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Greening or browning? The
macro variation and drivers of
different vegetation types on
the Qinghai-Tibetan Plateau
from 2000 to 2021

Huihui Wang1, Jinyan Zhan1*, Chao Wang2, Wei Liu3,
Zheng Yang1, Huizi Liu1 and Chunyue Bai1

1State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal
University, Beijing, China, 2School of Labor Economics, Capital University of Economics and
Business, Beijing, China, 3College of Geography and Environment, Shandong Normal University,
Jinan, China
Vegetation greenness is one of the main indicators to characterize changes in

terrestrial ecosystems. China has implemented a few large-scale ecological

restoration programs on the Qinghai-Tibetan Plateau (QTP) to reverse the

trend of ecosystem degradation. Although the effectiveness of these programs

is beginning to show, themechanisms of vegetation degradation under climate

change and human activities are still controversial. Existing studies have mostly

focused on changes in overall vegetation change, with less attention on the

drivers of change in different vegetation types. In this study, earth satellite

observation records were used to robustly map changes in vegetation

greenness on the QTP from 2000 to 2021. The random forest (RF) algorithm

was further used to detect the drivers of greenness browning on the QTP as a

whole and in seven different vegetation types. The results show that an overall

trend of greening in all seven vegetation types on the QTP over a 21-year

period. The area of greening was 46.54×104 km2, and browning was 5.32×104

km2, representing a quarter and 2.86% of the natural vegetation area,

respectively. The results of the browning driver analysis show that areas with

high altitude, reduced annual precipitation, high intensity of human activity,

average annual maximum and average annual minimum precipitation of

approximately 500 mm are most susceptible to browning on the QTP. For

the seven different vegetation types, their top 6 most important browning

drivers and the ranking of drivers differed. DEM and precipitation changes are

important drivers of browning for seven vegetation types. These results reflect

the latest spatial and temporal dynamics of vegetation on the QTP and highlight
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the common and characteristic browning drivers of vegetation ecosystems.

They provide support for understanding the response of different vegetation to

natural and human impacts and for further implementation of site-specific

restoration measures.
KEYWORDS

greening, browning, climate change, restoration, MODIS NDVI, Qinghai-Tibetan
Plateau (QTP)
Introduction

Terrestrial vegetation communities include forests, shrubs,

meadows and grasslands (Franklin et al., 2016). They play a key

role in global biogeochemical cycles of carbon, nitrogen, oxygen

and water while supporting economic activities, including

forestry and grazing, and providing important ecosystem

services, such as carbon sequestration, water harvesting, and

wind and sand control (Franklin et al., 2016; Deng et al., 2022).

As a fundamental component of terrestrial ecosystems, the

distribution and condition of vegetation communities often

affect the qualities of animal habitats (Stein et al., 2014;

Seibold et al., 2019). Therefore, changes in vegetation

communities may have important impacts on the response to

global climate change, the conservation of biodiversity and the

sustainable development of human society (Hansen et al., 2013;

Wang et al., 2021). At the national, regional and global levels, a

series of ambitious ecosystem restoration targets have been

proposed to address multiple major socio-environmental

challenges, such as global change and biodiversity loss, and

thus improve people’s livelihoods (Strassburg et al., 2020). The

United Nations (UN) has declared 2021-2030 the United

Nations Decade for Ecosystem Restoration (Aronson et al.,

2020). The Bonn Challenge and the New York Declaration on

Forests aim to restore 350 million hectares of land globally by

2030 (Chazdon et al., 2016; Verdone and Seidl, 2017; Keenan

and Riley, 2018). The United Nations Convention to Combat

Desertification and Sustainable Development Goal (SDG) 15

called on the international community to achieve “zero growth

in total land degradation” by 2030 (United Nations, 2015).

Monitoring and understanding the impacts of natural and

human activities on vegetation is fundamental to achieving

these goals.

In recent years, the monitoring of vegetation dynamics

changes using remote sensing images as a data source has

been rapidly developed (Fensholt and Proud, 2012; Yang et al.,

2021; Berner and Goetz, 2022). Earth observation satellites have

provided decades of image data that can establish long-term

spectral vegetation index time series to quantitatively assess

regional and even global changes in vegetation greenness (Gao
02
et al., 2020). The normalized difference vegetation index (NDVI)

is one of the most widely used spectral vegetation indices and is

often used as a measure of the greenness of aboveground

vegetation (Pettorelli et al., 2005; Pettorelli et al., 2011). For

example, in cities, NDVI was used as neighborhood greenness to

study the relationship with the mental health of residents (Liu

et al., 2019). From reginal to global scale, researchers have

chosen NDVI to indicate the greenness status of vegetation

such as forests (Hilker et al., 2014), grasslands (Miao et al., 2021)

