity when compared to yeast and filamentous fungal

species (Man et al., 2017). These two characteristics make

filamentous fungi, particularly appealing to investigate PCD, in

addition to the fact that many of them have been widely

employed as model organisms for cell biology.
5.2 Recognition of pathogenic
substances necessary to initiate
defense response

An infection may be intracellular or extracellular, depending

on the organism. Bacterial pathogens and other parasites can

grow intracellularly or extracellularly; however, all viruses infect

cells and do so intracellularly. The innate immune system must

recognize the external pathogen or infected host cells to respond

effectively (Ádám et al., 2018). The immune system continuously

scans the organism for signals of infections. Host immune cells

and/or molecules are dispatched to the location of infection

when signs of a pathogen attack are detected. These immune

factors can recognize the type of disease, promote clearing the

disease or pathogen, and then turn off the immune response

once the infection has been eradicated to prevent unnecessary

harm to host cells. Secondary exposure to the same pathogen can

result in the immune system utilizing these same immune

factors to respond more effectively (Chen L. et al., 2018).

Mobile immune sensing and focused immune systems are

absent in plants. However, in response to the invasion of

potentially phytopathogenic organisms, they can generate

similar, long-lasting memory of the pathogen attack and

activate efficient defense mechanisms of innate immunity. The

plant defense system utilizes a range of immunological sensors in
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nearly every plant cell that may detect pathogens and initiate an

immune response, as well as the ability of defense-related

messages to travel long distances through the phloem (De

Lorenzo et al., 2018). The innate immune system of plants

detects the presence of potentially harmful organisms via the

appearance of certain chemicals that act as warning signs.

Pathogens or plants themselves may be the source of these

chemicals. These chemicals are identified by immunological

sensor receptors, which, when engaged, induce defensive

signaling responses. Throughout their lifetime, plants interact

with a variety of bacteria. These interactions can be

advantageous or detrimental, leading to mutualistic or

pathogenic linkages (Rodriguez-Moreno et al., 2018). Plants

can alter their innate immune system to mount an appropriate

response to various helpful and harmful germs by changing the

mechanism triggered by the bacteria. Generally, plants can

detect ‘non-host’-derived cells and molecules and stop

microorganisms at the front line upon initial recognition. The

effective plant immune system must clear infections that

circumvent these primary barriers to prevent the spread of

microbial invasion. Plants lack the somatic adaptive immune

system and mobile defense cells in mammals. Instead, they rely

on each cells ability to exert innate immunity, with sick cells

capable of delivering systemic signals and plant cells with the

capacity to recall previous infections. The first branch of defense

uses plant cell-surface-anchored microbe, pathogen, or damage-

associated molecular pattern recognition receptors (PRRs) to

induce a variety of reactions, including MAMP-triggered

immunity (MTI), PAMP-triggered immunity (PTI), and

DAMP-triggered immunity (Sun et al., 2018). The second

branch recognizes microbial effectors, the virulence factors that

prevent MTI, and initiates effector-triggered immunity using

resistance (R) proteins (ETI). When these immune responses are

activated, a complex series of signaling events that block

pathogen attacks are triggered. Each plant species has a

natural ability to recognize, react to, and prevent other

potential diseases (Walley et al., 2018). This concept has

resulted in a plethora of research examining how plant signals

promote the growth of diseases in various plants (Underwood,

2012). Studies on the gene expression of the hemibiotrophic

fungus Colletotrichum higginsianum spores have shown the

influence of host plant signals on early pathogen growth (Yan,

et al., 2018).
6 Trichoderma applications in the
agricultural sector

Endophytic fungi are a particular class of microorganisms

living in symbiotic/mutualistic relationships with plants without

causing disease symptoms. These microbes have adapted to the

surrounding environment through genetic biodiversity and

eventually uptake the plant host DNA. During the process of
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evolution, plants migrated habitats from aquatic to terrestrial

environments, which were impacted by high carbon dioxide, low

soil nutrients, and temperature and water availability changes.

