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Radial growth is influenced by the local environment, regional climate, and tree

species. Assessing the influence of these variables on radial growth can help to

reveal the relationships between tree growth and the environment. Here, we

used standard dendrochronological approach to explore the response of radial

growth to climate factors. We reported ring-width (TRW) residual chronologies

from five sites along a longitudinal gradient in the Hexi area, arid northwestern

China, based on a total of 249 Qinghai spruce (Picea crassifolia) ring-width

records. We found that Qinghai spruce in the west of the Hexi area is more

sensitive to climate change than in the east, and that drought condition in the

previous growing season and the early growing season (March to June) limits

spruce growth. Comparison between the regional standard chronologies of

Qinghai spruce and Qilian juniper (Juniperus przewalskii) in the Hexi area

during 1813-2001 showed that both chronologies were more consistent in

the high-frequency domain than in the low-frequency domain. The findings

emphasize the impacts of local environment, regional climate and tree species

on radial growth, suggesting that accounting for these variables could improve

large-scale and multi-species dendrochronological studies.
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Introduction

Radial growth is affected by environmental variables,

including climatic factors such as temperature and

precipitation (Fritts, 1976). The effects of climate change on

radial growth are complex, due to spatial heterogeneity and

varied responses between different tree species (Graumlich,

1993; Camarero et al., 2018; Wang and Yang, 2021).

Furthermore, radial growth trends of the same tree species can

be spatially variable (Danek et al., 2017; Song et al., 2020),

reflecting local environmental differences such as slope,

elevation, and moisture gradients (Liang et al., 2006; Kharal

et al., 2014; Touchan et al., 2016; Klippel et al., 2017; Griesbauer

et al., 2021; Du et al., 2022; Guerrero-Hernandez et al., 2022).

However, the influences of local environment, regional climate

and different tree species on radial growth are often neglected in

large-scale and multi-species dendroclimatic or biomass-

modeling studies. (Roy and Ravan, 1996; Cook et al., 2010).

The Hexi area is a typical arid to semi-arid region of

northwest China. Forests on the mountains to the north and

south of the Hexi area have the functions of water conservation,

soil conservation and climate regulation (Liu et al., 2016; Deng

et al., 2017). Here, Qinghai spruce (Picea crassifolia Kom) and

Qilian juniper (Sabina przewalskii Kom) are endemic tree

species that are both sensitive to climate change (Chen et al.,

2017; Yang et al., 2021). Previous tree-ring studies of Qinghai

spruce and Qilian juniper have focused on regional climate

reconstruction (Yang et al., 2014;Gou et al., 2015; Yang et al.,

2019; Zhang et al., 2021). Several previous studies in the Hexi

area have revealed the spatial variability of radial growth along

elevation gradients (Zhang andWilmking, 2010; Gao et al., 2013;

Zhang et al., 2017; Wang et al., 2019) and slopes (Liang et al.,

2006; Gao, 2011). These studies suggest that climate is the main

factor leading to different radial growth patterns at different sites.

Most comparative studies on Qinghai spruce and Qilian juniper

have focused on the differences in the response of the two species

to climatic factors (Liang et al., 2006; Ran et al., 2021). However,

it is not clear how climate change affects Qinghai spruce radial

growth from east to west along the Hexi area. In addition, the

question of consistency between the climatic signals recorded in

the standard chronologies of Qilian juniper and Qinghai spruce

around the Hexi area on various timescales also remains

unresolved. Therefore, it is crucial to explore the effects of

local environment, regional climate and tree species on the

radial growth in the Hexi area.

In this study, we collected Qinghai spruce samples along an

east-west transect along the Hexi area, established and compared

five residual chronologies, and produced a regional Qinghai

spruce residual chronology to determine the primary factors

limiting radial growth in this area. Finally, we compared the

regional Qinghai spruce standard chronology with a regional

Qilian juniper standard chronology on multiple timescales from

1813-2001. Our study aimed to identify: (i) the main factor
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limiting radial growth of Qinghai spruce in the Hexi area, (ii)

differences in Qinghai spruce radial growth along the east-west

transect; and (iii) similarities and differences in the standard

chronologies of the two dominant species (Qinghai spruce and

Qilian juniper) in the Hexi area from 1813-2001.
Materials and methods

Study area

The study area covers a large area of Hexi area, in arid

northwestern China (Figure 1). The Qinghai spruce sampling

sites span a distance of about 1000 km from east to west. This

area is characterized by a temperate continental climate. The

main tree species are Qinghai spruce (Picea crassifolia Kom)