and tundra (Myers-Smith et al., 2020), etc. An increase in NDVI

indicates a greening of the vegetation greenness and, conversely,

a decrease in NDVI indicates a browning (Myers-Smith et al.,

2020; Wang et al., 2021). Therefore, time series analysis of NDVI

can characterize the changes in vegetation over time and thus

provide a basis for further exploration of the drivers of changes

in vegetation dynamics. NDVI long time series can be

constructed from accessible remote sensing data such as

Advanced Very High-Resolution Radiometer (AVHRR),

Landsat 4/5/7/8/9, and SPOT (Gao et al., 2020). However, in

long time series data, the inconsistency of satellite sensors and

data introduces a large uncertainty (Peng et al., 2012; Pan et al.,

2017; Liu et al., 2021c). The MODIS NDVI dataset used the same

sensor data from 2000 to the present. Additionally, the

improvement of synthetic data algorithms has improved the

ability to monitor the changes in MODIS NDVI products, thus

avoiding the problems of sensor degradation and data

uncertainty to some extent (Didan et al., 2015; Chen et al.,

2020; Liu et al., 2022).

Understanding the drivers and impact thresholds of

vegetation change is a key foundation for the effective

management of ecosystems (Zhu et al., 2016; Easdale et al.,

2018). Climate (Jiang et al., 2017; Li et al., 2021b; Huang et al.,

2022), soils (Zhong et al., 2022), topography (Xu et al., 2020; Liu

et al., 2022), and human activities (Shi et al., 2021) are

considered key drivers of changes in vegetation dynamics. In

previous studies, the variability of greening and browning

processes in different types of vegetation has been widely

reported (Zhu et al., 2016; Pan et al., 2018). For instance, in a

study by Peng et al. (2012), the dynamic trends of different

vegetation types on the QTP from 1982 to 2013 were found to be
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clearly different. Research by Yan et al. (2021a), a study in

southwest China, reported that the greenness of evergreen

needle-leaved forest and grassland among ten vegetation types

was mainly controlled by climatic factors. This may result from

the inconsistent processes of different vegetation communities in

response to environmental changes (Wu et al., 2018). The spatial

heterogeneity of natural and anthropogenic drivers has also been

considered an important reason (Li et al., 2020; Yan et al.,

2021b). However, current studies have mostly focused on the

overall vegetation change and drivers in a region, and less

attention has been given to the commonality and variability of

drivers among different vegetation types. At the same time,

previous studies also assumed a linear relationship between

drivers and greenness. Linear regression, residual analysis, and

correlation analysis are the methods most commonly used for

driver exploration (Chu et al., 2019; Tran et al., 2021; Yan et al.,

2021a). However, the response of vegetation to drivers has been

proven to be complex and nonlinear (Liu et al., 2016; Myers-

Smith et al., 2020). As a classical machine learning algorithm, the

random forest (RF) algorithm has the potential to be suitable for

exploring such complex relationships (Strobl et al., 2007). It is

widely used in the research of biology (An et al., 2019), medicine

(Schoning and Hammann, 2018), economics (Barboza et al.,

2017) and other fields because it has the characteristics of fast

operation speed, it is easy to calculate the nonlinear interaction

between variables, and it can reflect the interaction between

variables (Breiman, 2001). Meanwhile, relative to general

regression analysis, RF models generally do not consider the

multivariate covariance problem of potential drivers (Breiman,

2001). Recently, the RF algorithm has been introduced into the

study of vegetation dynamics. Qiao et al. (2020) examined the

reliability of four methods, including multiple linear regression,

generalized additive models, support vector machine, and RF,

for driving vegetation change analysis using NDVI time series

data from the karst region of southwest China. The results

showed that RF had the highest accuracy. Berner and Goetz

(2022) used random forest algorithms to identify the most

important drivers of greenness change in boreal forest biomes

among climate, soil, and topography factors. In these studies, RF

algorithms as a machine learning showed high accuracy in

predicting vegetation greenness changes and identifying drivers.

The Qinghai-Tibetan Plateau (QTP) is the largest plateau in

China and the highest in the world, and is known as the third

pole of the world (Teng et al., 2021). It influences the

atmospheric circulation in Asia and globally and is the water

source for one-fifth of the world’s population, from which the

Yangtze, Yellow and Lancang rivers develop and carry more

than 150 million sheep units of livestock annually (Cao et al.,

2018). The climate and human activities on the QTP have

changed significantly over the past decades (Chen et al., 2020).

These changes may affect vegetation growth directly or indirectly

because multiple ecosystems on the QTP have high vulnerability

and are sensitive to climate change. Increased precipitation and
Frontiers in Plant Science 03
warmer temperature are key factors driving vegetation greening

(Sun and Qin, 2016; Chen et al., 2020). However, in areas with

low and decreasing precipitation, rising temperature can

exacerbate drought problems, leading to vegetation browning

(Wang et al., 2022). Meanwhile, human activities such as

overgrazing and infrastructure construction also have negative

impacts on vegetation and soils (Huang et al., 2022). Grassland

degradation occurs when the grazing quantity exceeds the

carrying capacity. In recent decades, the severe degradation of

grasslands on the QTP has created “black soil land”, which has

severely damaged ecosystem services such as water conservation

and carbon sequestration, and has affected the livelihoods of

pastoralists (Dong et al., 2020). From 2000, a series of ecological

protection projects have been implemented one after another in

areas such as Sanjiangyuan and the Qilian Mountains on the

QTP, with a cumulative investment of hundreds of billions of

RMB (Shao et al., 2016; Wang et al., 2017; Mu et al., 2022). Due

to the diversity of vegetation types on the QTP. To support the

success of these projects, it is necessary to monitor vegetation

changes and identify key degraded areas on the QTP in recent

decades. On this basis, important factors for the browning of

different types of vegetation communities need to be identified

so that ecological restoration and management measures can be

implemented according to local conditions.

