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Rhizosphere microorganisms
of Crocus sativus as antagonists
against pathogenic
Fusarium oxysporum

Jiahao Zhang, Jiemiao Lu, Yichun Zhu, Qinger Huang,
Luping Qin* and Bo Zhu*

School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
Introduction: Several microorganisms in the plant root system, especially in

the rhizosphere, have their own compositions and functions. Corm rot is the

most severe disease of Crocus sativus, leading to more than 50% mortality in

field production.

Methods: In this study, metagenomic sequencing was used to analyze

microbial composition and function in the rhizosphere of C. sativus for

possible microbial antagonists against pathogenic Fusarium oxysporum.

Results: Themicrobial diversity and composition were different in theC. sativus

rhizosphere from different habitats. The diversity index (Simpson index) was

significantly lower in the C. sativus rhizospheric soil from Chongming (Rs_CM)

and degenerative C. sativus rhizospheric soil from Chongming (RsD_CM) than

in others. Linear discriminant analysis effect size results showed that differences

among habitats were mainly at the order (Burkholderiales, Micrococcales, and

Hypocreales) and genus (Oidiodendron and Marssonina) levels. Correlation

analysis of the relative lesion area of corm rot showed that Asanoa was the

most negatively correlated bacterial genus (r = −0.7934, p < 0.001), whereas

Moniliophthora was the most negatively correlated fungal genus (r = −0.7047,

p < 0.001). The relative lesion area result showed that C. sativus from

Qiaocheng had the highest resistance, followed by Xiuzhou and Jiande. C.

sativus groups with high disease resistance had abundant pathogen resistance

genes, such as chitinase and b-1,3-glucanase genes, from rhizosphere

microorganisms. Further, 13 bacteria and 19 fungi were isolated from C.

sativus rhizosphere soils, and antagonistic activity against pathogenic F.

oxysporum was observed on potato dextrose agar medium. In vivo corm

experiments confirmed that Trichoderma yunnanense SR38, Talaromyces sp.

SR55, Burkholderia gladioli SR379, and Enterobacter sp. SR343 displayed

biocontrol activity against corm rot disease, with biocontrol efficiency of

20.26%, 31.37%, 39.22%, and 14.38%, respectively.
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Discussion: This study uncovers the differences in the microbial community of

rhizosphere soil of C. sativus with different corm rot disease resistance and

reveals the role of four rhizospheric microorganisms in providing the host C.

sativus with resistance against corm rot. The obtained biocontrol

microorganisms can also be used for application research and field

management.
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1 Introduction

The rhizosphere is a narrow soil zone affected by root

secretions (Zhalnina et al., 2018). The soil microbial

community is the largest biological resource pool known thus

far (Torsvik et al., 2002), with its microbial species adding up to

tens of thousands (Mahoney et al., 2017). Plants are closely

related to microorganisms in rhizosphere soil. Rhizosphere

microorganisms are essential in determining plant health,

which may be related to microbial community structure and

core microbial composition (Hou et al., 2021). Host plants may

induce health beneficial microbes by the regulation of plant and

microbiome signaling pathways (Gao et al., 2021), and this result

is caused by their coevolution (Li et al., 2021b). Plant disease

development may be affected by environmental factors,

including commensal microbes, which either inhabit plant

niches or live in soil (Kwak et al., 2018). Many beneficial

microorganisms possess plant disease control activity in the

rhizosphere; thus, revealing the secrets of microbial structure

of the rhizosphere can help control plant diseases. For example,

Hawaii 7996, a tomato variety resistant to the soil-borne

pathogen Ralstonia solanacearum, possessed more abundant

Flavobacteriia, Flavobacteriaceae, Sphingomonadaceae, and

Pseudomonadaceae bacteria in the rhizosphere than the

susceptible variety Moneymaker. Further, transplantation of

rhizosphere microbiota from the resistant variety Hawaii 7996

could help the susceptible variety Moneymaker resist wilt, and

the key strains may be the cause of the change and play an

important role in disease resistance (Kwak et al., 2018). These

results suggested that a good microbial composition can prevent

pathogens from showing pathogenicity (Gordon, 2017; Zhou

et al., 2019; Hu et al., 2020).

Crocus sativus L. (saffron) is a medicinal plant, whose stigma

is used as valuable traditional Chinese medicine. The three main

active components of C. sativus are crocin, picrocrocin, and

safranal (Khorasanchi et al., 2018), which have an antidepressant

effect (Dai et al., 2020) and antisenile dementia effect (Wang

et al., 2019). However, C. sativus suffers from serious diseases in
02
field production. The most severe disease of C. sativus is corm

rot, leading to more than 50% mortality (Di Primo et al., 2002).