which grow in cloudy climates on slopes between 2600 and 3100

m a.s.l (http://www.iplant.cn/frps), and Qilian juniper (Sabina

przewalskii Kom) which grow in open stands on south-facing

slopes between 3000 and 3500 m a.s.l (Chen et al., 2011; Yang

et al., 2011). The forest soil is mainly mountain grey cinnamon

soil (Chen et al., 2011).
Sampling and chronology development

A total of 472 tree cores from 249 living Qinghai spruce were

collected at five sampling sites (Figure 1 and Table S1). Tree-ring

widths (TRW) were measured using the LINTAB II platform

(Germany) with an accuracy of 0.01 mm, and all the

measurement series were cross-dated with TSAP software

(Rinn, 2003). The quality-check of the cross-dated series was

performed using the COFECHA software (Holmes, 1983).
FIGURE 1

Locations of Qinghai spruce sampling sites (triangles), Qilian juniper
sampling sites (circles) and meteorological stations (flags). For Qilian
juniper site information, refer to Yang et al. (2010).
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The ARSTAN software was used to develop the ring-width

chronologies (Cook, 1985). To remove the inherent biological age

trend from the ring-width sequences, we calculated differences

between the raw data and an exponential or linear growth curve.

The data-adaptive power transformation was used to reduce the

potential influence of outliers in the raw data (Cook and Peters,

1997). The de-trended tree-ring indices were used to establish the

chronologies by using a robust bi-weighted estimate of the mean

(Cook and Kairiukstis, 1990). We used the method described by

Osborn et al. (1997) to stabilize the variance before calculating the

final chronologies. Finally, both the standard (STD) (Figure S1)

and residual (RES) (Figure 2) chronologies were produced. The

STD retains low-order persistence, which is routinely used for

climate reconstruction to facilitate comparison between various

regions. The RES is a pre-whitened chronology in which

significant persistence has been removed (Cook, 1985).

The expressed population signal (EPS) and the mean inter-

series correlation (Rbar) were calculated to determine the

statistically-reliable periods of the STD and RES chronologies.

A 30-year moving window with 15-year overlaps was used. We

selected 0.85 as the thresholds of EPS to evaluate the reliable

portion of the STD and RES chronologies (Wigley et al., 1984).
Meteorological data and
statistical analysis

Monthly temperature, precipitation and relative humidity

data from 1960 to 2014 were acquired from the meteorological

stations (Minle, Zhangye, Yeniugou, Sunan, Jiuquan) nearest to

the respective sampling sites. The self-calibrating Palmer

drought severity index (scPDSI; Van der Schrier et al., 2013) is

a modified variant of the Palmer drought severity index (PDSI;

Palmer, 1965). We used an average series of four half-degree

scPDSI grid points close to our sampling site to represent the

regional moisture conditions over the period from 1960-2014.

First-order differenced climate series retain the interannual

variability of climate factors. Correlation coefficients between the

residual chronologies and the first-order differenced monthly

values of temperature, precipitation, relative humidity and the

scPDSI were calculated from 1961-2014 using the

DENDROCLIM2002 software, this uses bootstrapping to

assess the significance and stability of the coefficients over a

specific time period (Efron, 1979; Biondi and Waikul, 2004).

Five residual chronologies with a common period (1907-

2014) were selected for principal component analysis (PCA) in

the SPSS (Statistical Product and Service Solutions) software

(SPSS 22). Using the PCA, we explored the similarities and

differences in the five residual chronologies.

To explore the high- and low- frequency variance of the

Qinghai spruce and Qilian juniper chronologies, we compared
Frontiers in Plant Science 03
their standard chronologies in the frequency domain. The Qilian

juniper standard chronology was obtained from Yang et al. (2010).

The regional standard chronology was produced by applying PCA

to seven single-site standard chronologies from Qifeng (DHS),

Sidalong (XYT), Zhamashike (ZMSK), Haiyagou (HYG), Dulan

(DL), Delingha (DLH) and the Anemaqin Shan (ANMQ)

(Figure 1). We used observations from PQK, DDS, XYT, HYG,

DHS to develop a regional standard chronology of Qinghai spruce

using ASTRAN (Table S2). Fast Fourier transform (FFT) filtering

(Cooley and Tukey, 1965) was used to calculate five-year high-

pass filtered data and fifty-year low-pass filtered data from the two

regional standard chronologies from 1813-2001. Correlations

were then calculated between the original unfiltered, first-order

differenced, five-year high-pass filtered, and fifty-year low-pass

filtered data. We used a Matlab program based on Monte Carlo

significance tests (Macias-Fauria et al., 2012) to calculate the

correlation and associated significance.
Results

Climate differences and chronology
characteristics at the five sampling sites

The temperature, precipitation and relative humidity data

during 1960-2014 from all five meteorological stations showed

that temperature and precipitation were high in June, July and

August, and low in December, January and February (Figure 3).