In this study, we constructed a time series of vegetation

change on the QTP from 2000 to 2021 based on MODIS NDVI

data, detected changes in the greenness of the QTP as a whole

and in different vegetation communities by trend analysis

methods, and further explored the drivers of vegetation

browning. The purposes of this study are (1) to identify the

vegetation changes on the QTP as a whole and in different

vegetation communities from 2000 to 2021, (2) to analyse the

drivers of vegetation changes on the QTP as a whole, and (3) to

explore the commonalities and differences in the browning of

different vegetation types on the QTP. This study can help

people further understand the response process of different

vegetation communities to natural factors and human

activities and provide a scientific basis for the restoration and

management of different types of browning vegetation on

the QTP.
Materials and methods

Study area

The QTP (25°59′N-39°49′ N, 73°29′ E~ 104°40′ E) is in

southwestern China, covering an area of about 254.24×104 km2

(Figure 1). The average temperature decreases from southeast

to northwest. Annual precipitation also shows a gradient of

high in the southeast and low in the northwest. Over the last

few decades, the QTP has seen a marked increase in

temperature and precipitation, with most areas showing
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marked warming and humidification of the climate. As it

straddles several natural zones, the QTP is characterized by a

variety of vegetation types. On the southeastern edge of the

plateau, forest ecosystem types such as broad-leaved, needle-

leaved and mixed forests are developed. In the vast plateau

hinterland water ecosystems such as lakes and rivers are

formed. Ecosystem types such as meadows, grasslands and

deserts, which form at higher altitudes and in colder climates,

are some of the largest ecosystem types on the QTP. These

natural vegetation ecosystems are distributed in different

locations on the QTP and therefore have clear spatial

heterogeneity in topography, climate, soil and other

conditions. To detect trends of greenness in different

vegetation types in response to multiple natural and human

impacts, the 1:1 million Chinese vegetation map of the QTP
Frontiers in Plant Science 04
(available from http://westdc.westgis.ac.cn) was divided into

seven different vegetation ecosystem zones, including broad-

leaved forest (BF), needle-leaved forest (NF), scrub, meadow,

grassland, alpine vegetation and desert. Due to the small size of

the mixed broad-leaved and needle-leaved forests, they were

classified as NF for of statistics and analysis convenience.

Glaciers, snow, rocky desert, sandy desert and construction

land were combined into no vegetation type.
Dataset

In this study, NDVI time series, land use data, DEM and

environmental variable data are key data (Table 1). The NDVI

time series data were constructed on the Google Earth Engine
A B

D EC

FIGURE 1

Spatial distribution of vegetation types, topographic and climatic variables, and human activity intensity on the Qinghai-Tibetan Plateau. BF is the
broadleaf forest and NF is the needle-leaf forest in (A); in (B), the digital elevation model (DEM) shows elevation of the QTP; in (C), Mean P
means mean annual total precipitation from 2000 to 2020; in (D), Mean T represents the mean annual average temperature from 2000 to
2020; and GHM represents the Global Human Modification Index in (E), characterizing the intensity of human activities.
TABLE 1 Datasets resources in this study.

Dataset Period Resolution (m) Resource

MOD13A2 (NDVI) 2000-2021 1000 Google Earth Engine platform, https://code.earthengine.google.com

1:1 million Chinese vegetation map 2001 – Hou (2019)

Land use dataset 2020 1000 Resource and Environment Science and Data Center, http://www.resdc.cn

NASADEM dataset 2000 30 NASA JPL (2020)

1-km monthly precipitation dataset for China 2000-2020 1000 Peng (2020)

1-km monthly temperature dataset for China 2000-2020 1000 Peng (2019)

Open land map soil dataset 2017 250 Hengl (2018a); Hengl (2018b); Hengl and Wheeler (2018c); Hengl and Gupta (2019)

Global Human Modification dataset 2016 1000 Kennedy et al. (2019)
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(GEE) platform based on the MOD13A2 dataset. The MODIS

NDVI product has a resolution of 1000 m and is computed from

atmospherically corrected bidirectional surface reflectances that

have been masked to remove clouds, cloud shadows, water, and

heavy aerosols. We filtered the maximum values of the NDVI for

each vegetation growing season (April to September) on the

QTP from 2000 to 2021 to characterize the best state of

vegetation greenness. The 2020 land use data were obtained

from the Resource and Environment Science and Data Center

(RESDC) and were used to eliminate built-up land and

agricultural land from the vegetated ecosystem areas.

