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Homocysteine (Hcy) is a sulfur-containing non-proteinogenic amino acid,

which arises from redox-sensitive methionine metabolism. In plants, Hcy

synthesis involves both cystathionine b-lyase and S-adenosylhomocysteine

hydrolase activities. Thus, Hcy itself is crucial for de novo methionine synthesis

and S-adenosylmethionine recycling, influencing the formation of ethylene,

polyamines, and nicotianamine. Research on mammalian cells has shown

biotoxicity of this amino acid, as Hcy accumulation triggers oxidative stress

and the associated lipid peroxidation process. In addition, the presence of

highly reactive groups induces Hcy and Hcy derivatives to modify proteins by

changing their structure and function. Currently, Hcy is recognized as a critical,

independent hallmark of many degenerative metabolic diseases. Research

results indicate that an enhanced Hcy level is also toxic to yeast and bacteria

cells. In contrast, in the case of plants the metabolic status of Hcy remains

poorly examined and understood. However, the presence of the toxic Hcy

metabolites and Hcy over-accumulation during the development of an

infectious disease seem to suggest harmful effects of this amino acid also in

plant cells. The review highlights potential implications of Hcy metabolism in

plant physiological disorders caused by environmental stresses. Moreover,

recent research advances emphasize that recognizing the Hcy mode of

action in various plant systems facilitates verification of the potential status of

Hcy metabolites as bioindicators of metabolism disorders and thus may

constitute an element of broadly understood biomonitoring.
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Introduction

Homocysteine (Hcy) was first synthesized by Butz and de

Vigneaud in 1932 as homocystine (disulfide) by chemical

demethylation of methionine (Met) with sulfuric acid. Then,

three years later Hcy was obtained by reduction of homocystine

with metallic sodium-ammonia (Riegel and de Vigneaud, 1935).

Although Hcy is a naturally occurring intermediate in the

metabolism of Met and cysteine (Cys), its excessive production

might be harmful to various human and animal cells (Roe et al.,

2002; Tuite et al., 2005; Jakubowski, 2006; Kumar et al., 2006;

Zimny et al., 2006; Sikora and Jakubowski, 2009). Higher

concentrations of Hcy were shown to affect growth inhibition

or reduce cell viability in Escherichia coli cultures and yeast cells

(Tuite et al., 2005; Sikora and Jakubowski, 2009). In animal cells

an excessive level of Hcy is associated with a risk of various

disorders, such as neurodegenerative and cardiovascular

diseases, diabetic retinopathy, embryo developmental

anomalies, certain neoplasms, and osteoporosis (Jakubowski,

2006; Smith and Refsum, 2021). Recent years have shown a

dramatic increase in research aimed at providing better

understanding of this exciting amino acid in animal

organisms. However, still little is known concerning the role of

Hcy in plant systems, in which it is only perceived as an

intermediate product of Met biosynthesis and a by-product of

S-adenosylmethionine (AdoMet) metabolism.

Mechanisms of Hcy toxicity in
living cells

The harmful effects are exerted not only by Hcy, but also by

the more reactive Hcy-related metabolites emerging due to

elevated levels of this amino acid in the cellular environment

(Škovierová et al., 2016). As a thiol Hcy can autoxidize, while in

the presence of transition metals it promotes reactive oxygen

species (ROS) formation (Hogg, 1999). In vitro, Hcy was proven

to act as a pro-oxidant through hydrogen peroxide production

during metal-catalyzed oxidation (Perna et al., 2003a). Thus, an

excess of Hcy may trigger uncontrolled oxidation product

formation in the cellular environment, resulting in oxidative

stress (Perna et al., 2003b). Wu et al. (2019) summarized that

Hcy can also induce ROS production by NADPH oxidases and

endothelial nitric oxide synthase uncoupling. Finally, Hcy-

induced oxidative stress may arise from targeting enzymatic

antioxidants including glutathione peroxidase and protein

disulfide isomerase (Jacobsen et al., 2005).