Corm rot can be caused by various pathogens, but Fusarium

oxysporum infection is the main cause (Hu et al., 2021). Various

methods to manage plant rot diseases include chemical pesticide

application, soil improvement technology, breeding of resistant

varieties, and field rotation (Eshel et al., 2000; Shang et al., 2021;

Dong et al., 2022; Wohor et al., 2022), but these methods are

cumbersome with low efficiency and may cause severe

environmental pollution. The interest in controlling plant

diseases by beneficial microbes has recently increased because

of the global need for environmentally friendly alternatives to

chemical pesticides and fertilizers (Niu et al., 2020). Various

microorganisms, such as phyllosphere microorganisms,

endophytes, and rhizosphere microorganisms, can be used as

biocontrol agents to prevent plant diseases (Vurukonda et al.,

2018; Legein et al., 2020; Wang et al., 2021). Among these,

biocontrol agents from rhizosphere microorganisms are the

most common (Gu et al., 2020; Jiao et al., 2021). For example,

rhizosphere bacteria Pseudomonas chlororaphis , P.

extremaustralis, and Acinetobacter lwoffii A07 could alleviate

damping-off disease caused by Rhizoctonia solani on Pinus

sylvestris var. mongolica (Song et al., 2022).

Metagenomics is effective in revealing the microbiota related

to pathogen infection and offers clues for the source of resistance

against pathogens in plants (Mendes et al., 2011). Using

metagenomic analysis, a previous study determined the

diversity and abundance of bacteria and fungi in sour rot-

affected table grapes, and confirmed that four of the isolated

bacterial strains (two Cronobacter species, Serratia marcescens,

and Lysinibacillus fusiformis) and five of the isolated fungal

strains (three Aspergillus species, Alternaria tenuissima, and F.

proliferatum) spoiled grapes (Gao et al., 2020). Many reports

have analyzed the disease resistance of rhizosphere

microorganisms to pathogens by co-culturing them with host

plants. In a field experiment, inoculation with two antagonistic

bacteria (Pseudomonas and Bacillus) in rhizospheric soil of

tomato could stimulate its defense against R. solani (Kwak
frontiersin.org
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et al., 2018). Two rhizobacterial isolates Bacillus subtilis K4-4

and GH3-8 could completely suppress citrus dry root rot disease

caused by Neocosmospora solani in greenhouse trials (Ezrari

et al., 2021). The relationship between C. sativus rhizosphere

microorganisms and phenology has been revealed by high-

throughput sequencing (Ambardar et al., 2016); however, the

relationship between the rhizosphere microbiome and disease

resistance is unclear.

In this study, metagenomic tools were used to analyze the

microbial composition in rhizosphere soil of C. sativus and

predict gene function. Microorganisms related to the rot

disease resistance of C. sativus were evaluated. We aimed to

explore the relationship between the rhizosphere microbiome

and host plant C. sativus, as well as the potential biocontrol

fungal and bacterial strains against pathogenic F. oxysporum.

These antagonistic microbes can be candidates for developing a

microbial formulation for the biocontrol of corm rot disease of

C. sativus.
2 Materials and methods

2.1 Sample collection and processing

C. sativus corm and its rhizosphere soil were collected from

five distinct sites in China: Jiande, Zhejiang Province (29°32′34″
N, 119°36′51″E), Xiuzhou, Zhejiang Province (30°39′41″N, 120°
42′58″E), Chongming, Shanghai Municipality (31°39′59″N, 121°
28′30″E), Chengcheng, Shaanxi Province (35°13′40″N, 109°57′
5″E), and Qiaocheng, Anhui Province (33°37′33″N, 115°39′33″
E). C. sativus corm was used for the disease resistance test, and

rhizosphere soil was used for metagenomic analysis and

microorganism isolation. The names and abbreviations of the

groups are listed in Table S1. The loose soil around C. sativus

corms was shaken off, and attached soil was brushed off gently

and stored in an ice box. Plant tissue and gravel in rhizosphere

soil were removed, and only rhizosphere soil was collected

(Zhang et al., 2017).

Loose soil was air-dried, crushed, and passed through a

screen mesh to assess chemical properties. Soil pH was

determined with a digital pH meter (PHS-3E; Shanghai INESA

& Scientific Instrument Co., Ltd., China) in a suspension of 1:2.5

soil/water ratio (w/v). Available nitrogen (AN) was determined

by the alkaline hydrolysis diffusion method. Acidic available

phosphorus (AP) and non-acid AP were extracted by NH4F–

HCl solution (pH< 6.5) and NaHCO3 solution (pH ≥ 6.5),

respectively, and the extracted AP was determined by the Mo-

Sb anti-spectrophotometric method (Saudner, 1956). Available

potassium (AK) was extracted by NH4OAc solution and

determined by a flame photometer (F-500; Shanghai Metash

Instruments Co., Ltd., China) (Shu et al., 2017). Soil organic

matter (OM) was determined by the potassium dichromate

oxidation method (Walkley and Black, 1934). Chromium (Cr)
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spectrometry (X-2; Thermo Fisher Scientific, USA) after the

soil samples were digested with HF–HNO3–H2O2.
2.2 Sequencing and metagenomic
analysis

2.2.1 Metagenomic sequencing and
gene prediction

To reveal the C. sativus rhizospheric microbial structure, a

high-throughput metagenomic sequencing approach was used.