Therefore, their classification into seven natural vegetation

types was avoid. DEM data were obtained from the

NASADEM dataset on the GEE platform at a resolution of

30 m. The environmental variables included precipitation,

temperature, soil moisture content, soil pH, soil water content

and soil organic matter content. They have been proven to be

important for vegetation growth in numerous studies (Feng

et al., 2020; Breidenbach et al., 2022). The 1 km monthly

precipitation and mean temperature datasets (1901-2020) are

from the Tibetan Plateau Data Centre (http://data.tpdc.ac.cn/).

Soil data were obtained from the Open land map dataset of the

GEE platform with a resolution of 250 m. To consider the impact

of human activities on vegetation greenness change, we used the

GHM dataset to characterize the intensity of human activities.

The dataset considers five main anthropogenic stressors: human

settlement, agriculture (cropland, livestock), transport, mining

and energy production electrical infrastructure. It characterizes

the cumulative intensity of human modification of the land

around 2016, ranging from 0 to 1, with a resolution of 1 km.

Finally, all data are processed in a raster format, all at a uniform

resolution of 1 km.
Detection of vegetation greenness
change trends

MODIS NDVI data were used to assess the trends and extent

of vegetation greenness change on the QTP from 2000 to 2021.

This is because a series of ecological conservation and

restoration plans and ecological engineering projects have been

implemented on the QTP since 2000, and the vegetation

condition has improved considerably (Wang et al., 2017; Li

et al., 2021a). Meanwhile, this period is the maximum time range

for which MODIS NDVI datasets are currently available. The

Mann-Kendall test and Sen’s slope trend analysis were combined

to identify trends and magnitudes of vegetation greenness

change (Wang et al. , 2021; Liu et al. , 2022). As a

nonparametric statistical test, the Mann-Kendall test does not

require the data to be normally distributed, only that they are

independent (Li et al., 2020). The Mann-Kendall test is also

useful for removing noise from time series (Zhou et al., 2020;

Zhang et al., 2022). It is widely used to determine whether
Frontiers in Plant Science 05
processes such as climate, hydrology and vegetation greenness

change are undergoing natural fluctuations or have a definite

trend of change (Wang et al., 2021; Cai et al., 2022). Therefore,

the Mann-Kendall test was chosen to determine the significance

of trends in vegetation dynamics. For time series Xi=(x1,x2, ,xn),

the statistic for the Mann-Kendall test is calculated as follow

S = o
n� 1

i=1
o
n

j=i+1
sgn(xj � xi)      i < j ≤ n

where sgn (xj-xi) is

sgn(xj − xi) =

1

0

−1

      

(xj − xi) > 0

(xj − xi) = 0

(xj − xi) < 0

8>><
>>:

The test statistic Z in the test is defined as follows:

Z =

S − 1ð Þ= ffiffiffiffiffiffiffiffiffiffi
V Sð Þp

0

S + 1ð Þ= ffiffiffiffiffiffiffiffiffiffi
V Sð Þp

     

S > 0

S = 0

S < 0

8>><
>>:

The variance V(S) is calculated as follows:

V Sð Þ = n n − 1ð Þ 2n + 5ð Þ=18

where n is the length of the time series (in this study, n=22).

When n≥8, the statistic is approximately normally distributed.

The test statistic was then used to test the significance of the

trend. In this study, the time series is considered to have a

significant trend when Z≥1.96, i.e., at the 95% confidence level.

Based on the significance test, this study further used Sen’s

slope trend analysis to detect the direction and magnitude of

vegetation greenness change trends on the QTP. The Sen’s slope

was calculated as follows:

Slope = Median½ xj − xi
� �

= j − ið Þ�       ∀ j > i

where the slope value is the trend of change in the time series, xi

and xjare the NDVI value of the th and jth year. If the slope value

is positive, then the vegetation trend is increasing. A negative

slope value means that the vegetation greenness change trend is

decreasing, indicating a gradual degradation of the vegetation

ecosystem. In this study, the vegetation greenness change trends

were classified into four types: significant increase (SI),

nonsignificant increase (NI), nonsignificant decrease (ND) and

significant decrease (SD).

In the process of detecting changes in vegetation greenness, areas

with a multiyear NDVI greater than 0.1 are treated as vegetation

growth areas, while the rest are considered nonvegetation areas.

Moreover, trends in vegetation greenness will be difficult to monitor

when NDVI is less than 0.1. Vegetation greenness trend detection

was completed on the MATLAB 2020 platform.
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Identification of drivers of vegetation
greenness change

The RF classification model was used to identify the main

drivers of browning across the QTP and seven vegetation types

and the thresholds for the different drivers. A total of 20 variables

were used, including climate, topography, soil, and human activity

intensity (Table 2). Of these, climate variables include the mean,

variation, maximum and minimum values (maximum anomalies)

of annual total precipitation, annual mean temperature and

Summer Warmth Index (SWI) from 2000 to 2020. The SWI

represents the sum of the average monthly temperatures greater

than 0°C (Keenan and Riley, 2018). It is a better indicator of the

environmental heat conditions during the plant growing season

than the annual average temperature (Keenan and Riley, 2018;