Jakubowski (2006) proved that the pathophysiological mode

of action of Hcy is closely related to the “Hcy-thiolactone

hypothesis”. The Hcy metabolite, synthesized by methionyl-

tRNA synthetase in an error-editing reaction, is a cyclic

thioester with a unique repertoire of chemical reactions

(Ganapathy et al., 2009; Jakubowski, 2019). As demonstrated in
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the Saccharomyces cerevisiae model yeast, both cytoplasmic and

mitochondrial methionyl-tRNA synthetases are engaged in the

biosynthesis of the Hcy metabolite (Senger et al., 2001). The

formation of Hcy-thiolactone requires ATP and thus causes

nonproductive consumption of cellular energy. Once formed,

Hcy-thiolactone is relatively stable, as its half-life has been

estimated to be approximately 25 h under physiological pH (pH

7.4) and temperature (36°C) (Jakubowski and Guranowski, 2003).

The total production of Hcy-thiolactone depends on the

concentration of free Hcy and the Met-Hcy ratio. Notably, the

unique Hcy derivative can quickly diffuse through cellular

membranes owing to its amino group’s relatively low pKa

value (~ 7.2) (Jakubowski and Guranowski, 2003; Chubarov,

2021). Thus, Hcy-thiolactone was also detected in extracellular

media (Jakubowski et al., 2000). Hcy-thiolactone is much more

toxic than Hcy and can trigger apoptosis even at low

concentrations (Chubarov, 2021). In addition, it may have an

inhibitory effect on Na+/K+-ATP-ase, altering the membrane

potential with a deleterious effect on cells (Rasić-Marković

et al., 2009).

The process of Hcy or Hcy-thiolactone incorporation into

proteins is known as homocysteinylation. It can involve S-

homocysteinylation (S-Hcy-protein) or N-homocysteinylation (N-

Hcy-protein). As Hcy-thiolactone can only arise from Hcy, N-

homocysteinylation constitutes a unique post-translational protein

modification for Hcy (Jakubowski, 2019). N-homocysteinylation

involves the modification of protein lysine residues and can alter or

impair the protein structure and function, resulting in protein

damage. The phenomenon of protein N-homocysteinylation is

irreversible, while the accumulation of N-Hcy-proteins could

promote proinflammatory, prothrombotic, and proatherogenic

properties, contributing to various disorders associated with

hyperhomocysteinemia in humans (Jakubowski, 2006). In

addition, post-translational protein modification can influence the

epigenetic regulation of gene expression, preventing histone lysine

methylation and acetylation (Wada et al., 2018). It is important to

note that N-homocysteinylation may also influence the

susceptibility of a protein to proteolysis, as confirmed in the case

of N-Hcy-albumin (Glowacki and Jakubowski, 2004). Experimental

evidence shows that N-Hcy-protein formation is a phenomenon

shared by various multicellular organisms, including plants

(Jakubowski and Guranowski, 2003). In the case of S-

homocysteinylation Hcy is linked via a disulfide bond to a free

protein sulfhydryl residue. The post-translational modification may

change the function of proteins via the inactivation of potentially

active free thiol groups and shifting the redox potential of

b iomolecules (Chubarov , 2021) . Compared to N-

homocysteinylation mediated via Hcy-thiolactone, protein S-

homocysteinylation is reversible and is not specific to Hcy, as

other low-molecular-weight thiols may form disulfide bonds with

protein sulphydryl residues (Jakubowski, 2019).