The relative humidity was high in July, August and September

and lowest in April. Under the influence of topography, the

temperature gradually decreases with increasing altitude. The

elevation of Yeniugou meteorological station is 3314 m, which is

significantly higher than that of other sites (<2500m) (Table S1),

and may explain why its monthly temperature was lowest and

precipitation was highest. The higher relative humidity at

Yeniugou may be due to the increased rainfall and decreased

evaporation at high elevation. There was little change in

temperature between areas of similar elevation (Minle and

Sunan, Zhangye and Jiuquan), but precipitation and relative

humidity gradually decreased from east to west. Overall, local

climates at the five meteorological stations present similarities as

well as differences, reflecting a common regional climate and the

specific local environments.

Five Qinghai spruce residual chronologies were established

from east to west in the Hexi area (Figure 2). The time spans of

the PQK, DDS, XYT, HYG, DHS chronologies were 227 years

(1792-2019), 202 years (1812-2014), 222 years (1797-2019), 177

years (1839-2016) and 112 years (1907-2019), respectively. The

mean segment length of all samples was 188 years. All the

chronologies showed low growth from 1920 to 1930 and high

growth in the 1980s and after 2000.
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Principal component analysis of the five
residual chronologies

According to the principal component analysis of the five

residual chronologies (Figure 4), the first principal components

(PC1) of all five chronologies were between 0.5 and 1, and

accounted for 60.5% of the variance, indicating that the TRW of

most trees in the study area responded in the same way to

environmental factors. The second principal components (PC2),

accounted for 15.2%, with the easternmost PQK having a

negative PC2 (-0.709) and the westernmost DHS having a

positive PC2 (0.843), indicating differences between their two

residual chronologies. Overall, the TRW growth status of
Frontiers in Plant Science 04
Qinghai spruce at the five sampling sites was affected by both

the regional climate and local environments.
Statistical comparison of five local
raw chronologies

We compared the statistical characteristics calculated of the

five raw ring-width series (Figures 5; S2). The AC1 (first-order

autocorrelation) values for the five sampling sites were greater than

0.6, indicating significant low-frequency variance. The means of

the SD (standard deviation), Rbar (mean inter-series correlation of

all series) and MS (mean sensitivity) of the five raw TRW series
FIGURE 2

Residual chronologies and sample depths used in the study. Solid lines indicate EPS>0.85 and dotted lines indicate EPS<0.85.
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were greater than 0.2, indicating considerable high-frequency

variance (Fritts, 1976). Ring-width, SD, Rbar and MS were all

highest, and AC1 was the lowest at the westernmost site (DHS).

The opposite pattern was observed at the easternmost site (PQK).

This pattern indicates greater high-frequency variance at the

westernmost site (DHS) than at the easternmost site (PQK).

From this we infer that tree-ring growth in drier regions is more

sensitive to environmental change.
The relationships between TRW
and climate

We investigated the correlations between residual

chronologies and the first-order differenced climate series from

May of the previous year to the current October during 1961-

2014. As shown in Figure 6, the correlations between the five

residual chronologies and temperature, precipitation, relative

humidity and scPDSI were relatively consistent among the five

sampling sites. The five residual chronologies showed negative

correlation with the temperature in July and August of the

previous year (-0.43≤r≤-0.17), while the precipitation and

relative humidity were positively correlated (0.04≤r ≤ 0.39). The

five residual chronologies also showed positive correlation with

March to April relative humidity (0.15≤r ≤ 0.42). Correlation

coefficients were much stronger with scPDSI, showing positive

correlations (0.2≤r ≤ 0.53) throughout the current March to June,

except for at PQK. Although PQK, located in the easternmost

area, showed no significant correlation with scPDSI, it
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nevertheless showed positive correlation with precipitation and

relative humidity in the current March to April (0.15≤r ≤ 0.31).

Consequently, drought (scPDSI) from March to June is the

primary limiting factor for Qinghai spruce growth in our study

area. Easternmost site PQK has more precipitation and a better

tree-ring growth environment, meaning there is a weaker limiting

effect of drought in this area.