Berner and Goetz, 2022). It is widely used to analyse the effects of

climate change on boreal ecosystems, such as tundra (Berner and

Goetz, 2022). To investigate the effect of climate change on

vegetation greenness, this study also used Sen’s slope trend

analysis to calculate the annual trends of total precipitation,

average temperature, and SWI. Due to the difficulty of obtaining

precipitation and temperature data with 1 km accuracy, the data

from 2000 to 2020 were chosen to calculate the climate trends in

this study. Topographic factors include elevation (DEM), slope,

and aspect. Slope and aspect were calculated on the ArcGIS 10.7

platform based on DEM data. Soil factors include pH, SWC,

SOCC, and SBD. Human activity intensity is characterized using

the GHM index.
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The RF classification model was used to identify the main

drivers of browning across the QTP and seven vegetation types

and the thresholds for the different drivers. There are more

samples of greening than browning in the QTP and in all seven

vegetation types. We used the same number of samples from the

greening samples as the browning samples for model training

using random selection. 75% of the samples were used for training

and 25% of the samples were used for validation. The training

accuracy of the RF classificationmodel can be characterized by the

out-of-bag error rate. The out-of-bag error can be reduced by

adjusting the number of decision trees and the number of

evaluation variables per node. The optimal parameters of the

model are then determined. In RF classification models, ntree was

100 and mtry was 5. We ranked the importance of the variables to

characterize the effect of drivers on vegetation browning. The

mean decrease accuracy (MDA) index was used to assess the

relative importance of the variables (Strobl et al., 2008). Finally, we

identified the main drivers of dominant vegetation browning and

plotted the partial dependence of the important drivers. The plot

can represent the change of vegetation browning probability with

the change in drivers. To avoid errors in a single experiment, we

repeated the run 100 times for each random forest classification

model, and the average of the results of 100 runs was used as the

final result. The overall prediction accuracy of the models can be

characterized by receiver operating characteristic (ROC) curves.

The ROC curves for 100 repeated runs are shown in the

Supporting Materials. For the RF classification models, the AUC

values of the training and testing data ranged from 0.9 to 0.96.The
TABLE 2 Potential drivers of vegetation greenness browning and implications.

Variables types Variables Description Units

Climate Mean P Mean annual total precipitation from 2000 to 2020 mm

P slope Slope of change in annual total precipitation from 2000 to 2020 mm/yr

Max P Maximum of annual total precipitation from 2000 to 2020 mm

Min P Minimum of annual total precipitation from 2000 to 2020 mm

Mean SWI Mean annual SWI from 2000 to 2020 °C

SWI slope Slope of change in SWI from 2000 to 2020 °C/yr

Max SWI Maximum of annual SWI from 2000 to 2020 °C

Min SWI Minimum of annual SWI from 2000 to 2020 °C

Mean T Mean annual average temperature from 2000 to 2020 °C

T slope Slope of change in annual average temperature from 2000 to 2020 °C/yr

Max T Maximum of annual average temperature from 2000 to 2020 °C

Min T Minimum of annual average temperature from 2000 to 2020 °C

Topography DEM Digital Elevation Model m

Slope Topographic slope (ranged from 0 to 90) °

Aspect Topographic aspect (expressed in positive degrees between 0 and 360 degrees, measured clockwise from north) °

Soil pH Soil pH –

SWC Soil water content %

SOCC Soil organic carbon content g/kg

SBD Soil bulk density g/cm3

Human activity GHM Global Human Modification index –
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identification of drivers of vegetation greenness change was

performed on the RStduio platform, mainly using packages such

as randomForest, raster, and ggplot2.
Correlation analysis between vegetation
greenness and change trends

Spearman correlation coefficient was used to explore the

correlation between vegetation greenness and change trends,

where vegetation greenness is characterized by the 2021 NDVI

values. Spearman correlation coefficient does not require the

variables feature normally distributed (Spearman, 1904). It

remains applicable when outliers are present or variables

feature heavy-tailed distributions (De Winter et al., 2016; Liu

et al., 2021b). The analysis was based on the image element

scale. Therefore, we analysed more than 640,000 samples with

significant changes in vegetation greenness. First, we calculated

the relationship between the slopes of vegetation greenness and

the NDVI in 2021 on the QTP. Then, we counted the

correlation coefficients between the slopes of greening and

NDVI for different vegetation types. Finally, we divided the

vegetation into greening and browning and explored the

correlation between slopes in vegetation greenness and

NDVI. Correlation analysis was carried out on the RStudio

platform. The absolute value of Spearman’s coefficient r was

divided into five ranges: 1.0≥|r|>0.8 (very strong correlation),

0.8≥|r|>0.6 (strong correlation), 0.6≥|r|>0.4 (moderate

correlation), 0.4≥|r|>0.2 (weak correlation), and 0.2≥|r|≥0
(very weak correlation).
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Results

Overall change in greenness of the
Qinghai-Tibetan Plateau and seven
vegetation types

The average greenness trend from 2000 to 2021 shows that

the overall greenness of the QTP and the seven different

vegetation communities is significantly increasing (Figure 2).