In the presence of the signaling molecule, nitric oxide (NO),

Hcy can undergo S-nitrosation to S-nitroso-Hcy. As underlined
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by Morakinyo et al. (2010), the NO-dependent modification of

the thiol group in Hcy can constitute a prevention mechanism

against the metabolic conversion of Hcy to more toxic Hcy-

thiolactone. In plants, NO-dependent post-translational

modifications of SAHH and other crucial components of the

S-adenosylmethionine cycle can also affect the Hcy level and

consequently, the DNA methylation status (Lindermayr et al.,

2005; Chaki et al., 2009; Lozano-Juste et al., 2011; Puyaubert

et al., 2014; Hu J. et al., 2015).
Hcy formation in plants

As an immediate methionine precursor, Hcy is synthesized

in plant cells via two pathways (Figure 1). One of them involves

the plastid/chloroplast and includes the route from sulfate via

cysteine and cystathionine (CysT) formation; however, next to

cysteine also O-phosphohomoserine can be metabolized to CysT

by CysT g-synthase. Finally, b-cleavage of CysT to Hcy is

catalyzed by cystathionine b-lyase (CBL) (Ravanel et al., 1998;

Hesse et al., 2004; Ravanel et al., 2004). The other cytosol route

involves Hcy formation as a by-product of the methylation

reaction within plant cells (Jakubowski and Guranowski,
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2003). In this respect, S-adenosylhomocysteine (AdoHcy)

undergoes conversion into Hcy in a reaction catalyzed by S-

adenosylhomocysteine hydrolase (SAHH) (Ravanel et al., 2004).

Bioinformatics analyses allow us to supplement the

experimental data and make new insights into the phylogenetic

relationships and genomic/proteomic organization of genes

involved in Hcy biosynthesis in plants. For the first time, we

showed the CBL and SAHH genes from various plant species in

terms of their phylogenetic relationships, protein domains and

gene structure (exon/intron organization). We selected the model

plants (Chang et al., 2016), including five monocots and ten

dicots, and their sequences were obtained from PLAZA 5.0 and

Phytozome databases (https://bioinformatics.psb.ugent.be/plaza/

and https://phytozome-next.jgi.doe.gov/, respectively, accessed on

22.10.2022). A total of 17 CBL and 31 SAHH genes were found to

be distributed in 15 plant species (Figure 2). In the dicots, G. max

had two CBL genes, while in the monocots O. sativa had two

genes, while the other plants had only one CBL gene. For the

SAHH, most of the dicots had 2-3 genes, except for L. japonicas, P.

persica and S. tuberosum, which had one gene each. Notably, E.

grandis contained seven SAHH members. In monocots, only H.

vulgare had two SAHHs, while the rest of the analyzed plants

contained one gene. Thus, gene duplication appears to have had a
FIGURE 1

Homocysteine formation and mode of action in plants. The chloroplast pathway of Hcy formation (in green); the cytosolic pathway of Hcy
formation (in orange). Hcy can be converted to Hcy-thiolactone, which modifies proteins by N-homocyteinylation. Hcy can also bind to
cysteine residues of a protein, forming a disulfide bound resulting in S-homocysteinylation of proteins. AdoHcy, S-adenosylhomocysteine;
AdoMet, S-adenosylmethionine; Cys, cysteine; CysT, cystathionine; CBL, cystathionine b-lyase; Hcy, homocysteine, HTase, Hcy-thiolactone
hydrolase; MetRS, methionyl-tRNA synthetase; MS, methionine synthase; NO, nitric oxide; SAHH, S-adenosylhomocysteine hydrolase.
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prominent role in the expansion of the SAHH family in dicot

plants. Gene duplication, expansion, and eventual diversification

are characteristics of the evolutionary process. The duplication of

the SAHH genes might have contributed to evolving novel

functions, such as growth and development, disease resistance,

and stress tolerance (Panchy et al., 2016).

The phylogenetic analysis divided the plant CBLs

(Figure 2A) and SAHHs (Figure 2B) into taxonomic groups,
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i.e. monocots and dicots. This is consistent with the divergent