The correlation analysis of the five residual chronologies from

1960-2014 yielded significant positive correlations between sites

(Table S3). The TRW measurements at PQK, DDS, XYT, HYG,

DHS were selected to develop a regional TRW residual chronology

that represents the growth status of Qinghai spruce across the

whole region. Regional average series of temperature, precipitation

(Jones and Hulme, 1996), relative humidity and scPDSI were also

established. Correlation between the regional Qinghai spruce

residual chronology and climate showed that regional Qinghai

spruce TRW was highest when the prior summer was cool and

wet. Significant positive correlation was also found between

relative humidity and scPDSI in the spring and summer of the

current year. These results further suggest that drought (scPDSI)

in the previous growing season and early growing season (March-

June) is the main limiting factor for Qinghai spruce growth.
Comparisons with the regional Qilian
juniper standard chronology

We calculated the correlations between the standard

chronologies of Qinghai spruce and Qilian juniper from 1813-
B C

D E

A

FIGURE 3

Monthly mean temperature, precipitation and relative humidity (RH) at five meteorological stations along the east-west transect in the Hexi area
from 1960-2014.
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2001 (Figure 7), finding a common response of the growth of

both species to climate (r=0.51, P<0.001). Annual variability is

indicated by the first-order difference of the chronology. The

five-year high-pass filtered data preserve the high-frequency

variability of the mean of the original series. The fifty-year

low-pass filtered data preserve the relatively low-frequency

variability of the mean of the original series. Overall, there was

a strong correlation between the high-frequency variability of

Qinghai spruce and Qilian juniper (r=0.66, r=0.67, P<0.001),

while correlation between the fifty-year low-pass filtered

domains was not significance (r=0.48, P=0.142).
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Discussion

Tree-ring width response of
Qinghai spruce to climate
variability in the Hexi area

The five residual chronologies all showed low growth from

1920-1930 and high growth in the 1980s and after 2000

(Figure 2). These high and low growth trends are line with

previous studies (Liu et al., 2005; Fang et al., 2009; Gao et al.,

2018; Cai and Liu, 2021). Despite variations in habitat types and

local environment, the PC1 of the five residual chronologies

indicated a common influence of the regional climate on tree

growth (Figure 4). This suggests that a relatively homogeneous

macroclimate, independent of any differences in local ecological

conditions, was the underlying cause of the high degree of

covariance among the tree-ring chronologies (Peters et al.,

1981; Littell et al., 2008; Liang et al., 2010).

The five chronologies showed positive correlation with

precipitation and negative correlation with temperature in July

and August of the previous year (Figure 6), suggesting that high

precipitation in the previous year can promote increased

nutrient transformation and storage in the tree, driving rapid

growth of the cambium in the following year. At the same time,

high temperatures in July and August of the previous year can

cause high evaporation, resulting in poor radial growth. (Fritts,

1976). This lag between radial growth and climate suggests that

the climate in the previous year may influence TRW in the next

year through its effect on nutrient storage in the tree. The same

relationship between climate and tree-ring growth has been

reported for Qinghai spruce in the Hexi area (Chen et al.,
FIGURE 4

Principal component analysis of the five residual chronologies.
B C

D E

A

FIGURE 5

Comparison of statistics of the raw tree-ring measurements at the five sampling sites.
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2013) and nearby areas (Chen et al., 2011; Deng et al., 2013;

Wang et al., 2016).

In our study, tree-ring growth was positively correlated with

scPDSI in all months from the previous August to the current

August. In particular, four consecutive months from the current

March to June were significant (P<0.05) (Figure 6), indicating

that moisture availability during these seasons is the primary

limiting factor for the radial growth of Qinghai spruce. Zeng

et al. (2020) used the Vaganov–Shashkin (VS) model to assess

the response of Qinghai spruce stem radial growth to climate

from the perspective of tree physiological processes. Their results
Frontiers in Plant Science 07
showed that soil moisture conditions during the early growing

season (May to July) significantly affected tree growth, with the

early growing season accounting for > 65% of total tree-ring

width index. The availability of moisture in the early growing

season enhances the rate of photosynthesis, enabling the

assimilation of sufficient carbohydrates to maintain a high rate

of cell growth, leading to large ring widths (Zhang et al., 2016).

It is worth noting that the correlation coefficients between

precipitation or relative humidity and the chronologies were

relatively small. These low values may reflect differences between

precipitation and relative humidity at the sampling sites and the
FIGURE 6

Correlations of the residual chronologies with first-order differences of mean temperature, monthly precipitation, relative humidity and scPDSI
from May of the previous year to October of the current year at the five sampling sites and across the whole region (PQK, DDS, XYT, HYG, DHS)
during 1961-2014. The previous year’s months are represented in lower case and those of the current year in upper case. Grid boxes with black
stars indicate statistically significant results (p<0.05).
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meteorological stations. The elevations of Minle, Zhangye,