Endophytes may cause significant and profound shifts in

agricultural practices. Beneficial bacterial and fungal plant

endophytes are used to boost growth, serve as biocontrols,

suppress disease, and mediate stress tolerance as an eco-

friendly strategy for agricultural management. This section

presents how they are used in various agricultural contexts,

focusing on members of the Trichoderma species (Figure 2).

Since the 1960s, it has been recognized that Trichoderma species

can attack other fungi (Klein and Eveleigh, 2002; Contreras-

Cornejo et al., 2015).

Additionally, researchers view Trichoderma as a possible

biological control agent (Contreras-Cornejo et al., 2014; Sood

et al., 2020; Ferreira and Musumeci, 2021; Poveda, 2021). Studies

have suggested that Trichoderma spp. can aid in plant disease

resistance, development, and growth (Benıt́ez et al., 2004;

Poveda et al., 2020). In addition, Trichoderma spp. has

demonstrated the ability to detoxify harmful substances and

speed the decomposition of organic matter. Trichoderma fungi

inhabit the soil ecosystem and function as natural decomposers,

resulting in their ability to promote growth, improve nutrient

uptake efficiency, and ability to alter the rhizosphere. In addition

to thriving unfavorable living conditions, Trichoderma spp.

exhibit virulence trait against plant pathogens (Chaverri et al.,

2015). Typically, biological control methods may have little

impact on non-target species. However, this does not seem the

case with Trichoderma spp., after having been classified as a

hostile strain after incidences assaulting other pathogens and

microorganisms (Podbielska et al., 2020).

Moreover, multiple investigations have shown unexpected

impacts of Trichoderma species on soil microbial communities.
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As expected, the structure of the microbial population changes,

which is consistent with findings from (Zin and Badaluddin,

2020). As stated by (Cai et al., 2013; Cai et al., 2021),

Trichoderma spp. have distinct benefits over soil microbes.

These fungi may also boost plant development by producing

hormone-like compounds to the root and plant growth

production. Finally, rapid plant growth promotes microbial

populations by exuding vast amounts of root exudates and

increasing nutrient availability for microbial use (Imran et al.,

2020; Alghuthaymi et al., 2022).

Trichoderma endophytes are used as biological controls to

prime plants against different abiotic stressors such as thermal

fluctuation, salinity, low moisture conditions, and resistance to

fungicides in soil treatments (Hewedy et al., 2020; Zin and

Badaluddin, 2020). These characteristics make Trichoderma

strong competitors, as they can produce siderophores that

release chelated iron (Fe 3+) from the surrounding

environment to prevent the growth of other fungi as a plant

protection mechanism (Figure 3). Several molecules from

Trichoderma, such as pyrones, peptaibols, and terpenes, are

secreted as SMs, inhibiting the development of fungi that cause

plant diseases. Moreover, fungal mycoparasitism includes

locating the host, undergoing morphological changes such as

coiling around the hyphal host, forming structures resembling

appressoria, and finally penetrating and killing the host (Batool

et al., 2020). In addition, these endophytes produce hydrolytic

enzymes such as chitinases, glucanases, and proteases to break

through the cell wall of the host plant. The synthesis of these

enzymes is partially increased due to the induction of diffusible

host-derived substances before physical contact with the host.

Trichoderma spp. are often utilized biocontrol agents against a

broad range of root, shoot, and postharvest diseases (Intana

et al., 2021). Among roots, Trichoderma, is often observed along
FIGURE 2

Schematic shows the fungal bioinoculants) applications in response to diverse stress conditions.
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the root surface and underneath the outermost layer of root cells

(Hu et al., 2017). The most common way to apply Trichoderma

as a biocontrol is at sowing to establish the fungus in and on the

plant’s roots. It has been observed that seed coating was an

effective method for assuring the colonization of Trichoderma

spp. on plant roots to protect against pathogens due to their

aggressive action on phytopathogens (Gava and Pinto, 2016).