history of plant evolution (Chaw et al., 2004). The protein family

domain analysis revealed that CBLs and SAHHs from all the

p lants conta ined the typ ica l conserved domains ,

Cys_Met_Meta_PP (PF01053) and AdoHcyase (PF05221),

respectively. Cys_Met_Meta_PP (Pyridoxal 5’-phosphate or

PLP) is a versatile catalyst that acts as a coenzyme in a wide

range of processes, including decarboxylation, deamination, and
A

B

FIGURE 2

Phylogenetic relationship, conserved protein domains and gene structure of CBL (A) and SAHH (B) genes in various plant species. The phylogenetic
trees were constructed via amino acid sequence alignment using ClustalW and the Neighbour-Joining method in MEGA-11, and evolutionary
distances were computed using the JTT matrix-based method with the bootstrap test (1000 replicates). The tree was visualized on the iTOLv6
webtool (https://itol.embl.de/). The conserved protein domains were analyzed using the NCBI Batch CD-search webserver (https://www.ncbi.nlm.
nih.gov/Structure/bwrpsb/bwrpsb.cgi, accessed on 25.10.2022) and were displayed by the TBtools software (Chen et al., 2018). The gene structure
showing the intron/exon organization was generated by The Gene Structure Display Server (GSDS 2.0, Hu B. et al., 2015) tool (http://gsds.cbi.pku.
edu.cn/, accessed on 24.10.2022). The dicot plants are presented in colored circles and the monocots are in colored squares. The CBL and SAHH
genes from various plant species used here were as follows: AT3G57050 (AtCBL); Glyma.19G132000 (GmCBL1); Glyma.03G129700 (GmCBL2);
Potri.016G038200 (PtCBL); PGSC0003DMG400029836 (StCBL); Solyc10g079720.1 (SlCBL); VIT_208s0007g05410 (VvCBL); Medtr1g064320
(MtCBL); Prupe.7G042400 (PpCBL); Eucgr.A02261 (EgCBL); Lj2g0003873 (LjCBL); Bradi1g47910 (BdCBL); HORVU7Hr1G028540 (HvCBL);
Sobic.010G059200 (SbCBL); Zm00001d045153 (ZmCBL); LOC_Os06g07860 (OsCBL1); LOC_Os06g07960 (OsCBL2); AT4G13940 (AtSAHH1);
AT3G23810 (AtSAHH2); Glyma.11G254700 (GmSAHH1); Glyma.05G152000 (GmSAHH2); Glyma.08G108800 (GmSAHH3); Potri.001G320500
(PtSAHH1); Potri.017G059400 (PtSAHH2); PGSC0003DMG400004572 (StSAHH);VIT_205s0029g00330 (VvSAHH1); VIT_217s0000g09840
(VvSAHH2);Medtr8g083090 (MtSAHH1); Medtr3g084340 (MtSAHH2); Solyc09g092380.3 (SlSAHH2); Solyc09g092390.2 (SlSAHH3);
Solyc12g098500.2 (SlSAHH1); Prupe.1G165200 (PpSAHH); Eucgr.D00281 (EgSAHH1); Eucgr.H02678 (EgSAHH2); Eucgr.H03173 (EgSAHH3);
Eucgr.H03174 (EgSAHH4); Eucgr.H03176 (EgSAHH5); Eucgr.H03177 (EgSAHH6); Eucgr.H03180 (EgSAHH7); Lj6g0016083 (LjSAHH);
LOC_Os11g26850 (OsSAHH); Zm00001eb090450 (ZmSAHH1); Zm00001eb170040 (ZmSAHH2); HORVU2Hr1G109370 (HvSAHH1);
HORVU2Hr1G110120 (HvSAHH2); Sobic.005G112800 (SbSAHH) and Bradi4g19457 (BdSAHH).
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transamination. A number of pyridoxal-dependent enzymes

involved in cysteine, homocysteine, and methionine

metabolism have been reported (Ono et al., 1992; Barton et al.,

1993). CBL belongs to the PLP-dependent enzyme fold-type I

and shares considerable similarities with cystathionine g-
synthase. Both plant and bacterial CBLs are tetramers

consisting of four identical subunits (Breitinger et al., 2001;

Ravanel et al., 1996). Each active site has one cofactor

molecule attached within a cleft produced between the dimer

interfaces. Both monomer residues contribute to substrate

binding and catalysis. AdoHcyase (adenosylhomocysteinase) is

an enzyme of the activated methyl cycle that converts S-

adenosyl-L-homocysteine into adenosine and homocysteine in

a reversible manner (Turner et al., 2000; Yamada et al., 2005).