Yeniugou, Sunan, and Jiuquan are 2272 m, 1484 m, 3314 m,

2311 m and 1478 m, respectively, whereas the elevation of the

sampling sites ranged from 2600 m to 3100 m (Table S1). This

result also highlights that elevation differences between

meteorological stations and sampling sites can influence the

analysis of relationships between radial growth and climate.
Frontiers in Plant Science 08
Radial growth differences of
Qinghai spruce from east to
west along the Hexi area

Although some differences in the radial growth of Qinghai

spruce were found from east to west, there was no consistent effect

of hydrological gradients on the relationship between climate and
B

C

D

A

FIGURE 7

Comparison of the standard chronologies of Qinghai spruce (red lines) and Qilian juniper (blue lines) during the past 189 years.
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radial growth (Figure 6). We found that the chronology of the

westernmost region (DHS) was more sensitive to climate than that

of the easternmost region (PQK), indicating that the importance of

precipitation increased from east to the west along the Hexi area.

Water stress in plants results in a decrease in the total leaf

surface area and leaf-level water content, increasing the

sensitivity of plant growth to rainfall (Meinzer et al., 2007; Li

et al., 2016; Rodgers et al., 2018). According to the principle of

ecological amplitude (Fritts, 1976), the water demand of tree

growth in arid areas can easily reach the limit of its physiological

demand, and water is thus the main limiting factor in this area.

In regions with higher precipitation, the limiting effect of

precipitation on tree-ring growth is weakened and trees are

less sensitive to precipitation. Therefore, the wetter PQK site in

the east was less sensitive to climate than the other study sites.

Comparison of the standard
chronologies of Qinghai spruce and
Qilian juniper at different timescales

We found that the standard chronologies of Qinghai spruce

and Qilian juniper were consistent in the high-frequency domain

(first-order difference, five-year high-pass filters) but different in

the fifty-year low-pass filters (Figure 7). We consider that the

relatively arid conditions and associated drought stress probably

drive the consistent inter-annual variability of tree growth-climate

relationships in the Hexi area. Division and elongation of

cambium cells requires enough water to maintain normal

growth (Zhang, 2018). Frequent drought conditions can lead to

hydraulic failure, deficient carbon recharge, inhibited

photosynthesis and thus impaired tree growth in both juniper

and spruce (Mitchell et al., 2013; Choat et al., 2018).

The differences in the low-frequency climate domain between

the two tree-species may be attributed to their different habitat

conditions and lifespans. It is well known that the germination,

growth and development of trees can vary significantly between

different species due to differences in their habitats (McDowell

et al., 2003; Liu et al., 2007; Brandt et al., 2014). For example,

Qilian juniper can grow on sunny slopes (Yang et al., 2010). This

species has the characteristics of liking sunlight, being drought-

tolerant, and having a well-developed root system and strong

wind resistance. In contrast, Qinghai spruce is primarily located

on shady slopes with thick soil cover, low evaporation (Zheng

et al., 2019), and a dense forest canopy. The different habitat

conditions have led to different drought tolerance strategies in the

two species. Some studies have shown that Qinghai spruce mainly

resists drought by delaying dehydration, while Qilian juniper

mainly resists drought by enduring dehydration (Dang et al.,

2003; Ran et al., 2021). Age differences between the species can

also affect the signal strength in the low-frequency domain

(Konter et al., 2016). In our study, the average age of Qinghai

spruce was about 180 years, and the average age of Qilian juniper
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was about 550 years. Differences in average age may also cause

differences in the recording of climate signals. This result reminds

us that when different tree species are used to reflect long-term

climate change, these differences should be considered.

Conclusion

Our tree-ring width sampling network covering the main

environmental gradient of the Qinghai spruce forest ecosystems

in the Hexi area and captured the spatial variability of radial

growth. Here, tree growth was predominantly limited by

drought (scPDSI) in the previous and early growing seasons

(March-June). Increasing sensitivity of radial growth to climate

along the east-west aridity gradient was also evident. Despite the

physiological differences between Qinghai spruce and Qilian

juniper, their standard chronologies were consistent in the high-

frequency domain (first-order difference, five-year high-pass

filters); however, they were different following fifty years low-

pass filtering. These results may be attributed to their different

habitat conditions and tree ages. Thus, the tree-ring network in

the Hexi area has revealed insights into interactions between tree

growth and the environment. Overall, regional climate change,

the east–west aridity gradient, and tree species all played

important roles in influencing radial growth. These results

highlight the need to carefully consider the combined effects of

these variables when performing large-scale and multi-species

dendrochronological studies.
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indicate EPS>0.85 and dotted lines indicate EPS<0.85.

SUPPLEMENTARY FIGURE 2

Statistical comparison of the raw tree-ring measurements at the five
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