The average greenness of the QTP is was approximately 0.36.

The average greenness of the seven vegetation communities

varied clearly, with a size relationship of BF > NF > scrub >

meadow > grassland > alpine vegetation > desert. On the QTP,

the average greenness increased by approximately 0.0013 per

year over 21 years. For the different vegetation communities, the

average greenness of BF, NF and scrub increased by more than

0.002 per year, while for meadow, grassland, alpine vegetation

and desert, the average greenness increased by approximately

0.001 per year. Therefore, the seven vegetation communities on

the QTP show that the higher the vegetation greenness is, the

greater the greenness is likely to increase over a 21-year period.
Spatial distribution and area of
vegetation greenness change

There is a clear spatial aggregation of areas of vegetation

greenness change on the QTP (Figures 3, 4A). The northern and

northwestern desert areas of the plateau have less vegetation

growth. Meanwhile, the snow-covered mountains in the south

and the large number of rivers and lakes scattered across the
FIGURE 2

Mean greenness changes of entire Qinghai-Tibetan Plateau and seven vegetation types.
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plateau are also without vegetation. The areas of the SI trend in

greenness are mainly located in the northern part of the plateau. In

both the southwestern and southeastern parts of the plateau, the

patches with an SD trend (browning) in greenness are aggregated.

In terms of the degree of greenness change, the increase in

greenness was most obvious in the area around Qinghai Lake. In

the central part of the QTP, vegetation degradation is the most

serious. The greenness of vegetation on the entire QTP shows a

spatial pattern of “high in the southeast and low in the northwest”

(Figures 4B-D). In the southeast, there are large areas of forest and

scrub with high greenness. The northern and northwestern desert
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areas of the QTP have less vegetation growth. At the same time,

there is no vegetation growth in the high mountains with year-

round snow in the south and in the large number of rivers and lakes

scattered across the QTP.

The total area of the seven vegetation communities is

approximately 186.15×104 km2. The area statistics for the change

in greenness show that the area with an SI in greenness is 46.54×104

km2, which is one quarter of the total area of natural vegetation

communities (Figure 5A). The area with an SD trend in greenness

was 5.32×104 km2, or 2.86% of the total area of natural vegetation

communities. Of the seven different vegetation types, grassland and
A B

DC

FIGURE 4

Spatial distribution of vegetation greenness changes on the Qinghai-Tibetan Plateau. (A) Significant trends of vegetation greenness. NDVI of the
Qinghai-Tibetan Plateau in (B) 2000, (C) 2010 and (D) 2020.
FIGURE 3

Vegetation greenness changes along longitude and latitude gradients on the Qinghai-Tibetan Plateau.
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meadow communities are the largest. They also have the largest

area of greening and browning. Grassland has areas of greening and

browning of 17.99×104 km2 and 1.96×104 km2 respectively. For

meadow, the areas of greening and browning are 11.79×104 km2

and 1.50×104 km2. Figure 5B shows the composition of greenness

change for each vegetation type. Desert has the highest percentage

of greening at 41.92%. From BF to desert, the percentage of area

browning tends to increase, with desert having the highest

browning percentage at 5.64%. However, BF, NF and scrub all

have less than 2%.
Drivers of vegetation greenness
browning on the Qinghai-Tibet Plateau

This study used the RF model to assess the degree to which

vegetation greenness browning was associated with climate,

topography, soils, and human activities over 21 years. This led

to the identification of key variables that influence vegetation

degradation. The six variables with the highest feature

importance were selected as important drivers. For the entire

QTP, topography, precipitation, and the intensity of human

activities were most important (Figure 6). DEM, the minimum

annual total precipitation, ranked highest in importance,

followed by change in mean annual total precipitation and

intensity of human activities (GHM) and topographic slope

and mean annual maximum precipitation. The bias

dependence plot shows that areas with high altitude, reduced

annual precipitation and high intensity of human activities are

more likely to brown. The probability of vegetation browning

was higher when the minimum and maximum of annual total

precipitation were approximately 500 mm. In addition,

meadows and grasslands are mainly distributed in such places.
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The vegetation has a higher browning probability in areas with

slopes approximately 5° and higher. Conversely, based on the

browning probability, we can also know the greening probability

of vegetation. That is, greening is most likely to occur in areas

with low to medium altitudes, increased average annual

precipitation, and low intensities of human activities.
Drivers of greenness browning for
different vegetation communities

The results of the variable importance of the RF classification

model indicate that changes in precipitation are an important

driver affecting the browning of the seven vegetation types on the

QTP. Figure 7 shows that for all seven vegetation types, the

change in annual total precipitation from 2000 to 2020 is one of

the six most important variables. For different vegetation types,

drought may be an important cause of the browning of

vegetation greenness in all of them. Moreover, the mean and

maximum anomalies of precipitation are also important

predictors of vegetation greenness browning. This further

reflects the sensitivity of vegetation to precipitation changes on

the QTP. For SWI and temperature variables, only the SWI

trend is important in predicting greenness browning in both

meadow and alpine areas. The two vegetation types may be more

sensitive to temperature changes. Among the topographic

variables, elevation is an important variable in predicting

greenness browning for all six vegetation types except NF. For

meadow and grassland, slope is also an important influencing

factor. The soil factor was only more important in the three

greenest vegetation types, BF, NF and scrub. The human activity

intensity factor is less important only in meadow and grassland.