The previous study suggested that in phylogenetically distinct

land plants, SAHH forms oligomeric protein complexes, and the

dominant protein complex is made up of a tetramer of the

enzyme (Alegre et al., 2020). It was further shown that regulatory

actions might be on the levels of protein complex formation and

phosphorylation of this metabolically important enzyme.

The gene structure analysis revealed that the intron/exon

arrangements in both monocots and dicots are similar

(Figure 2). The size of the CBL genes ranged from 3 (A.

thaliana) to 12 kbp (L. japonicas) in all the plants analyzed,

with 12 introns in dicots and 10-11 introns in monocots. The

SAHH gene size ranged from 1.5 (E. grandis) to 4.5 kbp (S.

lycopersicum), with only one intron in dicots and mostly two

introns in monocots. The CBLs of V. vinifera and L. japonicas

had the large size of introns. This might be due to the abundance

of repetitive/transposable elements (TEs) in their genomes,

despite having genome sizes of only about 500 Mb (Jaillon

et al., 2007; Li et al., 2020). Also, most of the SAHHs had one

large intron, which might be due to the fact that the introns are

generally relatively rich in repeats and TEs. The overall

bioinformatics analysis revealed that a majority of plant CBLs

and SAHHs are conserved in nature. Although monocots and

dicots exhibit a few different features, they still exert a

similar function.

Potentially present in both cytosol and chloroplast,

methionine synthase (MS) methylates Hcy to methionine

using a methyl group donor, 5-methyltetrahydrofolate (Hesse

et al., 2004). In the model plant Arabidopsis the chloroplast

AtMS3 is most likely required to methylate Hcy that is

synthesized de novo in this organelle. In turn, the cytosolic

isoforms AtMS1 and AtMS2 are engaged in the regeneration of

Met from Hcy during the activated methyl cycle (Ravanel et al.,

2004). Notably, a recent finding by Yan et al. (2019) revealed that

AtMS1 fulfills a regulatory role in transcriptional gene silencing.

In addition to MS, cytosolic transfer of the methyl group to Hcy

can be operated by Hcy S-methyltransferase (HcySMT) in the S-

methyl-methionine (SMM) cycle (Ranocha et al., 2001). The

SMM cycle also involves methionine S-methyltransferase

engaged in the conversion of AdoMet to AdoHcy and Hcy to
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SMM (Sauter et al., 2013). It is worth noting that the

maintenance of the AdoMet/AdoHcy ratio is considered a

metabolic hallmark of the cellular methylation potential or

methylation index (Hoffman et al., 1979; Moffatt and

Weretilnyk, 2001; Kocsis et al., 2003). As indicated by Rudolf

et al. (2021), AdoMet homeostasis, and thus balancing the

AdoMet/AdoHcy ratio, depends on S-nitrosoglutathione

reductase (GSNOR1). This enzyme controls the level of the S-

nitrosoglutathione and S-nitrosation reactions in plant cells.

Loss of GSNOR1 activity affects transmethylation reactions

(Rudolf et al., 2021).

It was documented that an elevated level of Hcy is

accompanied by decreased SAHH activity and over-

accumulation of AdoHcy, which competitively inhibits

AdoMet-dependent transmethylation, including DNA and

histone methylation (Tehlivets et al., 2013). Thus, Hcy

synthesis and AdoHcy removal by SAHH must be precisely

and efficiently regulated. In Arabidopsis, SAHH1 and SAHH2

isoforms have been identified and the null mutation of SAHH1

results in embryonic lethality (Rocha et al., 2005). Moreover, an

impaired SAHH1 function, including the knock-down sahh1

and homology-induced gene silencing 1 (hog1), resulted in

delayed germination, growth, and morphological disorders

(Rocha et al., 2005; Wu et al., 2009), indicating the

significance of AdoHcy removal in plant cells. As it was stated

by Alegre et al. (2020), SAHH1 functionality is crucial for plant

metabolism at different developmental stages. Notably, SAHH

activity can be regulated by NO, the key molecule in stress and

developmental signaling. As documented, SAHH in pathogen-

inoculated potato (Arasimowicz-Jelonek et al., 2016) and

sunflower hypocotyls underwent nitration by peroxynitrite,

resulting in the inhibition of SAHH activity (Chaki et al.,

2009). Additional in silico analysis of the barley SAHH

sequence showed that Tyr448 is the potential target for

nitration (Chaki et al., 2009). According to Lozano-Juste et al.