The rhizosphere soil in the previous step was used for DNA

extraction and metagenomic sequencing. Metagenomic shotgun

sequencing libraries were prepared and sequenced by Majorbio

(Shanghai Majorbio Bio-pharm Technology Co., Ltd.) using the

HiSeq 2000 platform. After quality control, the low-quality (<20

average quality) and N-containing reads were removed from the

initial sequence data obtained from the metagenomic

sequencing of C. sativus rhizosphere soil, and the high-quality

sequences required for subsequent analysis were obtained.

MEGAHIT was used for splicing, and the obtained contigs

were predicted by open reading frame (ORF). MetaGene

(http://metagene.cb.k.u-tokyo.ac.jp/) was used for ORF

prediction (Hideki et al., 2006). Genes with nucleic acid

lengths ≥100 bp were selected and translated into amino acid

sequences. Redundancy was removed with CD-HIT (http://

www.bioinformatics.org/cd-hit/) using bacterial and fungal

redundant coding sequence catalogs. Sequences with ≥95%

identity and 90% coverage were considered redundant (Fu

et al., 2012).

2.2.2 Species and functional analyses
Taxonomy information was matched against non-

redundant (NR) protein databases (including Swiss-Prot,

Protein Information Resource, Protein Research Foundation,

Protein Data Bank, and the protein data translated from CDS

data of GenBank and RefSeq) by DIAMOND (https://github.

com/bbuchfink/diamond) (Buchfink et al., 2015; Buchfink et al.,

2021) with E-value<1 × 10−5. Carbohydrate-active enzyme

information was matched against the Carbohydrate-Active

enZYme (CAZy) database (http://www.cazy.org/) by hmmscan

(HMMER 3.0) with E-value<1 × 10−5 (Lombard et al., 2014).

Gene function information was matched against the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (http://

www.genome.jp/kegg/) by DIAMOND with E-value<1 × 10−5

(Ogata et al., 1999).

2.2.3 Statistical analysis
Alpha diversity, such as Simpson and Chao1 indices, was

calculated by the number of reads of species using Quantitative

Insights into Microbial Ecology 2 (QIIME2). The number of

reads of species was also used for principal component analysis
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(PCA) based on the Euclidean distance by QIIME2. Adonis

analysis was performed based on the Bray–Curtis distance and a

significance test with 999 Monte Carlo test permutations in

QIIME2 (Anderson, 2001). Also, linear discriminant analysis

(LDA) effect size (LEfSe) was calculated by Kruskal–Wallis sum-

rank test and LDA using LEfSe (http://huttenhower.sph.harvard.

edu/galaxy/root?tool_id=lefse_upload) (Segata et al., 2011).

Redundancy analysis (RDA) was performed by vegan in R

(programming language), and the significance of RDA was

judged by permutest analysis.
2.3 Isolation and identification of
rhizosphere microorganisms

The pure-cu l ture method was used to i so la te

microorganisms from rhizosphere soil (Jogaiah et al., 2013;

Ezrari et al., 2021). The rhizosphere soil collected in Section

2.1 was used to isolate rhizosphere microorganisms. Serial

dilutions were prepared up to 10−5 mg/mL using sterile water.

Exactly 100 mL of each diluted sample was spread onto plates

with nutrient agar (NA) medium (15 g peptone, 5 g NaCl, 3 g

beef extract, 15 g agar, 1 L distilled water, and pH 7.2 ± 0.2) and

potato dextrose agar (PDA) medium (200 g potato, 20 g glucose,

15 g agar, and 1 L distilled water). Plates with NA were incubated

in the incubator (LMI-100; Shanghai Longyue Instrument

Equipment Co., Ltd., China) at 28°C in the dark for 2 days,

whereas plates with PDA were cultured at 26°C in the dark for 7

days. Bacterial colonies were transferred to fresh NA plates and

purified by the streak plate method, whereas fungi were purified

by constantly choosing hyphae and placing them on fresh PDA

plates with an inoculating needle.

Identification of the purified isolates was achieved using 16S

rRNA or ITS gene sequence analysis. First, total genomic DNA

was extracted from bacteria or fungi using the TIANamp

Bacteria DNA Kit (Tiangen, China) and DNAiso Reagent

(TaKaRa Bio, China), respectively. Fungal ITS genes were

amplified by polymerase chain reaction (PCR) with the primer

pair ITS5 and ITS4, whereas bacterial 16S rRNA genes were

amplified by PCR with the primer pair 27F and 1492R (Liu et al.,

2019). PCR was performed in a 50 mL reaction mixture

containing 2 mL of DNA, 1 mL forward primer (10 mM), 1 mL
reverse primer (10 mM), 25 μL 2×Taq Mix (+Dye) (Monad

Biotech, China), and 21 mL sterile PCR-grade water. The

amplification procedure included an initial denaturation at 95°

C for 5 min, followed by 30 cycles of 95°C for 30 s, 55°C for 30 s,

72°C for 1 min, and a final elongation step of 72°C for 10 min

(Yang et al., 2020). The PCR amplified products were analyzed

by agarose gel electrophoresis and sequenced at Sangon Biotech

(Shanghai) Co., Ltd. (Shanghai, China). Bacteria and fungi were

identified based on similarities to 16S rRNA and ITS sequences,

respectively. The sequences of the isolates were searched against

the NCBI database (https://www.ncbi.nlm.nih.gov/nuccore) and
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listed in Table S2.
2.4 Disease resistance test of
C. sativus corm