For example, using Trichoderma species sustains soil health by

controlling plant disease growth of pathogens such as Pythium

arrhenomanes, Rhizoctonia solani, Fusarium oxysporum,

Alternaria tenuis, and Botrytis cinerea. Trichoderma is an

endophytic fungus commonly found on leaf tissue, roots, and

sapwood and provides several advantages to its host (Cummings

et al., 2016). This genus also plays a crucial role in protection

against herbivorous arthropods, and critical functions for fungal

metabolites in herbivory have also been described (Ramıŕez-

Ordorica et al., 2022). Recently, (Contreras-Cornejo et al.,

2018a) investigated how T. atroviride affected the ability of

maize (Zea mays) to resist the insect herbivore Spodoptera

frugiperda. Upon T. atroviride inoculation of maize, increased

plant growth, decreased herbivory, and altered insect feeding

patterns were noted. Increased volatile terpene emission and

accumulation of jasmonic acid, which activates defense

responses against herbivory, were associated with plant

protection. Furthermore, a recent study by (Contreras-Cornejo

et al., 2018b) showed that the fungus improved the natural

mechanism of parasitism since larvae from maize plants with T.

atroviride colonized roots were more strongly parasitized than

larvae from non-inoculated plants. Another study by

(Contreras-Cornejo et al., 2016) revealed that Trichoderma

could promote systemic resistance and enhance plant nutrient

intake in cooperation with plant roots.

Moreover, (Contreras-Cornejo et al., 2021a) demonstrated

how T. harzianum inoculation could change the arthropod

population associated with maize leaves and decrease the

prevalence of particular pest insects in open-field conditions.

Interestingly, (Contreras-Cornejo et al., 2018a; Contreras‐

Cornejo et al., 2021b) introduced new details on the interactions

between T. harzianum and P. vetula, two belowground

multitrophic plants, microbes, and arthropods, in the maize

rhizosphere that changed how the plant responded to

phenotypically and led to the development of root herbivore

tolerance. It was also observed that the production of antibiotics

or siderophores from several Trichoderma secondary metabolites

plays a vital role in controlling plant growth and development, as

well influencing the growth of plant pathogenic microorganisms in

the soil (Contreras-Cornejo et al., 2014; Contreras-Cornejo et al.,

2020). Moreover, (Ramıŕez-Ordorica et al., 2022) revealed that an

entomopathogen might have an ecological benefit in that it can

accelerate the expansion of the insect population if it can create

volatiles that provides olfactory stimulation of egg-laying activity.
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7 Fungal secondary metabolites-
assisted phytoremediation

Aside from assisting plants to cope with biotic/abiotic

stresses and promoting their growth, fungal secondary

metabolites and enzymes possess vital biological activities

applicable to several research fields, including bioremediation

and soil health (Hota et al., 2021; Bhadra et al., 2022). It is well

known that plant-fungal interactions are dictated directly by soil

health. Thus, soil bioremediation, a biological process to

remediate environmental/soil pollutants, is essential to

promote such interactions and enhance plant growth. The

primary sources of pollutants are industrial effluents, sewage

water, oil spills, fertilizers, and pesticides. When liberated into

the soil, toxic compounds, including heavy metals and complex

organic and inorganic compounds, are released, many of which

have relatively long half-lives (Khan et al., 2021). Such

contaminants represent a significant threat to soil health,

leading to degradation and/or permanent destruction of soil

and its ecosystem (Borowik et al., 2017; Ding et al., 2022). Soil

contaminants may also leach with irrigation and rainwater into

the lakes/groundwater, causing water contamination (Khan

et al., 2021). Therefore, soil and water contamination has

become a global issue that needs to be mitigated due to its

direct detrimental effect on both environment and human

health. Bioremediation is an emerging green biotechnology

approach utilized to revert the contaminated environment to

its original state using various biological systems (e.g., microbes,

p lants ) (F igure 3) (Dubchak and Bondar , 2019) .

Phytoremediation is a subcategory of bioremediation in which

plants are used to reduce the concentration or toxic effects of

contaminants in the environment (Yaashikaa et al., 2022).