For all seven different vegetation types, precipitation indicators
A B

FIGURE 5

Area statistics of greenness change for seven vegetation types on the Qinghai-Tibet Plateau. (A) Area and (B) percentages of SI, NI, ND and SD
for seven vegetation types.
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FIGURE 7

Feature importance of seven vegetation types. The orange square after a variable is used to indicate that the variable is ranked in the top 6 out
of 20 variables in terms of feature importance.
A B

FIGURE 6

Feature importance and partial bias dependence maps of vegetation greenness browning on the Qinghai-Tibet Plateau. (A) Feature importance
of 20 variables. (B) The top 6 drivers of feature importance were selected to plot their partial bias dependencies. The order of importance, from
highest to lowest, is DEM, Min P, P slope, GHM, Slope and Max P. The light red area indicates the 95% confidence interval.
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are the most important, while there are some differences in the

importance of SWI, temperature, soil and human activity

intensity indicators in predicting the greenness browning of

different vegetation types.
Discussion

Common and different drivers of
greenness browning in vegetation types

Generally, the natural vegetation shows a greening trend on

the QTP from 2000 to 2021. However, there are still a few areas

where vegetation degradation has occurred, which is consistent

with previous studies (Peng et al., 2012; Liu et al., 2021a). For

example, Liu et al. (2022) found that the proportion of

significant browning image elements was 2.6% and the

proportion of significant greening image elements was 21.7%

on the QTP from 2000 to 2015. In our study, the area of

significantly browning accounted for 2.86% of the total

vegetation area, and the area of significantly greening was

25%. In previous studies, NDVI decrease areas were also

monitored mainly in Qumalai and Zhiduo counties in the

central part of the QTP, and in Nagqu and Dangxiong

counties in the south, which are the same as the results of this

study (Pan et al., 2017; Zhang et al., 2021). Most of these

vegetation degradation areas have fragile ecological

background conditions and may have been degraded by

human activities over time (Huang et al., 2022). For example,

Qumalai County in Qinghai Province has a short growing period

of meadow, and overgrazing, rodent and pest infestation, and

human damage have caused serious degradation of meadows

(Zhou et al., 2021).

The drivers of vegetation greenness browning can be divided

into natural factors and human activities. The different vegetation

types on the QTP are distributed in distinct zones. The cause of

browning of different vegetation types depends on which factor or

combination of factors is the main local limiting factor (Lehnert

et al., 2016). This study found that precipitation, topographic

factors and human activities contributed the most to vegetation

browning. These results are generally consistent with previous

studies (Sun et al., 2013; Jiao et al., 2021; Huang et al., 2022). The

positive correlation between precipitation and vegetation

greenness was confirmed globally, including on the QTP.

Precipitation tended to increase in the eastern and northern

parts of the QTP, while in the southern and central parts,

precipitation tended to decrease (Supplementary Figure 1). The

browning of vegetation in these areas can be explained by the

decrease in precipitation. Especially in areas with lower

precipitation, vegetation is more sensitive to the decrease in

precipitation. Some studies emphasized the important role of

temperature changes in QTP in vegetation change (Chen et al.,

2020). In contrast, our study found that only in meadows, SWI
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slope was an important drivers of greenness browning. This may

be due to the spatially asynchronous variability of hydrothermal

conditions on the QTP. Except for the northern and western parts,

the QTP showed a trend of increasing temperature. The increase

in temperature is most evident in areas where meadows are

distributed. When temperature increases while precipitation

remains or decreases, vegetation browning may occur. With

increasing elevation, the sensitivity of vegetation to climate

change increases (Wei et al., 2022). The risk of vegetation

browning increases with increased drought or anthropogenic

disturbance. The probability of greenness browning of NF and

scrubs is also greater when the soil pH is weakly alkaline (pH>7).

The human activity intensity is an important driver in BF, NF,

grassland and desert. Urbanization and other infrastructure

construction activities may be an important cause of browning

in BF, NF and Desert. The browning of grassland may be due to

the high intensity of grazing in the southern QTP.
The relationship between vegetation
greenness and change trend

The results show that for the seven vegetation types on the

QTP, the vegetation types with higher greenness seemed to

increase more. To further investigate the relationship between

greenness magnitude and greenness trends, we calculated

Spearman correlation coefficient between the two (Figure 8).

Spearman coefficients between greening and browning trends

and vegetation greenness were calculated to clarify the effect of

greenness on greening and browning in different vegetation types.

During the analysis, we only selected the image elements with

significant changes in greenness. From the entire QTP, a very

weak positive correlation is shown between greenness and slope.