Disease resistance was evaluated by a C. sativus corm rot

model. The corm rot disease model was constructed by injecting

C. sativus with the corm rot pathogen (F. oxysporum CS60)

spore solution. F. oxysporum CS60 was isolated from a typical

rot C. sativus corm and identified based on the ITS rRNA gene

sequence according to the methods in Section 2.3 (Figure S1). To

satisfy Koch’s postulates, the causal fungus was reisolated from

the lesions of inoculated C. sativus corm, with morphological

and cultural characteristics, as well as ITS rRNA gene sequence

identical to the original isolate (Ben et al., 2021). The spore

solution was prepared as follows: three PDA disks containing 7-

day-old F. oxysporum were inoculated into 30 mL sterilized

potato dextrose broth (PDB), and the PDA disks were obtained

by beating the edge of the colony with a cork borer (sterilized,

6 mm diameter). After culture in the shaker (MC-100B;

Shanghai Muce Instrument Technology Co., Ltd., China) at

28°C and 180 rpm in the dark for 7 days, the spore suspension

was obtained by filtering, and the spore concentration was

adjusted to 106/mL. C. sativus corms were injected with spore

solution by a micro syringe, 30 mL each time, three injections

with an interval of three days, and cultured in a greenhouse at 28

± 2°C. C. sativus corm samples were tested for rot disease

resistance by the relative lesion area (RLA) in the corm rot

model. The corm area and lesion area were measured using

AutoCAD 2019 software.

RLA  %ð Þ = lesion area
corm area

x 100%
2.5 In vitro inhibition of F. oxysporum

Strains that could improve the corm rot resistance of C.

sativus were screened. Based on microorganisms isolated from

Section 2.3, the predicted active bacteria and fungi were

evaluated for their antagonistic activity against F. oxysporum.

The antagonism experiment was performed with PDA disks and

filter paper (circle, 6 mm diameter). PDA disks containing 7-

day-old F. oxysporum were placed at the center of PDA plates.

Isolates with possible antagonism were placed 2.5 cm away from

the center (three replicates per isolate). Specifically, 6 mm

diameter PDA disks containing fungal threads were used in

fungal antagonism, and filter papers containing 5 mL bacterial

culture solution were used in bacterial antagonism. A week later,

the diameter of the inhibition zone or inhibition rate was

assessed (Liu et al., 2012).
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2.6 In vivo evaluation of antagonistic
microbes

For in vivo biocontrol evaluation of antagonistic microbes

(Trichoderma yunnanense SR38, Talaromyces sp. SR55,

Burkholderia gladioli SR379, and Enterobacter sp. SR343),

antagonistic solutions were used. The antagonistic fungal

solution was prepared as described in Section 2.4, whereas the

antagonistic bacterial solution was prepared as follows. The

bacterial colonies were scraped and placed in a flask

containing 30 mL nutrient broth (NB). After culturing in the

shaker at 28°C and 180 rpm in the dark for 2 days, the culture

solution was filtered using a gauze and diluted to OD600 = 0.8 to

obtain the antagonistic bacterial solution (Zu et al., 2022).

About 20 g healthy corms were selected for the experiment,

and the antagonistic solutions were injected three times, 30 mL
each time, with an interval of three days (day 0, 3, and 6).

Pathogen spore solution was then injected three times, 30 mL
each time, with an interval of three days (day 3, 6, and 9), and

cultured in a greenhouse at 28 ± 2°C to investigate the incidence

rate of corm rot. The blank group was injected with PDB or NB,

and the positive control group was injected with carbendazim,

12 corms per group, repeated three times (Li et al., 2019).

Disease resistance was evaluated by the disease index, which

was calculated as follows (Tian et al., 2021a):

Disease index ¼o
​ Number of each level disease cormñValues of each levelð Þ

Total number of cormsñTop level value
ñ100%

Level 0: no disease, Level 1: RLA ≤ 20%, Level 2: 20%< RLA ≤

40%, Level 3: 40%< RLA ≤ 60%, Level 4: 60%< RLA ≤ 80%, Level

5: 80%< RLA ≤ 100%.
3 Results

3.1 Microbial species composition and
differential analysis

Soil DNA was sheared into 500 bp fragments, amplified, and

sequenced to obtain an average of 93 729 748 raw reads. To build

a high-quality sequencing library, an average of 91 247 300 clean

reads were obtained from raw reads by quality control, and the

percentage in raw reads (%) was 97.35%. The high-quality

sequences were then assembled into contigs (average 890 335).

Finally, ORFs were taken for analysis after ORF prediction

(Table S1).

Among these, the analyzed NR gene set was constructed by

the sequences related to bacteria and fungi, and the gene

sequence numbers were 9 033 718 and 128 495, respectively.

The annotation results with the NR database showed that the

genes in the gene set belonged to 91 phyla, 170 classes, 335

orders, 658 families, 2 268 genera, and 13 789 species. To

evaluate the abundance and diversity of microbial
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index (Chao1 index) were calculated based on species

(Figures 1A, B). The Simpson index was significantly lower in

Rs_CM and RsD_CM than in others. Rs_XZ had a significantly

lower Chao1 index among all the groups. Although rhizosphere

microbial diversity was often related to host conditions, specific

microbes in the microbiome could play key roles.