(2011), NO-dependent nitration may constitute an essential

regulatory event that controls Met biosynthesis in plants. It

was also proved that exogenous NO impairs MS activity (e.g.,

Danishpajooh et al., 2001), suggesting that MS nitration might

result in reduced enzyme activity favoring elevated levels of Hcy

in plant cells.

Although the trans-sulfuration reactions of Hcy to Cys are

present in mammalian and fungal systems, the mechanism was

not described in plants (Jakubowski and Guranowski, 2003).
Hcy mode of action in plants

Although little attention has been paid to the research on the

role of Hcy in plants, other non-proteinogenic amino acids such

as ornithine, citrulline, arginosuccinate, homoserine, and

cystathionine are well-recognized intermediates of plant
frontiersin.org
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metabolism (Jander et al., 2020). In plants, the non-

proteinogenic amino acids show a broad range of roles,

including anti-herbivory, antimicrobial, and allelochemical

activity. Moreover, they are engaged in signaling, nitrogen

storage, and general plant response to stresses (Bell, 2003).

However, as underlined by Vranova et al. (2011), many

aspects of the non-proteinogenic amino acids have been

largely overlooked in plant research.

It is well established that Hcy is crucial for de novomethionine

synthesis and AdoMet recycling, which constitutes a precursor of

ethylene, polyamines, and nicotianamine. At the same time, it also

controls DNA and histone methylation (Watanabe et al., 2021).

Moreover, Hcy can manage in vivo serine biosynthesis via

regulation of the 3-phosphoglycerate dehydrogenase (PGDH)

activity. Okamura and Hirai (2017) showed that Arabidopsis

AtPGDH1 and AtPGDH3 were activated under in vitro

conditions by Hcy in a cooperative manner. The observed

positive and tight regulation of AtPGDH1 and AtPGDH3 by

Hcy may contribute to the balance between sulfur assimilation

and tryptophan biosynthesis. Moreover, Hcy-mediated activation

of the serine biosynthesis implicates the amino acid as a signaling

molecule that enhances AdoMet production (Okamura and Hirai,

2017). Thus, the regulatory role of Hcy in plant cells should be

assumed as an important intermediate in primary metabolism.

Besides the non-toxic effects of Hcy in plants, Jakubowski

and Guranowski (2003) provided the first experimental line of

evidence on the potentially toxic Hcy mode of action, as the

formation of Hcy-thiolactone and Hcy-N-proteins was

documented in plant cells (Figure 1). Inhibition of Hcy

methylation to Met by the antifolate drug aminopterin in

yellow lupine seedlings caused Hcy-N-proteins to become

major metabolites of Hcy, next to Hcy-thiolactone. By

deciphering the cellular metabolism of Hcy in living cells it

was found that the conversion of Hcy to Hcy-thiolactone in

plant cells is catalyzed by methionyl-tRNA synthetase (MetRS)

in an error-editing reaction during protein biosynthesis when

Hcy mistakenly replaces Met (Jakubowski, 2006). It was

confirmed that Hcy editing to Hcy-thiolactone operates in

organisms belonging to various domains of life. Analyses have

shown that the Hcy-thiolactone pathway is predominant when

reactions of remethylation or trans-sulfuration are affected by

impaired enzymes regulating Hcy metabolism or by disorders in

the supply of folate, vitamin B12, or vitamin B6 (Zimny et al.,

2006). The reactive cyclic thioester of Hcy can be uniquely

degraded in plant cells to Hcy by the constitutively expressed

Hcy-thiolactone hydrolase, as documented in yellow lupine

seedlings. Notably, the plant Hcy-thiolactone hydrolase is

essentially different from the well-described human Hcy-

thiolactonase/paraoxonase, as it does not require calcium for

biological activity and can hydrolyze other sets of (thio)esters

(Jakubowski and Guranowski, 2003).