Although phytoremediation using plants is a cost-efficient and

environment-friendly process, elevated contaminants are toxic

to plants and can lead to impaired metabolism, reduced plant

growth, and slow degradation of soil pollutants (Deng and Cao,

2017; Dubchak and Bondar, 2019). The plant rhizosphere is a

natural habitat for microorganisms, including fungi, bacteria,

and algae. The microbial plant associations are essential for their

host plants, significantly influencing the performance under

harsh environments such as heavy metals and toxic compounds.

Both rhizospheric and endophytic microbiota participate in

plant health by protecting against pathogenic microbes and

improving their productivity. Furthermore, metal resistance

and plant growth-promoting microbes are considered one the

most efficient and ecologically friendly strategies. Mechanisms to

chelate and sequester metals allow fungi to alleviate heavy metal

stress. Fungi also play a vital role in element cycling and

transforming organic and inorganic compounds and P rock

solubility. Thus, fungal metal interactions potentially influence

the bioremediation process via various metabolic pathways.
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Several studies have shown the beneficial fungal interactions

with different host plants, e.g., AMF,which support their host plant

under heavy metal contamination (i.e., Cu, Cd, Ni, Zn, As, Hg, Pb,

Fe, Mn, Co, and Al) by enhancing plant tolerance. Some studies

summarized that AMF alleviates heavy metal stress by hindering

its uptake by the host plant. For example, AMFdecreased the heavy

metal impact on Calendula officinalis (pot marigold) development

by reducing the uptake of heavymetals (Cd and Pb) and enhancing

the beneficial secondary metabolites compared to non-

mycorrhizal plants. Similarly, Zn uptake and concentration were

reduced in the tomato plants inoculated withmycorrhizal fungi. In

addition, heavy metals enter the root cell via plasma membrane

channels or transporter, impacting plant element distribution and

nutrient acquisition via different situations, such as detoxification,

translocation, and accumulation. Generally, heavymetals are taken

up by the roots, located in both the epidermal cells and root hairs,

and then translocated to the vascular tissues via apoplastic or

symplastic pathways (Khalid et al., 2021; Ma et al., 2022). To

improve the effectiveness of phytoremediation, endophytic

microorganisms have been exploited for their potential to reduce

contaminant toxicity to plants and enhance their growth and

productivity. Microorganisms have developed several

mechanisms to overcome soil metal toxicity, including metal

reduction, reduced cell permeability, extracellular sequestration,

biosorption, and complexation (Roskova et al., 2022). Their

secondary metabolites, known as siderophores, have been shown

to play a central role in pollutant elimination and

phytoremediation. Siderophores are small molecular weight

chelators produced by organisms (e.g., fungi, bacteria, plants) to

scavenge Fe from their surrounding environment. Fungal

siderophores are of the hydroxamate derived from the non-

proteinogenic amino acid ornithine. These hydroxamate-type

siderophores have been categorized into four groups based on

their chemical structure – fusarinines, ferrichromes, coprogens,

and rhodothorulic acid (Figure 3) (Rabani et al., 2022). Natural

organic chelators are metal-binding compounds that comprise

siderophores, organic acid anions, and biosurfactants. Both fungi

and plants can release these compounds that scavenge metal ions

from sorption sites. Besides their high affinity toward Fe3+,

siderophores can bind various heavy metal ions, including Cu,

Ni, Zn, Cd, Co, and Fe,. (Hofmann et al., 2020). Thesemetals enter

microbial cells mainly through diffusion, and their binding to

siderophores reduces their concentration in the soil and restricts

their release from the cell membrane. Moreover, after their

chelation, metals can be sequestered through different

extracellular mechanisms, such as biosorption and

bioaccumulation (Roskova et al., 2022). Furthermore, by

reducing the concentration of toxic metals in soil, siderophore-

producing microbes positively contribute to the phytoremediation

of toxic metal-polluted soils. Moreover, siderophores serve as

redox-cycling compounds, i.e., mediate the synthesis of reactive

oxygen species (ROS) and subsequently oxidize organic molecules.