The microbial species composition was also analyzed.

Bacterial composition could be divided into two categories,

with either (Microbacterium + Nocardioides) or (Burkholderia +

Sphingomonas) as the most dominant genus. Rs_JD had the

highest abundance of Sphingomonas (5.83%), and Rs_CC had

the highest abundance ofMicrobacterium (11.14%). In addition, a

higher abundance of Mycobacterium was found in Rs_XZ,

reaching 8.11%, which was 2.06 times that of RsD_CC

(Figure 1C). Fungal samples could be divided into two

categories, with the most dominant genus as either

Oidiodendron or Marssonina. The abundance of Oidiodendron

in Rs_JD was the highest and even up to 55.35%, which was 13.98

times higher than RsD_CC. The abundance of Talaromyces and

Pseudogymnoascus in Rs_QC was unusual and up to 3.52% and

7.76%, which were 2.83 and 1.30 times as large as in RsD_CC,

respectively (Figure 1D).

Dissimilarity among samples was explored using PCA, and

the compositions of the groups were distinct from each other

(Figure S2, PC1 = 59.23%, PC2 = 19.11%), which was similar to

the Adonis analysis (sample variation 0.9785, p = 0.001). The

different taxon units were confirmed by LEfSe analysis, and

Burkholderiales was enriched in RsD_JD, whereas

Micrococcales was enriched in Rs_CC at the order level, and

Proteobacteria with the highest LDA (5.17) was enriched in

Rs_JD at the phylum level (LDA > 4, Figure 1E). For fungi, LefSe

results revealed that Marssonina was enriched in Rs_QC,

whereas Ascomycota was enriched in Rs_CC. Moreover,

Helotiales, Oidiodendron, and Myxotrichaceae were the groups

with top three LDA. Oidiodendron and Myxotrichaceae were

enriched in Rs_JD, whereas Helotiales was enriched in Rs_QC

(LDA > 4, Figure 1F).
3.2 Correlations among taxonomic
levels, soil physicochemical properties,
and disease resistance

To evaluate the resistance of different C. sativus corms to F.

oxysporum, samples of eight groups from five regions were

tested. RLA denoted the incidence rate of corm rot in C.

sativus. The RLA result showed that RsD_CC had the highest

incidence rate (RLA = 67.17 ± 5.02%), followed by RsD_CM

(48.17 ± 2.06%), Rs_CC (40.20 ± 3.37%), RsD_JD (35.66 ±

3.12%), Rs_CM (34.32 ± 3.84%), Rs_JD (25.50 ± 0.66%), Rs_XZ

(25.35 ± 6.12%), and Rs_QC (22.29 ± 3.87%), indicating that

Rs_QC had the highest resistance (Table S3, Figure S3). There
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was a close relationship between taxonomic levels and disease

resistance. Specifically, the top 10 genera in abundance were

revealed by RDA (Figure 2). RLA significantly affected the

bacterial community (r2 = 0.32, permutest p< 0.05), which was

negatively correlated with the abundance of Burkholderia and

positively correlated with the abundance of Agromyces.

The determined soil chemical properties (Table S4) were

used for RDA, and a significant correlation was found between

soil chemical properties (pH, AN, AP, AK, OM, and Cr) and

taxonomic levels (Figure 2). pH was the closest environmental

factor related to microbial communities (r2 = 0.94, permutest p<

0.001), followed by Cr (r2 = 0.67, permutest p< 0.001) and AN

(r2 = 0.62, permutest p< 0.001) (Table S5), and it was most

positively correlated with the abundance of Microbacterium

(Figure 2). The abundance of Burkholderia, Caballeronia,
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Mycobacterium, Sphingomonas, and Rhizobium was positively

correlated with Cr and AN. In addition, pH had the closest

correlation with RLA, showing a positive correlation, whereas

the strongest negative correlation was with AK, according to the

angle between the vectors of representative factors.

To clarify a deeper relationship between RLA and taxa,

Spearman’s correlation analysis was performed. A total of

2 269 genera were used in the analysis, including 586 genera

with significant correlation in which 384 genera were positively

correlated and 202 genera were negatively correlated (Table S6).

Moreover, the top 50 close genera with both positive and

negative correlations are shown in Figure 3. Among the genera

with positive correlation, Bacteriovorax had the greatest

correlation (r = 0.8906, p< 0.001), followed by Lewinella (r =

0.8881, p< 0.001), Mariniradius (r = 0.8872, p< 0.001), and
B

C

D

E F

A

FIGURE 1

Rhizosphere microorganism composition of Crocus sativus from different origins. Boxplot of alpha-diversity indices: (A) Shannon index;
(B) Chao1 index (group significance is indicated by letters; non-identical letters indicate p< 0.05). (C) Relative abundances of bacterial genera in
samples. (D) Relative abundances of fungal genera in samples. (E) Cladogram generated from LEfSe analysis showing the most differentially
abundant bacterial taxa enriched in rhizosphere with LDA scores (LDA score > 4 are shown). (F) Cladogram generated from LEfSe analysis
showing the most differentially abundant fungal taxa enriched in rhizosphere with LDA scores (LDA score > 4 are shown).
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Terrimonas (r = 0.8669, p< 0.001). Among the genera with