Hcy-thiolactone was shown to provoke features of apoptosis

in various types of cells such as placental trophoblasts, human
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endothelial and promyeloid HL-60 cells (Mercié et al., 2000;

Huang et al., 2001; Kamudhamas et al., 2004). Promyeloid HL-

60 cell treatment with Hcy significantly triggered intracellular

hydrogen peroxide, which coincided with increased caspase 3

activity. Moreover, Hcy-mediated programmed cell death in

human endothelial cells is followed by caspase 3 or a caspase-

like protease activation (Zhang et al., 2001). Moreover, an

excessive Hcy level upregulated the expression of autophagy-

relevant proteins, such as Atg5, in human mesangial cells (Liang

et al., 2019). Autophagy activation by amino acid starvation was

found to promote Hcy-induced apoptosis in bovine aorta

endothelial cells (Sato et al., 2020). Notably, overexpression of

genes involved in Hcy biosynthesis, i.e., CBL and SAHH, was

correlated in time with Hcy accumulation during hypersensitive

cell death in potato immunity to P. infestans, suggesting an

implication of Hcy in programmed cell death in plants

(Arasimowicz-Jelonek et al., 2013).
Hcy metabolism as a
potential fingerprint of plant
physiological disorders

Under normal conditions, the mean concentration of total Hcy

(including disulfide-bound forms) in human plasma is∼10 mmol/L.

Thus, an elevated Hcy level has been related to inflammation

processes and metabolism dysregulation leading to numerous

cardiovascular and neurodegenerative disease states. The total

pool of Hcy in lupine seedling hypocotyls was calculated at 4.3

mM (Jakubowski and Guranowski, 2003). In turn, the steady-state

level of Hcy in leaves of the model plant Arabidopsis was assessed

as < 1 pmol per mg fresh weight (Groth et al., 2016). However, a

point mutation in the methylenetetrahydrofolate dehydrogenase/

methenyltetrahydrofolate cyclohydrolase 1 (MTHFD1) gene of

Arabidopsis provoked a disorder of folate metabolism, which

caused the accumulation of Hcy in leaves to ∼7 pmol per mg

fresh weight (Groth et al., 2016). Remarkably, sulfur starvation

experiments revealed that the sulfur-deficient status in Arabidopsis

seedlings did not affect the relative pool of Hcy (Nikiforova

et al., 2005).

More recently, Watanabe et al. (2021) underlined that Hcy

metabolism in plants can be altered under unfavorable

environmental conditions. However, technical difficulties in

its measurement contribute to a small number of data

illustrating Hcy changes in plant cells. The Hcy accumulation

and its localization were first documented in potato leaves

inoculated with the causative agent of late blight using the

immunohistochemical method (Arasimowicz-Jelonek et al.,

2013). Interestingly, more pronounced immunofluorescence

signals attributable to Hcy presence were observed primarily in

healthy susceptible leaves rather than the resistant potato genotype.

The Hcy-dependent signals were noticeable in the central vein and
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epidermal cells. The progressive development of late blight was