This indicates their potential role in the bioremediation of organic
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contaminants (Gu et al., 2018). In recent years, the potential of

microbial siderophores in phytoremediation has gained increasing

interest due to their strong affinity to form complexes with toxic

metals and their ability to oxidize organic contaminants. The

efficiency of phytoremediation may be improved through the

inoculation of siderophore-producing microbes or the exogenous

application of siderophores to the soil. Various studies reported

bacterial siderophores-assisted bioremediation, which can be

found elsewhere (Gu et al., 2018; Hazotte et al., 2018; Manzoor

et al., 2019; David et al., 2021). However, a few studies highlighted

the role of fungal siderophores in the bioremediation of soil

contaminants. For example, (Khan et al., 2021) examined the use

of the hydroxamate siderophore purified from A. nidulans in the

bioaccumulation of Cd(II) in Bacillus subtilis. They observed

increased siderophores-mediated bioaccumulation of Cd (II) by

B. subtilis, which was siderophore dose-dependent. Here, the

optimum siderophore concentration was 50 SU/ml, where

higher concentrations negatively affected the B. subtilis growth

due to the chelation of essential nutrients. A study by (Kumari

et al., 2019) examined the use of the hydroxamate-type

siderophore (ferricrocin) isolated from A. nidulans to reduce the

adverse impact of arsenic under toxic conditions on Triticum

aestivum growth. The formation of the thermodynamically stable

ferricrocin–arsenate complex recovered plant growth and assisted

in adjusting superoxide dismutase, catalase, and peroxidase activity

of wheat while reducing damage caused by lipid peroxidation

(Kumari et al., 2019). Trichoderma, Aspergillus, and AMF were

found to enhance phytoremediation of lead (Pd) due to their high

immobilizing affinity toward metals through biosorption,

insoluble oxalate formation, and/or melanin-like polymer

chelation (Schneider et al., 2016). In the study by Bhalerao and

Puranik (2007), fungal isolates, Aspergillus niger, Aspergillus

terreus, Trichoderma harzianum, Cladosporium oxysporum,

Phanerochaetechrysosporium, Mucor thermohyalospora, and

Fusarium ventricosum, were evaluated for their ability to degrade

endosulfan. A. niger was the most tolerant to endosulfan. In

addition, some of these fungal strains induced esterification,

dehydrogenation, hydroxylation, and deoxygenation during the

biotransformation process. Additionally, a few attempts exploited

the application of white rot fungi for the bioremediation of organic

contaminants. Compared to bacteria, these filamentous fungi

provide a myriad of benefits due to their ability to oxide several

chemicals and their tolerance to hazardous compounds (Kumar

et al., 2022; Rabani et al., 2022). White rot fungi can secrete

enzymes that can biotransform organic pollutants into non-/

fewer toxic compounds. Interestingly, (Purnomo et al., 2014)

investigated the utilization of a white rot fungus, Pleurotus

ostreatus, in the biodegradation of heptachlor and heptachlor

epoxide. They reported 89% and 32% degradation of these two

pollutants after 28 days of incubation. Other studies showed that

white rot fungi, including Phlebia acanthocystis, Phlebia

brevispora, Phlebia aurea, and Trametes hirsuta were capable of

degrading the organic contaminants dieldrin, aldrin diazinon, and
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endosulfan (Kamei et al., 2011; Xiao et al., 2011; Bisht et al., 2019).

Thus, more studies are needed to investigate the various

mechanisms involved in fungal-assisted bioremediation, the

potential roles of fungal siderophores, and the effect of

contaminants (e.g., toxic metals) on siderophores synthesis.