negative correlation, the bacterial genus Asanoa had the closest

correlation (r = −0.7934, p< 0.001), whereas the closest fungal

genus was Moniliophthora (r = −0.7047, p< 0.001). In addition,

genera negatively correlated with RLA included many microbes

of disease resistance, such asMassilia (r = −0.7277, p< 0.001) (Li

et al., 2021a), Talaromyces (r = −0.6398, p< 0.001) (Tian et al.,

2021c), Burkholderia (r = −0.5569, p< 0.01) (Ahmad et al.,

2022), etc.
3.3 Metagenomic analysis of rhizosphere
microorganism functions

To understand the gene functions of rhizosphere

microorganisms in resistance to different diseases, the CAZy and

KEGG databases were used for annotation. Further exploration of

the metagenomic data revealed a higher abundance of sequences

associated with chitinase (GH19, EC 3.2.1.14) and b-1,3-glucanase
(GH128, EC 3.2.1.39). These were usually considered defense

enzymes against pathogens in Rs_QC or Rs_JD. In particular,

chitinase was significantly higher in Rs_QC than in other groups

(p< 0.05), even 2.43 times as high as in RsD_CC (Figure 4A).

Although the levels of b-1,3-glucanase in Rs_QC and Rs_JD were

excellent, they were lower in Rs_XZ with good disease resistance

(Figure 4B). Moreover, a higher abundance of sequences was

associated with the spermidine/putrescine transport system

substrate-binding protein (K02055) in Rs_QC, Rs_JD, and

Rs_XZ, which were significantly higher than RsD_CC and
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RsD_CM (Figure 4C). Meanwhile, a higher abundance of

sequences focused on aldehyde dehydrogenase (K00128, EC

1.2.1.3) in Rs_JD (Figure 4D), which was significantly higher than

in RsD_CM and RsD_CC (p< 0.05). These functions were related to

quorum sensing and biosynthesis of polyketides, which might

increase competition to hinder pathogen invasion (Table S7, S8).
3.4 Biocontrol activity evaluation of
microbial antagonists

A total of 65 bacteria and 41 fungi were isolated from C.

sativus rhizosphere soils. By the functional prediction of

microorganisms (Table S6), 13 bacteria and 19 fungi were

selected as potential microbial antagonists for biocontrol

activity experiments. Of these, 26 (81.25%) showed inhibitory

effects on F. oxysporum on PDA plates (Table S2; Figure 5). The

top two fungi and bacteria, T. yunnanense SR38, Talaromyces sp.

SR55, B. gladioli SR379, and Enterobacter sp. SR343, were chosen

to test in vivo C. sativus corm (Figure 6A). SR379 had the best

defense effect against pathogenic F. oxysporum, and its RLA was

30.10%. The group with only F. oxysporum was seriously

diseased, and RLA was 1.77 times higher than SR379, even

reaching 53.41% (Table S9). The disease index was evaluated

after inoculating microbial antagonists, which showed that

treating SR38, SR55, SR343, and SR379 had good biocontrol

effect, with biocontrol efficiency of 20.26%, 31.37%, 14.38%, and

39.22%, respectively. Biocontrol activities of all antagonistic

groups were higher than those of the pesticide group (Figure 6B).
FIGURE 2

Redundancy analysis of rhizospheric genera corresponding to soil and corm properties. The 10 best-fitting genera are shown.
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FIGURE 4

Boxplot of functional gene sequences proportion. (A) chitinase; (B) b-1,3-glucanase; (C) spermidine/putrescine transport system substrate-
binding protein; and (D) aldehyde dehydrogenase (group significance is indicated by letters; non-identical letters indicate p< 0.05).
BA

FIGURE 3

Top 50 rhizospheric genera correlations with relative lesion area. (A) Positive correlation and (B) negative correlation.
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4 Discussion

The plant rhizosphere is an essential environment, which is

affected by root exudates (Sasse et al., 2018); therefore,

microorganisms in the rhizosphere, including bacteria and

fungi, are more closely related to plant life activities compared
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with field soil. In particular, the relationship between

rhizosphere microorganisms and plant health has been a

research hotspot. A previous study investigated the

relationship between key rhizosphere microorganisms and

traits of Arabidopsis, and found that plants could regulate the

rhizosphere microbiome composition and that different
FIGURE 6

Evaluation of corm rot disease resistance of rhizosphere microorganisms in vivo. (A) Photographs of lesions on corm. (B) Histogram of disease
index (SR38: Trichoderma yunnanense SR38 + Fusarium oxysporum; SR55: Talaromyces sp. SR55 + F. oxysporum; SR343: Enterobacter sp.
SR343 + F. oxysporum; SR379: Burkholderia gladioli SR379 + F. oxysporum; F. ox: Sterile medium + F. oxysporum; and Carbendazim: 0.125%
carbendazim solution + F. oxysporum) (group significance is indicated by * or #: ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, ##p< 0.01).
FIGURE 5

Antagonistic activity against F. oxysporum. (A) control F. oxysporum; (B) SR379 vs. F. oxysporum; (C) SR38 vs. F. oxysporum; (D) SR343 vs. F.
oxysporum; (E) SR55 vs. F. oxysporum.
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rhizosphere microbial composition has different effects on plant

traits, such as growth and disease resistance (Hou et al., 2021).