When the greening and browning parts were considered

separately, the slope of greening and greenness showed a strong

positive correlation, while the slope of browning and greenness

showed a weak negative correlation. For both forest communities,

the slope of greening and greenness showed a moderate negative

correlation, while the slope of browning and greenness showed

moderate and strong positive correlations. That is, the slope of

both greening and browning tended to be close to 0 in areas with

greater NDVI. Vegetation with lower NDVI may be more

susceptible to greening and browning. For scrub communities,

scrubs with lower greenness were more prone to browning. In

contrast, there was a significant strong correlation between the

greenness and slope of greening of grasslands, i.e., grasslands with

higher greenness were also more likely to be greened. In meadow

communities, the correlation between greenness and slope was

very weak. For both vegetation types, alpine vegetation and desert,

similar relationships with grasslands were shown, where the

higher the greenness the more susceptible to greening.

Ecosystem stability varies significantly among different

vegetation types (Kang et al., 2022). Overall, in BFs, NFs and
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scrubs with higher NDVIs, areas with higher greenness tended to

be stable, and areas with lower greenness were prone to greening

and browning. This may be because, more vegetation greenness is,

the more stable the vegetation condition is, as the area tends to be

in the climax community in forests. Meanwhile, some studies

reported a significant increase in the stability of forest community

productivity with increasing species richness (Schnabel et al.,

2021). While in grasslands, alpine vegetations and deserts, areas

with high greenness are more prone to greening.
Natural vegetation restoration
recommendations

The causes of vegetation degradation are diverse. This study

identified the drivers of browning in different vegetation

communities on the QTP, mainly including precipitation,

topography, and human activities. We recommend appropriate

restoration measures by considering the degree of browning and

the dominant drivers. Depending on the degree of vegetation

browning, different levels of anthropogenic restoration measures

should be taken to maximize the resilience of natural ecosystems

(Cao et al., 2018; Wen et al., 2019). For example, for lightly

browned vegetation, natural restoration through enhanced

management is generally all that is needed to achieve

restoration goals. For vegetation with moderate browning,

biological measures are needed to assist in restoration. For

heavily browned vegetation, ecological restoration by physical

modification is needed (Teng et al., 2020). Human activity

intensity was an important driver for BF and desert browning.

For these two vegetation types, human disturbance should be

excluded first, and the appropriate measures should be taken
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according to the degree of browning. For vegetation sensitive to

precipitation changes and other natural factors, browning scale

and degree need to be to be monitored more closely, and

restoration measures should be taken at the appropriate time

to prevent browning from intensifying. In conclusion, we

support the adoption of artificially guided vegetation

restoration measures according to local conditions.
Limitations and perspectives

In our study, there are several limitations that should be

further considered and improved upon in future studies.

First, considering the availability of data, we selected 20

potential drivers of greenness change from four aspects:

climate, topography, soil, and human activities. To ensure

heterogeneity in data resolution, all data in our study were

scaled to 1 km. The applicability of our findings at other scales

may need to be further explored due to scale effects.

Additionally, extreme climate events are considered to have

important impacts on ecosystems such as grasslands (Hoover

et al., 2022). The inclusion of extreme climate data in the

study could be considered in the future. Second, our study

reveals the commonality and specificity of the drivers of

vegetation browning on the QTP. This is beneficial for

increasing the understanding of vegetation change and thus

supporting ecosystem management and restoration efforts on

the QTP and in other regions. We will try to distinguish the

spatial heterogeneity of drivers and differences in the

response of different vegetation communities , thus

providing scientific support for the implementation of

ecological projects.
FIGURE 8

Spearman coefficients between vegetation greenness and change trend. Slope of greening is greater than 0, and slope of browning is less than
0. *** and * represent significant at 99% and 90% confidence levels, respectively. The absolute value of Spearman’s coefficient r is divided into
five ranges: 1.0≥|p|>0.8 (very strong correlation), 0.8≥|p|>0.6 (strong correlation), 0.6≥|p|>0.4 (moderate correlation), 0.4≥|p|>0.2 (weak
correlation), and 0.2≥|p|≥0 (very weak correlation).
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Conclusion

This study calculated the vegetation change trends on the

QTP from 2000 to 2021 based on the MODIS NDVI dataset and

determined the spatial distribution of vegetation greening and

browning areas. The RF model was used to identify the drivers of

browning on the QTP as a whole and for seven vegetation types.

This study found that the greenness of the entire QTP and the

seven different vegetation types showed an overall increasing

trend over the past 20 years. The NDVI of the Qinghai-Tibetan

Plateau increased by an average of 0.0013 per year. The greening

areas are mainly concentrated in the northern part of the

Qinghai-Tibetan Plateau, accounting for 25% of the natural

vegetation area. The browning patches were mainly distributed

in the central and south parts of the QTP, covering 2.86% of the

natural vegetation area. Meanwhile, precipitation, topography

and human activities were identified as the important drivers of

vegetation browning on the QTP. For different vegetation types,

we also identified the variability in browning drivers. This is

reflected in the fact that the main drivers of the seven vegetation

types are not exactly the same, as well as their different rankings

of importance. Our results show that there are differences in the

drivers of browning among different vegetation types and

identify the main drivers of different vegetation types,

providing a scientific basis for ecosystem management and

restoration on the QTP.
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