correlated with over-accumulation of Hcy and upregulation of

genes directly engaged in Hcy biosynthesis, i.e., CBL and SAHH

(Arasimowicz-Jelonek et al., 2013). On the other hand, susceptible

potato leaf pretreatment with 100 µM Hcy and subsequent

pathogen inoculation showed enhanced cytotoxicity, manifested

by lipid peroxidation and rapid development of disease. The

destructive effect was even more visible when leaves were treated

with the antifolate drug - aminopterin, an inhibitor of Hcy

methylation to Met. The set of experiments revealed that Hcy

over-accumulation is engaged in a pathophysiological mechanism

that abolishes basal resistance, suggesting Hcy monitoring as an

informative hallmark characterizing plant susceptibility. The

pathogen-induced Hcy accumulation was likely associated with

the formation of Hcy metabolites, potentially favoring

pathophysiological changes. It was earlier documented that an

enhanced pool of S-nitrosothiols (SNOs) correlated with higher

susceptibility to P. infestans (Floryszak-Wieczorek et al., 2012). As

cellular SNOs include S-nitroso-Hcy, the metabolite could

participate in SNO turnover controlling the expression of plant

resistance to pathogenic microorganisms (Malik et al., 2011). It is

worth noting that potato challenge with the potato virus Y at

elevated temperatures also resulted in cultivar-dependent changes

in the Hcy level (Fesenko et al., 2021; Spechenkova et al., 2021).

However, upregulation of CBL correlated with an increased Hcy

content was detected in the potato genotype displaying resistance

to virus infection (Spechenkova et al., 2021). Moreover, in

hypocotyls of yellow lupine seedlings growing under normal

conditions Hcy-thiolactone accompanied the presence of Hcy at

a concentration of < 0.6 mM and Hcy-N-protein <0.06 mM
(Jakubowski and Guranowski, 2003). When the accumulation of

Hcy was enhanced (to 245 mM) in response to aminopterin

application, the formation of Hcy-thiolactone and Hcy-N-protein

significantly increased in lupine hypocotyls, reaching 49.5 mM and

0.47 mM, respectively.

The AdoMet/AdoHcy ratio may also precisely reflect the

plant’s physiological state and alterations in this proportion

modify developmental and stress responses (Watanabe et al.,

2021). Significantly, this quantitative relation may differ

depending on external conditions. Experimentally established

levels for AdoMet and AdoHcy in Arabidopsis were ∼15 and

∼0.5 pmol/mg fresh weight, respectively (Groth et al., 2016).

Deprivation of mineral nutrients such as sulfur resulted in a

significant drop in AdoMet in Arabidopsis seedlings, whereas

AdoHcy remained unchanged and led to the diminished AdoMet/

AdoHcy ratio (Nikiforova et al., 2005). Sulfur and iron deficiency

also provoked perturbation of the AdoMet/AdoHcy ratio in

Arabidopsis roots. Thus, stress conditions decreased the level of

AdoHcy more than AdoMet, whereas the AdoMet/AdoHcy ratio

increased (Forieri et al., 2017). The research has proven that the

AdoMet amount is also crucial for the cell methylation status. In

this regard, alterations in AdoMet-related metabolism affect the

transcriptional status through epigenetic changes in histone
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modifications. Moreover, excessive Hcy is associated with the

risk of downregulation of SAHH activity, including over-

accumulation of AdoHcy, which suppresses AdoMet-dependent

transmethylation, including DNA and histone methylation

(Forieri et al., 2017). The potential toxicity of Hcy toward plant

cells is summarized in Figure 2. Notably, plant-derived

compounds such as resveratrol and curcumin have shown

beneficial effects in reducing Hcy levels in clinical trials

(Atazadegan et al., 2021). This seems to suggest that Hcy could

be less destructive for plant cells, as they might be adapted to

detoxify its excess by a broad range of mechanisms engaging

various secondary metabolites. As reviewed by Atazadegan et al.

(2021), the potential to diminish the Hcy level in animal cells has

also been documented for black and green tea, cinnamon, garlic,

and ginger extracts, as well as soybean.
Conclusions

Our understanding of the Hcy metabolism and Hcy impact on

animal and human pathophysiology has significantly advanced

during the last decades. The current state of knowledge lets us see

that Hcy is not only the immediate precursor of methionine, but

can also provide an informative role on the plant physiological

state. Recognizing Hcy as a standard marker of plant metabolic

disorders caused by various stresses still seems rather far-fetched,

so intensive research on the overall identification of Hcy derivatives

and their potential biotoxic features should be a priority in

future studies.
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