Few studies have also investigated the relationship between

rhizosphere microbes and C. sativus or other medicinal plants.

Some rhizosphere microbes, including Pseudomonas aeruginosa,

Brevibacterium frigoritolerans, Alcaligenes faecalis subsp.

phenolicus, and Bacillus aryabhattai, were found to have plant

growth properties and effectively control the growth of

pathogenic fungi of C. sativus (Hu et al., 2021; Rasool et al.,

2021). In this study, the microbial structure related to rot disease

resistance in the rhizosphere of C. sativus was preliminarily

revealed by metagenomic sequencing.

Microbial diversity and composition were different in C.

sativus from different habitats, but those in the same habitat

tended to be the same. Rhizosphere microorganisms of

Pseudostellaria heterophylla were analyzed using phospholipid

fatty acid analysis, and great differences were found in the

microbial composition and structure of P. heterophylla from

different habitats (Zou et al., 2018). This is related to the

weather and planting methods in different places, and it is also

regulated by the host (Gu et al., 2022; Silva et al., 2022; Zhong

et al., 2022). In this study, Hypocreales and Burkholderiales were

enriched in the microbial communities in the groups with high

disease resistance. Among these, the common biocontrol fungi

Talaromyces and Trichoderma belong to Hypocreales (Sood et al.,

2020; Thambugala et al., 2020). Also, Proteobacteria was enriched

in the high resistance groups, which was similar to the findings of

Trivedi et al. (2012), who analyzed the citrus rhizosphere and

found that it was enriched in Proteobacteria when plants were

healthy. In addition, the abundance of F. oxysporum in different

samples was compared, and the groups with high disease

resistance had higher F. oxysporum abundance, which might be

because of the higher tolerance of the microbial communities in

these groups to F. oxysporum. This is similar to an analysis of

ginseng in which the abundance of Fusarium in healthy ginseng

was higher, suggesting nutritional competition between Fusarium

and another pathogen Ilyonectria (Liu et al., 2019).

Pseudomonadales, Corynebacteriales, and Propionibacteriales

had higher abundance in the group with high disease resistance.

A previous study analyzed the rhizosphere soil of common bean

with F. oxysporum-resistant microorganisms and found that it had

a higher abundance of Pseudomonadaceae than the rhizosphere

soil of susceptible varieties (Mendes et al . , 2018).

Corynebacteriales and Propionibacteriales, belonging to

Actinobacteria, are common groups that produce antibiotics,

cellulase, and other antibacterial substances (Palaniyandi et al.,

2013). In addition, there was a high abundance ofOidiodendron in

Rs_JD, suggesting that Rs_JD has high disease resistance because

Oidiodendron was found to produce biocontrol substances

including polyketides and antibiotics (Andersen et al., 1983;

Navarri et al., 2017). However, studies of Oidiodendron and its

biocontrol activity in plant disease are few, and it may be a highly

underestimated biocontrol strain.
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Correlation analysis between rhizosphere microbes and rot

disease resistance revealed that Asanoa andMoniliophthora were

the most likely genera to enhance host rot resistance. Asanoa is a

rare bacterial genus within Micromonosporaceae. Asanoa was

previously isolated as a rhizosphere microbe of the alpine

medicinal plant Leontopodium nivale subsp. alpinum, but its

activity was not investigated (Oberhofer et al., 2019). Using 16s

rDNA sequencing technology, Asanoa was found as an

endophyte of L. nivale subsp. alpinum, suggesting that it plays

a role in resisting rot disease as a colonizing endophyte.

However, this bacterial species was not isolated from C.

sativus, and its biocontrol activity against corm rot disease of

C. sativus needs to be further studied. In addition, no studies

discuss the relationship between Moniliophthora and C. sativus,

but because Moniliophthora is a pathogen of Theobroma cacao

(Ali et al., 2021), its specific activity in C. sativus requires further

experimental investigation. In the range of isolated microbes, the

genera most closely related to disease resistance were

Enterobacter (bacteria) and Talaromyces (fungi). Enterobacter

can improve host disease resistance, promote plant growth, and

enhance abiotic stress resistance (Ajmal et al., 2022; Mukherjee

et al., 2022; Panebianco et al., 2022). Talaromyces is ubiquitously

used as biocontrol agents worldwide (Thambugala et al., 2020).

In addition, RDA showed that Burkholderia abundance had a

high positive correlation with AK and a high negative correlation

with RLA, indicating a correlation among disease resistance, soil

physicochemical properties, and microbial composition. Lower

pH and higher AK may be beneficial to the health of C. sativus.

Both environment and rhizosphere microbiome may directly

affect the health of C. sativus corms, or they may play a role by

affecting each other (Ren et al., 2020; Tian et al., 2021b).