Hence, phytoremediation is the most practicable action to

decontaminate serious pollution areas by fungal plant

associations to remove heavy metal accumulations, particularly

in metal-polluted soils. In addition, the fungal phytoremediation

process is a cost-effective and environmentally friendly (without

any hazardous effects) technology. However, further research on

mechanisms beyond the fungal metal bioremediation/

immobilization is needed to employ their efficient use in

phytoremediation practices and reduce the harmful impact of

toxic metals.
8 Conclusion remarks

As the human population expands, food security and safety

will become more threatening than ever before. For this reason,

it has become imperative that research explore alternative

methods to help adopt more sustainable practices to meet the

needs of people worldwide. Here, an exciting new avenue for
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research has been reviewed: fungal secondary metabolites, their

origin, biological roles, and current and future applications.

Beneficial endophytes such as Trichoderma and other fungi are

being used as biocontrols, and then circle back to the general

knowledge of their having roles in enhancing SAR/ISR among

mutualistic interactions with plants. Although this work targets

SMs role in improving crop yield and growth during global

climate change, it is also important to remember the

pharmaceutical and industrial/economic contribution as

outlined in (Figure 2). For example, antibiotics and their

mass-scale production, as well as the synthesis of biofuels.

Additionally, increased production of cellular metabolites to

protect plants from disease offers potential for application in

biocontrol to reduce significantly synthetic pesticide use,

representing an economical and eco-friendly way forward for

agricultural sustainability. Besides, the fundamental knowledge

governing plant-microbe interactions significantly increased crop

yield and food supply. Secondary metabolites play a vital role in

plant health by regulating the anti-pathogenic mechanisms in the

host plants. Thus, understanding the pathway of SMs and their

role in biological control strategies will be essential for improving

crop yield and providing novel future green agriculture

opportunities. Knowledge of genomic clustering and regulation

of SM genes will yield new insight into the evolution of fungal

pathogenesis and host defense.
FIGURE 3

Conceptual representation of the phytoremediation of metal ions by fungal siderophores. The chemical structures of selected fungal
siderophores (fusarinine C, ferrichrome A, coprogen, and rhodothorulic acid) and an example of a siderophore-metal complex (Fusarinine C-
ferric complex).
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(2020). Interactions of trichoderma with plants, insects, and plant pathogen
microorganisms: chemical and molecular bases. In: J. M. Mérillon and K.
Ramawat Co-evol. Secondary Metabolites, (Cham: Springer) 69, 263–290. doi:
10.1007/978-3-319-96397-6_23

Contreras-Cornejo, H. A., Macıás-Rodrıǵuez, L., Herrera-Estrella, A., and
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De Oliveira, T. L. C., de Araújo Soares, R., Ramos, E. M., das Graças Cardoso, M.,
Alves, E., and Piccoli, R. H. (2011). Antimicrobial activity of satureja montana l.
essential oil against clostridium perfringens type a inoculated in mortadella-type
sausages formulated with different levels of sodium nitrite. Int. J. Food Microbiol.
144 (3), 546–555. doi: 10.1016/j.ijfoodmicro.2010.11.022

Derksen, H., Rampitsch, C., and Daayf, F. (2013). Signaling cross-talk in plant
disease resistance. Plant Sci. 207, 79–87. doi: 10.1016/j.plantsci.2013.03.004

Devi, R., Kaur, T., Guleria, G., Rana, K. L., Kour, D., Yadav, N., et al. (2020).
“Chapter 9 - fungal secondary metabolites and their biotechnological applications
for human health,” in New and future developments in microbial biotechnology and
bioengineering. Eds. A. A. Rastegari, A. N. Yadav and N. Yadav (Elsevier), 147–161.
doi: 10.1016/B978-0-12-820528-0.00010-7

Dewick, P. M. (2002). The biosynthesis of c 5–c 25 terpenoid compounds.
Natural Prod. Rep. 19 (2), 181–222. doi: 10.1039/b002685i

Ding, L., Huang, D., Ouyang, Z., and Guo, X. (2022). The effects of microplastics
on soil ecosystem: A review. Curr. Opin. Environ. Sci. Health 26, 100344.
doi: 10.1016/j.coesh.2022.100344

Dubchak, S., and Bondar, O. (2019). “Bioremediation and phytoremediation:
Best approach for rehabilitation of soils for future use,” in Remediation measures
for radioactively contaminated areas. Eds. D. K. Gupta and A. Voronina (Cham:
Springer International Publishing), 201–221.