The possible mechanism of the resistance of rhizosphere

microorganisms to plant disease is synthesizing pathogen-

antagonizing compounds (Jiao et al., 2021). The production of

antibiotics, polyketides, chitinases, etc. is a sign that

microorganisms can help host disease resistance. Bacillus

thuringiensis has become the main microorganism used in

biological control because it produces chitinases (Melo et al.,

2016). Rs_QC, a group with high disease resistance, had a higher

abundance of chitinase-related genes, whereas the other high

disease resistance groups Rs_QC and Rs_JD had a high

abundance of b-1,3-glucanase-related genes, which might be

the reason for their high disease resistance. In addition, Rs_XZ

with high disease resistance had a high abundance of polyketide

synthesis genes (Figure S4). k00128 and k00626 (acetyl CoA C-

acetyltransferase, EC: 2.3.1.9) are pathways related to polyketide

synthesis. There was a high abundance of k00128 in all high

resistance groups, whereas Rs_XZ had a high k00626 pathway

abundance, which was significantly higher than that in the other

groups (Figure S5). In addition, several groups were compared in

the KEGG pathways (level 2), and the gene abundance of cell

motility was higher in the high resistance groups (Figure S6). B.

seminalis in which the antagonistic effect against pathogens was
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reduced by mutation had low cell motility, indicating that cell

motility plays an important role in microbial antagonism (Zhang

et al., 2020).

Fungicides and host resistance cannot often offer adequate

and sustainable control of soil-borne diseases (Weller et al.,

2002). Therefore, four antagonists with antifungal activity

against pathogenic F. oxysporum were isolated and screened.

T. yunnanense SR38 and Talaromyces sp. SR55 belonging to

Hypocreales, B. gladioli SR379 from Burkholderiales, and

Enterobacter sp. SR343 belonging to Proteobacteria were

microbial taxa enriched in all high resistance groups, and their

related disease resistance activities have already been reported in

other studies (Sharma et al., 2015; Luo et al., 2021; Ahmad et al.,

2022; Zhao et al., 2022). A new Talaromyces strain DYM25 was

isolated from the Yap Trench and identified as a biocontrol

agent against Fusarium wilt of cucumber (Luo et al., 2021).

However, Enterobacter, an occasional pathogen, has not been

reported in C. sativus (Zhang et al., 2022). Enterobacter cloacae

isolated from C. sativus could produce cellulase and indole acetic

acid, which usually have the potential for disease resistance and

growth promotion (Sharma et al., 2015). In addition, it has been

found that B. gladioli E39CS3 isolated from C. sativus corms can

significantly improve the disease resistance of C. sativus, and

verified that B. gladioli can produce chitinase and b-1,3-
glucanase (Ahmad et al., 2022). In addition, because of the

complexity of practical application, single biocontrol antagonists

are usually considered to have the disadvantages of inadequate

colonization and inefficient inhibition (Niu et al., 2020). They

may have the problems of poor colonization rate and stability,

including poor survival rate in soil, poor compatibility with host,

and influence of original host microorganisms (Martıńez-

Viveros et al., 2010; Sarma et al., 2015; Vejan et al., 2016).

Multi-strain biological control agents may have unique

advantages in dealing with these problems (Niu et al., 2020).

Therefore, correlation network analysis was used to analyze the

relationships among genera based on metagenomic data, and

Trichoderma (at the center of the network) and Paenibacillus (at

the edge of the network) were combined (T. yunnanense SR38 +

Paenibacillus peoriae SR235), which showed a 1.5-fold

biocontrol effect compared with SR379 (unpublished data).

Similarly, T. virens Gl006 and Bacillus velezensis Bs006 in

combination can control Fusarium wilt of Cape gooseberry

better (Izquierdo-Garcıá et al., 2020). Therefore, studies on

multi-strain antagonists, one of the development directions of

biocontrol, should be increased in follow-up research. More

investigation is needed to understand the interactions between

rhizosphere microorganisms and C. sativus to improve C. sativus

yields and increase its resilience to biotic and abiotic stresses. To

more comprehensively reveal the effective mechanism of

rhizosphere microorganisms, the relationship between

rhizospheric and endophytic microorganisms will be

considered in follow-up research.
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5 Conclusion

Soil chemical properties and corm susceptibility influenced

rhizosphere microbiome of C. sativus. pH was the closest

environmental factor related to microbial communities,

followed by Cr and AN. The order Burkholderiales was a vital

taxon that kept C. sativus corms healthy. Other bacterial and

fungal taxa were also differentially distributed in high and low

disease resistance groups. Such differences played an important

role in improving C. sativus corm rot disease resistance. Four

rhizosphere isolates displayed biocontrol effects against C.

sativus corm rot disease. These antagonists are promising

isolates to be developed as biological agents to control corm

rot disease of C. sativus. This study can serve as a reference for

the exploration of the relationship between rhizosphere

microorganisms and the host. However, further experiments

are required to gain insight into the molecular mechanisms of

these antagonists and explore the impact of microbial

inoculat ion on bio logica l act iv i t ies of so i l under

natural conditions.
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