Duplessis, S., Cuomo, C. A., Lin, Y.-C., Aerts, A., Tisserant, E., Veneault-
Fourrey, C., et al. (2011). Obligate biotrophy features unraveled by the genomic
analysis of rust fungi. Proc. Natl. Acad. Sci. 108 (22), 9166–9171. doi: 10.1073/
pnas.1019315108
frontiersin.org

https://doi.org/10.1016/j.plaphy.2013.08.011
https://doi.org/10.1016/j.tcb.2020.11.005
https://doi.org/10.1038/cdd.2009.219
https://doi.org/10.1128/EC.00092-15
https://doi.org/10.1007/s00018-021-03791-0
https://doi.org/10.3390/jof8070660
https://doi.org/10.3852/14-147
https://doi.org/10.18632/oncotarget.23208
https://doi.org/10.1016/S0168-9525(03)00138-0
https://doi.org/10.1021/ja8088185
https://doi.org/10.1038/nchembio.2408
https://doi.org/10.1002/med.21321
https://doi.org/10.1016/j.apsoil.2017.10.004
https://doi.org/10.1016/j.apsoil.2017.10.004
https://doi.org/10.1016/j.soilbio.2018.04.013
https://doi.org/10.1094/MPMI-01-15-0005-R
https://doi.org/10.1007/s00344-014-9471-8
https://doi.org/10.1104/pp.108.130369
https://doi.org/10.1104/pp.108.130369
https://doi.org/10.1093/femsec/fiw036
https://doi.org/10.1007/978-3-319-96397-6_23
https://doi.org/10.1007/s11104-014-2069-x
https://doi.org/10.1007/s11104-014-2069-x
https://doi.org/10.1007/s10340-020-01261-3
https://doi.org/10.1007/s10340-020-01261-3
https://doi.org/10.1002/ps.6415
https://doi.org/10.1080/15572536.2003.11833196
https://doi.org/10.1186/s40538-021-00230-x
https://doi.org/10.1007/s11557-016-1192-x
https://doi.org/10.1016/j.jhazmat.2020.123699
https://doi.org/10.1126/science.1190859
https://doi.org/10.1016/j.jplph.2010.05.024
https://doi.org/10.1016/j.it.2018.09.006
https://doi.org/10.1007/3-540-44964-7_1
https://doi.org/10.1016/j.chemosphere.2016.10.097
https://doi.org/10.1016/j.chemosphere.2016.10.097
https://doi.org/10.1016/j.ijfoodmicro.2010.11.022
https://doi.org/10.1016/j.plantsci.2013.03.004
https://doi.org/10.1016/B978-0-12-820528-0.00010-7
https://doi.org/10.1039/b002685i
https://doi.org/10.1016/j.coesh.2022.100344
https://doi.org/10.1073/pnas.1019315108
https://doi.org/10.1073/pnas.1019315108
https://doi.org/10.3389/fpls.2022.1044896
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Elhamouly et al. 10.3389/fpls.2022.1044896
Dyer, P. S. (2019). Self/Non-self recognition: Microbes playing hard to get. Curr.
Biol. 29 (18), R866–r868. doi: 10.1016/j.cub.2019.08.001

Ferreira, F. V., and Musumeci, M. A. (2021). Trichoderma as biological control
agent: scope and prospects to improve efficacy. World J. Microbiol. Biotechnol. 37
(5), 90. doi: 10.1007/s11274-021-03058-7

Frank, D., and Vince, J. E. (2019). Pyroptosis versus necroptosis: similarities,
differences, and crosstalk. Cell Death Differ. 26 (1), 99–114. doi: 10.1038/s41418-
018-0212-6

Garcia, K., Delaux, P. M., Cope, K. R., and Ané, J. M. (2015). Molecular signals
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